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Game show shenanigans:
Monty Hall meets mathematical logic
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1 Introduction

The classical Monty Hall problem stipulates that a hypothetical game show contestant be
presented with three doors and told that behind one door is a car and behind the other two
doors are goats (the problem is loosely based on the American television game show Let’s
Make a Deal and named after the show’s original host). The player is to choose a door,
and then Monty (the host) opens a different door which contains a goat (such a door exists
regardless of the contestant’s choice, and the contestant knows in advance that Monty will
do this). Then the player has the option of either keeping the door she chose or picking
a different door. Subsequently, Monty opens the chosen door and the contestant wins the

Beim klassischen Monty-Hall-Problem oder Ziegenproblem sind in einer Quizshow
hinter drei Tiiren zufillig ein Auto (als Hauptgewinn) und zwei Ziegen (als Nieten)
verborgen. Der Kandidat wiihlt eine Tiir. Der Moderator, der weiss was sich hinter je-
der Tiir verbirgt, 6ffnet daraufhin eine andere als die gewihlte Tiir und zwar eine mit
einer Ziege dahinter. Der Kandidat darf dann entweder bei seiner Wahl bleiben oder
noch wechseln. Es ist leicht zu sehen, dass der Kandidat durch Wechseln der gewihlten
Tiir seine urspriingliche Gewinnchance von 1/3 auf 2/3 erhoht. Die Autoren der vorlie-
genden Arbeit schlagen nun zwei Varianten vor, wie dieses Spiel modifiziert werden
kann, damit es fiir beide Seiten (Kandidat und Veranstalter der Quizshow) attraktiver
wird: Die Strategie des Kandidaten seine Gewinnchance zu erhéhen soll schwieriger
sein, und die Gewinnchance bei optimaler Strategie soll kleiner werden.
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prize which lies behind it. It is not hard to show that switching is the optimal strategy, with
probability of winning jumping from 1/3 to 2/3. Indeed, the only way the contestant loses
by switching is if she originally picked the car. Since she had only a 1/3 chance of picking
the car, she has only a 1/3 chance of losing the game by switching. Therefore, she has a
2/3 chance of winning the car by changing her selection.

The above Monty Hall game has been utilized regularly by the game show Let’s Play
a Game, whose host (coincidentally) is also named Monty. Before Marilyn vos Savant
published the ideal strategy for winning (namely, to always switch) in Parade Magazine
(to be clear, the solution actually did appear in the magazine on September 9, 1990), the
vast majority of the contestants didn’t realize it was to their advantage to change their
selection, and only 35% of the games ended with a contestant driving home a new car.
However, after Marilyn’s Parade column, the contestants found the car 68% of the time.
Needless to say, this didn’t please the executives at Let’s Play a Game.

The show recently contracted you, a mathematician, to retool the Monty Hall game so
that (a) playing with optimal strategy is more difficult, and (b) the probability of winning
with optimal strategy is greater than % (so as not to incur the wrath of the Game Show
Contestant Union) but less than % The show’s budget for research and development is low,
and so they want you to construct a game which, as in the original, requires a contestant to
pick among 3 doors with prizes hidden behind (some subset of) them. After brainstorming
for a couple of weeks, you have managed to come up with the following variants:

Game One: Truth Triad. A contestant is presented three doors labeled 1, 2, and 3. Further,
the contestant is informed that behind one door is $20,000, behind the other two doors is
motor oil, and that all three doors are equally likely to contain the money. A door number
is determined at random (but not told to the contestant) to house the cash. Monty (the host),
who knows where the green is, randomly chooses a proposition ¢ concerning the location
of the cash (this will be made precise shortly). He then presents ¢ to the contestant. The
contestant, after a reasonable period of time to analyze ¢, is presented with the truth value
of ¢ (true or false, relative to the randomly chosen door). She then chooses a door, after
which Monty opens the chosen door and the contestant wins the prize which lies behind it.

Game Two: Full Monty. A contestant is presented three doors labeled 1, 2, and 3 as before.
But now, there are no restrictions placed on how many doors have $20,000 behind them,
and all possibilities are equally likely (so, for example, it is possible that all doors house
motor oil, and at the other extreme, that $20,000 is behind every door). This gives 8 equally
likely outcomes, and the contestant is made aware of this fact in advance. One of the 8 prize
configurations is chosen at random, but not revealed to the player. Then Monty randomly
chooses a proposition ¢ concerning the location of the money along with its truth value
(again, relative to the prize configuration). After being given a period of time to ponder
the proposition and its truth value, she chooses a door. As before, Monty opens the chosen
door and the contestant wins the prize which lies behind it.

