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A lower bound for the isoperimetric deficit
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1 Introduction
Let K be a plane compact convex set of area F with boundary curve C d K of length L.
As it is well known, the isoperimetric inequality states

F < L?/Ait,

with equality only for discs.

'The work was partially supported by grants MTM2012-36378 and MTM2012-34834 (MEC)

Für jede Figur K in der Ebene mit Umfang L und Fläche F gilt die isoperimetrische
Ungleichung A := L2 — Art F > 0. Gleichheit gilt genau für Kreise. Hurwitz gelang
1902 nicht nur ein eleganter Beweis der isoperimetrischen Ungleichung mit Hilfe von
Fourier-Reihen, er bewies zudem eine obere Schranke für das isoperimetrische Defizit
A, indem er die Evolute der Kurve ins Spiel brachte. 1920 fand Bonnesen eine
untere Schranke für A, namtlich 7t (R — r)2 < A, wobei R und r den Um- respektive
den Inkreisradius der Randkurve C der betrachteten Figur K bezeichnen. In der
vorliegenden Arbeit wird eine andere untere Schranke für A bewiesen: Diese ergibt sich

aus der Differenz der von C umrandeten Fläche und der Fläche welche die Pedalkurve

von C bezüglich des Steiner-Punktes von C einschliesst. Das Resultat verbessert damit

Abschätzungen z.B. von Groemer. Es wird zudem bestimmt, für welche Kurven die

neue Abschätzung scharf ist.
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Introducing the quantity A L? — An F, called the isoperimetric deficit, the above
inequality can be written as A >0. In some sense A measures the extend to which the

convex set is away from a disc. It is interesting to know upper and lower bounds for A in
terms of quantities associated to K.

Hurwitz, in his paper about the use of Fourier series in some geometrical problems [3],
proves the following inequality, which is a sort of reverse isoperimetric inequality and

provides an upper bound for A,
0<A<7T|fe|, (1)

where Fe is the algebraic area enclosed by the evolute of C. Equality holds when C is a

circle or parallel to an astroid.

Recall that the evolute of a plane curve is the locus of its centers of curvature or, equiva-
lently, the envelope of all the normals to this curve (i.e., the tangents to the evolute are the
normals to the curve).

As for lower bounds, along the 1920s Bonnesen provided some inequalities of the type
A > B, where B is a non-negative quantity associated to the convex set vanishing only for
circles. Moreover these quantities have a relevant geometrical meaning (see [4]).

In this note we prove a Bonnesen-style inequality which gives a lower bound for the

isoperimetric deficit in terms of the difference between the area enclosed by the pedal
curve of C with respect to the Steiner point of K, and the area enclosed by C.

The pedal curve of a plane curve C with respect to a fixed point O is the locus of points
X so that the line OX is perpendicular to the tangent to C passing through X. The Steiner
point of a plane convex set K, or the curvature centroid of K, is the center of mass of dK
with respect to the density function that assigns to each point of dK its curvature.

Let A be the area enclosed by the pedal curve of C — dK with respect to the Steiner point
of K. In Theorem 3.1 it is proved that

A >3n(A-F). (2)

So, the quantity 3n(A — F) is a lower estimate of the isoperimetric deficit. Since A > F,
this inequality implies the isoperimetric one. Moreover A F only for circles and so
A 0 implies C is a circle.

We point out that inequality (15) shows that Theorem 3.1 improves Theorem 4.3.1 in [2].
Moreover our lower bound has a very clear geometric significance.

For the special case of convex sets of constant width we obtain the inequality

A >y>r(A-F), (3)

which in turn improves an inequality on page 144 of [2], as inequality (17) shows.

We also consider when equality holds in (2) and (3). In Corollaries 4.2 and 4.4 it is shown
that this is so for circles and curves which are parallel to an astroid or to a hypocycloid of
three cusps, respectively.

Finally in Propositions 5.1 and 5.3 we prove that for convex curves C parallel to an astroid

or a hypocycloid of three cusps, the evolute of C is similar, with ratio 2 or 3 respectively,
to the corresponding astroid or hypocycloid.
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2 Preliminaries

Support function

A straight line G in the plane is determined by the angle f that the direction perpendicular
to G makes with the positive x-axis and the distance p p(f) of G from the origin. The

equation of G then takes the form

x cos f + y sin f — p 0. (4)

Equation (4), when p p(<p) varies with f, is the equation of a family of lines. If we
assume that the 2n-periodic function p(f) is differentiable, the envelope of the family is

obtained from (4) and the derivative of its left-hand side, as follows:

—x sin f + y cos <f> — p' 0, p' dp/d<fi. (5)

From (4) and (5) we arrive at a parametric representation of the envelope of the lines (4):

x p cos <j> — p' sin <f), y — P sin <p + p' cos 0.