Excited about your new ideas, you get to work solving the following problems: determine
the optimal strategy for winning the games (i.e., finding money) and, using said strategy,
determine the probability that the contestant will win.
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2 Propositional Preliminaries

Now that you have come up with the general idea for two games, it is time to make their
descriptions more precise. What is meant by *“a proposition concerning the location of
the money?” You quickly realize that there is a setting which is perfectly suited to give a
formal answer to this question, namely, propositional logic.

The particular language £ you have in mind contains three sentence symbols Ay, Ay, and
Aj3. The symbol A} models the assertion, “Money is behind door 1.” Analogous inter-
pretations are given to Ay and A3. Further, £ contains the usual logical connectives —
(nor), v (or), A (and), — (implies), and <> (if and only if) as well as punctuation (, ) for
unique readability. The set F of formulas is generated from the sentence symbols using
the propositional connectives in the familiar way. We pause to give a few simple examples
of formulas along with their intended English language translations.

Example 1. We have the following:

1. formula: Ay; translation: “Money is behind door 2.”
2. formula: Ay Vv Az; translation: “Money is behind door 2 or door 3.”

3. formula: (Ay v A3) A —Aa; translation: “Money is behind door 1 or door 3 but not
behind door 2.”

4. formula: Ay — —(A| V A3); translation: “1f money is behind door 2, then money
is not behind door 1 nor behind door 3.”

5. formula: A; < —(A2 Vv A3); translation: “Money is behind door 1 if and only if
money is not behind door 2 nor behind door 3.”

Next, fix a set {T, F'} consisting of two distinct elements 7', called truth, and F, called
falsity. Any function v: {Aj, A2, A3} — {T, F} (henceforth called a truth assignment)
can be uniquely extended to a functionv: F — {T, F} (cf. [5], Theorem 13A). Again, we
pause to present an example.

Example 2. Suppose thatv(A1) = T andv(A2) = v(A3) = F. Thenv (A1) =0(—A2) =
(A VA =T, whereasv(Ay AA3) =0(A] = A2) =0(A| < Ay) = F.

A simple yet important fact is that given any truth assignment v and any formula ¢, a truth
table enables one to effectively determine whether v(p) = T oro(p) = F.

Finally, you have the tools needed to formalize “a proposition ¢ concerning the location
of the money”: ¢ is simply a formula in the language £ defined above. You want Monty
to choose ¢ at random (i.e., you want all propositions to be equally likely to be picked by
Monty). This poses a problem for multiple reasons, but the one with which you are most
concerned is the practical one:

Problem 1. There are an infinite number of formulas, so in practice, Monty simply cannot
pick one at random!

So now you’re stuck. .. but is there a way out? You notice that although there are indeed
infinitely many formulas, there are large groups of them which make the same assertions.
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For example, the formulasin S := {A1, Aj VA, (A1 VA]) VA1, ...} are, in a certain way,
all equivalent. But how does one make this precise? They are equivalent in the following
sense: if v is any truth assignment such that v (o) = T for some a € S, then v(f) = T for
all f € S. From this observation, you are lead naturally to the relation ~ defined on the
set F of all formulas by a ~ g if and only if v(a) = ©(f) for every truth assignment . It
is a simple matter to verify that ~ is an equivalence relation on F (the reader may notice
that for any formulas a and £, & ~ p if and only if @ <> f is a tautology; using logical
nomenclature, a ~ f if and only if a F4 ).

Now, if the set of equivalence classes happens to be finite, then you can simply give a
complete set of representatives of F (modulo ~) to Monty and he can randomly choose
one without any loss of expressiveness. Problem solved! It remains to determine if, in
fact, there are but finitely many equivalence classes. Toward this end, you introduce the
following definition.

Definition 1. Let (T, F)? := (T, F} x [T, F} x {T, F). A (tertiary) Boolean function is
a function B : {T, F}3 — {T, F}.

Let % denote the collection of Boolean functions. It follows from basic combinatorics that
1B| = 2@ = 256. @2.1)

Moreover, every formula ¢ determines a Boolean function B, as follows: let (x1, x2, x3) €
{T, F}?. Then By ((x1, x2, x3)) = the truth value of ¢ when A is assigned x|, A; is
assigned x7, and A3 is assigned x3. More formally, let .7 denote the collection of all truth
assignments v : {A|, Az, A3} — {T, F}. Then B, ((v(A1), v(A2), v(A3)) := 0(p), where
v varies over .7 . We pause to present a concrete example.