If the envelope is the boundary 3 AT of a convex set K and the origin is an interior point
of K, then p(4>) is called the supportfunction of K (or the support function of the convex
curve dK).
Since dx — —(p + p") sin f df and dy (p + p") cosf d<p (we here assume that the

function p is of class C2), arclength measure on dK is given by

ds — -Jdx2 + dy2 |p + p"\ d(f> (6)

and the radius of curvature p by

ds
I "I" ^ lf, + " '

It is well known (see for instance [5], page 3) that a necessary and sufficient condition for a

periodic function p to be the support function of a convex set K is that p + p" > 0. Finally,
it follows from (6) that the length of a closed convex curve that has support function p of
class C2 is given by

P2 7T

L= / pdf. (7)
Jo

The area of the convex set K is expressed in terms of the support function by

1 f 1 /'2)r 1 1 r^n

f=t Pds -i p(p + p")d<p - p2 dcf> — - / p'2df. (8)
1 JdK 1 JO 1 JO 1 JO

For any curve C given by (x(</>), y(f)), convex or not, we will say that p(f) is the generalized

support function of C when

x(<f>) p(<t>) cos(f) - p'{f) sin(0),

y(f) p(f) + p'(f) cos
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Note that p(<p) is not necessarily a distance, as it happens when we define the support
function of a convex set. In fact, \p(4>)\ is the distance from the origin to the tangent to C

at the point {x(ip), y{(p))

It is easy to see that the generalized support function pe(<p) of the evolute of C 8K is
pe(4>) — p'(<f> + 7t/2), where p{<p) is the support function of C, see [1] Hence, assuming
p(cp) is a C3-function, the algebraic area Fe enclosed by the evolute of C is given by

1 rln I p2n 1 r2n
pe F p(p' + p'") ^ Ö / p'2dip- - p"2 dip

z Jo z J0 1 Jo

Steiner point

The Steiner point of a convex set K of the Euclidean plane is defined by

1 f2n
S(K) — / (cos (p,s,mcp)p(ip)dip,

x Jo

where p(<p) is the support function of 8K (see [2]).

Thus, if
p(ip) - a0 + z an cos nip + b„ sm nip, (9)

n>l

is the Fourier series of the 27r-periodic function p(ip), the Steiner point is

S(Ä-) (a,,*l)

The Steiner point of K is also known as the curvature centroid of K because under

appropriate smoothness conditions it is the center of mass of 8 K with respect to the density
function that assigns to each point of 8K its curvature

The relation between the support function p{cp) of a convex set K and the support function
q{cp) of the same convex set but with respect to a new reference with origin at the point
(a, b), and axes parallel to the previous x- and y-axes, is given by

q(tp) p (tp) — a cos tp — b sin tp

Hence, taking the Steiner point as a new origin, we have

q{ip) flo + z a„ cos nip + b„ sin nip

n> 2

We recall that the Steiner ball of K is the ball whose center is the Steiner point and whose

diameter is the mean width of K
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Pedal curve

If the curve C is given in Cartesian coordinates as the envelope of the lines x cos fi +
y sin — p(fi) 0, then the pedal curve V V(fi) of C with respect to the origin, is

given by

'Pi.fi) (p(fi)cosfi, p(fi) sin <fi),

or, in polar coordinates, by r p(fi).
In particular, if C is closed, the area enclosed by V is

1 f2*
A - p2dfi. (10)

J Jo

If F is the area enclosed by C, we obviously have A > F with equality if and only if C is

a circle.

3 A lower bound for the isoperimetric deficit

We proceed now to provide a lower bound for the isoperimetric deficit.

Theorem 3.1. Let K be a compact convex set ofarea F with boundary curve C 8K of
class C2 and length L. Let A be the area enclosed by the pedal curve ofC with respect to
the Steiner point S(K). Then

A >3tt(A-F), (11)

where A L2 — An F is the isoperimetric deficit.

Proof. Let p(</>) be the support function of C, with respect to an orthonormal reference
with origin in the Steiner point, and axes parallel to the x- and y-axes.

We know that the Fourier series of p(fi), is

Pi.fi) ao + z an cos nfi + bn sin nfi.
n>2

By Parseval's identity we have

Z f P1dfi al+]- £(a2 + b2), (12)
27r J° 2 1^2

and similar expressions for p' and p". Concretely we have

f p'2 dfi ny]n2(a2 + bl), f p"2 dfi n V/i4(a„2 + b2). (13)
Jo tri Jo
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p'2 d<p.

Hence, the isoperimetric deficit A L2 — An F, according to (7) and (8), is given by

a2n
\2 r2n r2jr

pdf J
— 2k J p2d<f> + 2K J pa df

2K2 ^(«2 - l){a2n + bl) > ~ + bl) Y f
n>2 n>2 ^

But it follows from (8) and (10) that

1 f2n 1 f2n

2 Jo
P'2 ^ 2 Jo P2d0~ F A~ F'

and hence

A > 3k(A — F).

The above proof shows that A 0 if and only if pi<p) ao, that is, when C is a circle.

Although the constant 3n appearing in Theorem 3.1 cannot be improved for general convex

sets, it is possible to obtain a stronger inequality for special types of convex sets.

For instance, for convex sets of constant width we have the following result.

Proposition 3.2. Let K be a compact convex set of constant width in the hypothesis of
Theorem 3.1. Then

32
A > -k(A-F).

Proof Since constant width means p{(f>) + p(<p + tt) is constant and

oo

pif) + pif + k) 2 cos2rtc^> + 7>2h sin 2n0)
o

it follows that an b„ 0 for all even n > 0.

Introducing this in the proof of Theorem 3.1 the result follows.

Relationship with the L2 metric

Consider now the quantity fciK) equal to the distance in L2(S[), where S1 is the unit
circle, between the support function of K and the support function of the Steiner ball of K.

It is known, see [2] Theorem 4.3.1, that

A > 6/7-/52(/02. (14)

We can state now the following inequality

3K(A - F)> 6kö2(K)2. (15)
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To prove this we first observe that

oo

&l(K)1 ny£y„+bl),
n=2

where an, b„ are Fourier coefficients of the support function of K, p (cp), as m (9) (see page
142 of [2]). Moreover the proof of Theorem 3.1 shows that

3tt(A - F)=3^- ^n2{a2n + b2„),

n >2

hence inequality (15) follows.

So we have

A > 3TT(A- F)> 6TTS2(K)2

which improves the inequality (14).

For compact convex sets of constant width it is known that

A > 16TTC>2(K)2 (16)

(see page 144 of [2]).

We can state now the following inequality

y7r(A - F) > l67tÖ2(K)2. (17)

The proof is the same as for (15) taking into account that now the even coefficients vanish.

So we have
32

A > y7r(A - F) > l67iS2(K)2

which improves the inequality (16).

4 Equality of the lower bound with the isoperimetric deficit

Now we study the case of equality in Theorem 3.1. It is clear from the proof that A

37t(A — F) if and only if

p(<p) — ao + 02 cos hp + b2 sin 2<p

In order to characterize the curves with this type of support function we recall that the

parametric equations of an astroid (a 4-cusped hypocycloid) are

x(cp) 2a sin3 (</>),

y(4>) — 2a cos3(ip),
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for some constant a e K, a ^ 0, with 0 < f < 2k From this it is easy to see that the

generalized support function p(<fi) of the astroid is p(f) a sm(2f), where <f> is the angle
between the normal (—x'((f>)) and the positive x-axis.

This implies that the curves with generalized support function given by

q(cj>) b + p(0) b + a sin(2f),

where b e R, are parallel to an astroid. The distance between these curves and the astroid
is \b\.

We have the following result.

Proposition 4.1. Let

p{<p) ao + o,l cos(2<jf>) + b2 sm(2</>)

be the support function of a closed convex curve C of length L, with a\+ b\ 0. Then

the interior parallel curve to C at distance L/2n is an astroid.

Proof. We make the change of variable u <fi

tan 20o

Then

sin 2u cos 2(<p — — cos 2f cos 2<f>o + sin 2f sin

Ü2 b2
cos 2(f) -j^=^= + sin 2f -==^=

±y/ai+bl ±sjal + bl

Hence

p(u) — ao ± a sin 2u

where a ^Ja\ + b\. This shows that the given curve is parallel to an astroid at distance

|aol- By the condition of convexity, p + p" ao 3a sin 2m > 0, and so ao is positive.

Since L [ff* p(cf>) df 2nao, the proposition is proved.

Corollary 4.2. Equality in Theorem 3.1 holds ifand only ifC is a circle or a curve parallel
to an astroid.

Proof. As we have said, equality in (11) holds when

p(f) — ao + a2 cos 2(f) + b2 sin 2<p.

If a2 — b2 0, p{cf>) — ao is the support function of a circle. If + b\ 0, the result

follows from Proposition 4.1.

- fo + f, where

-
a2'
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Now we study the case of equality in Proposition 3 2.

It is clear from the proof of this proposition that equality holds if and only if

pif) — ao + as cos 3f + bj sin 3^

In order to characterize the curves with this type of support function we recall that the

parametric equations of a hypocycloid of three cusps, with respect to a suitable orthogonal
system, are

x{t) — —2a cos t — a cos 21

y(t) —2a sin t + a sm21

with a e R, a 0, t e [0, 2n]
The relationship between the parameter t and the angle fit) between the normal vector
i—y'it), x'{t)) and the positive x-axis is

f(t) a(t) -
where a{t) denotes the angle between the tangent vector ix'{t), y't) and the positive x-
axis.

Hence
sin t + sin 21 t

tan fit) — cot a it) cot -cost — cos 21 2

and so

t — k — 2fit)
On the other hand, the generalized support function pif) of the hypocycloid must venfy

/ xif) \ _ / cosf -sinf \ pif) \
V y(f) \ sm^ cosf \ p'if) /'

so

(pif) \ / cos f sin f \ / —2acosi7r—2f) — acos2i7[—2f) \
p'if) \ — sin^i cos if J\ — 2a sin(7T — 2f) + a sin 2(^r — 2^>) J

Then, using standard addition trigonometric formulas, it follows

pif) a cos(3</>)

Proposition 4.3. Let

pif) — 03 cos 3f + £>3 sin 3f
be the generalized support function of a closed curve C, with + b^ 0. Then C is a

hypocycloid of three cusps.
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Proof. We make the change of variable given by u f — </>o, where

^3
tan 3<po — —.

«3

Then, an easy computation gives

p(u) a cos(3u),

03
where a —, and the proposition follows.

cos <po

Corollary 4.4. Equality in Proposition 3.2 holds if and only if C is a circle or a curve
parallel to a hypocycloid of three cusps.

Proof. We have seen that equality in Proposition 3.2 holds when

p(f) ao + <23 cos 3<p + £3 sin 3<p.

If «3 £>3 0, p(f) ao is the support function of a circle. If a2 + b2 ^ 0, the result
follows from Proposition 4.3.

Remark 4.5. As it is well known (see for instance page 8 of [5]) the area Fr enclosed by
the interior parallel at distance r to a closed curve is given by

Fr F — Lr + 7tr2

where L and F are respectively the length and the area corresponding to the given curve.

In particular, if r Ljln, we get

L2

F^=F~^>
or, equivalently

A -An FLßn,

which gives a geometrical interpretation of the isoperimetric deficit.

In particular the isoperimetric inequality A > 0 is equivalent to F^ßn < 0, a fact that

suggests a more geometric proof of the isoperimetric inequality, by showing that in the

process of collapsing, the curve reverses orientation. Moreover, Fißn 0 holds only for
circles.

Remark 4.6. Combining Theorem 3.1 with Hurwitz' inequality (1) we have the relation

A-F<l-\Fe\, (18)

with equality for circles or curves parallel to an astroid.
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5 Parallel curves and evolutes

We have seen the role played by the convex curves parallel to an astroid or to a hypocycloid
of three cusps. For such curves C we show that there is a quite surprising relationship
between the parallel curve at distance L/2k to C and the evolute of C.

Proposition 5.1. Let

p(<fi) ao+ a2 cos(2<p) + t>2 s\n(2(p)

be the support function ofa closed convex curve C of length L. Then the evolute ofC and
the interior parallel curve to C at distance L/2n, are similar with ratio 2.

Proof. We shall see that there is a similarity, composition of a rotation with a homothecy,
applying the parallel curve on the evolute. We may assume, by the proof of Proposition
4.1, picf) ao + a sin(2</i). The generalized support function of the parallel curve to C at

distance L/2n — ao is q((j>) — a sin(2</>) and the corresponding one to the evolute of C is

Pe(4>) ~p' + ^-) 2a cos(2^).

The generalized support function of the rotated 37r/4 parallel curve to C is

pW a cos(2f).

Hence this rotated curve is homothetic, with ratio 2, to the evolute.

Remark 5.2. In particular, the area of the evolute of such a curve is four times the area

of the parallel curve at distance L/2n. The reciprocal is also true. In fact, since Hurwitz'
inequality, by Remark 4.5, is equivalent to

4\FL/2n\-\Fe\<0,

the curves for which the area of the evolute is four times the area of the parallel curve at

distance L/2it, are exactly circles or curves parallel to an astroid.

Proposition 5.3. Let

p(f) ao + cos(3 (p) + bj, sin(3i^)

be the support function ofa closed convex curve C of length L. Then the evolute ofC and
the interior parallel curve to C at distance L/2n, are similar with ratio 3.

Proof. Analogous to that of Proposition 5.1 with q{f) — a cos(3cf>), according to the proof
of Proposition 4.3.

The next figures show convex curves with support functions p{<fi) 5 + sin(2^) and

p(<p) 8 + sin(3</>), their parallel interior curves at distance L/2it — 5 and L/2n 8

respectively, and the corresponding evolutes.
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p(4>) — 5 + sin(24>) p(</>) 8 + sin(30)
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