Example 3. Let ¢ := (A V A2) A Az. Then

I. B,(T,T,T)) = B,((F,T, T)) = B,((T, F,T)) = T, and

2. B,((T, T, F)) = B,((F, F, F)) = B,((F, F, T)) = B,((T, F, F))
= B,((F,T,F)) = F.

Now, it follows immediately from the definition of ~ and B, that for any formulas a,
peF,
([5], Theorem 15A, part (b)) a ~ f if and only if B, = Bg. 2.2)

For ¢ € F,let|p] := {f € F : ¢ ~ [} be the equivalence class of ¢ modulo ~. Then
(2.2) implies that the function f: F/~— 2 defined by

fel) :== B, (2.3)
is well defined and one-to-one. Our first proposition is perhaps less obvious:

Proposition 1 ([5], Theorem 15B). Every Boolean function is of the form B, for some
formula y .
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Sketch of Proof. Let B be an arbitrary Boolean function, and let k := |B~!(T")|. We con-
sider several cases.

Case 1: k = 8. Then B(X) = T forall X € {T, F}>. In this case, take y := A; vV —A;.
Case 2: k = 0. Then B(X) = F forall ¥ € {T, F}. Now choose y := A| A —A].

Case 3: 1 < k < 7. List all vectors x for which B(X) = T as follows:

%1 = (o115 %105 X13)
X2 := (x21, X22, X23)

=5

Xk = (Xp1s200; X53)-

Now, for 1 <i < kand 1 < j < 3, define the formula a;; by

o — Aj if ijZT,
. —'Aj if x;; =F.

Finally, set ff; := aj1 A aj2 A ajz, and let y := f1 V- -V fi. Itis not hard to check that
B = B,, completing the proof. U

Proposition 1 allows us to conclude that the function f defined in (2.3) is onto. Therefore,
there are exactly 256 equivalence classes of formulas modulo ~. Not only this, but the
previous proof yields a nice algorithm for choosing a representative from each class. As an
added bonus, the proof shows how to do this in such a way that each chosen formula has a
relatively simple form. To be fair to the contestant and since the show has a limited amount
of time to allow the contestant to deliberate, you are quite happy with your findings. In
particular, you have managed to resolve Problem 1. Having laid the ground work, you are
excited to move on and calculate the probability of winning the new games you created
(and since it would be nice to get paid, you cross your fingers and hope that the probability
of winning is between % and %).

3 Truth Triad

We begin by reminding the reader of the description of Truth Triad: Mary Contestant is
presented three doors labeled 1, 2, and 3. Further, Mary is informed that behind one door is
$20,000 and behind the other two doors is motor oil, and that the money is equally likely
to be behind each of the three doors. A door number is determined at random (but not
told to Mary) and the $20,000 is placed behind the chosen door. Monty, who knows the
location of the money, randomly chooses a proposition ¢ (in the language £ introduced in
the previous section). He then presents ¢ to Mary. Mary, after a reasonable period of time
to analyze ¢, is given the truth value of ¢ (relative to the door chosen to house the money).
She then must choose a door, after which Monty opens the chosen door and then Mary
wins the prize which lies behind it.
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After setting up the logical machinery in Section 2, you are now able to devise an optimal
strategy for Mary and determine the probability that she wins the money using this strategy.
Note first that the rules of the game allow exactly 3 possible truth assignments (hence the
game’s moniker) vy, v2, and v3 defined as follows:

v1(A1) =T, v1(A2) =vi1(A3) =F, (3.1)
02(A2) =T, v2(A1) =0v2(A3) =F, (3.2)
03(A3) =T, 0v3(A1) =03(A2)=F. (3.3)

Recall, moreover, that Mary is told in advance that exactly one door is to contain the
money, so she knows that the above truth assignments are the only ones possible. Further, if
Mary is given any proposition ¢ (from the set of 256 propositions you’ve given to Monty),
she can effectively determine via a truth table which of the above three truth assignments
make ¢ true, if any.

Finally, you are equipped to analyze the game. First, since truth assignments (3.1)—(3.3)
are equally likely, it is easy to see that for any proposition ¢, the probability P7-(¢) that ¢
is true (relative to a randomly chosen assignment from (3.1)—(3.3) above) is

the number of truth assignments in (3.1)—(3.3) making ¢ true

Pr(p) = : o :
the number of truth assignments in (3.1)—(3.3) (3.4)
|B,'(T)N{(T, F, F),(F, T, F),(F, F, T)}| '
= 7 .
It is clear from (3.4) that
1 2
for any formula ¢, P7(¢) € {0, 33 1. (3.5)

For a randomly selected formula ¢ and for a € {0, %, %, 1}, let Pr(P7(¢) = a) denote the
probability that P7-(¢) = a. Then

Pr(P7(p) = 0) = Pr(Pr(p) = 1) = 1/8, (3.6)
and

Pr(Pr(p) = 1/3) = Pr(P7(p) = 2/3) = 3/8. (3.7)

To verify (3.6), you begin by simply counting the number of formulas ¢ (again, from the
256 that you gave to Monty earlier) for which P7-(¢) = 0. But this amounts to counting the
number of Boolean functions B for which B(T, F, F) = B(F,T,F) = B(F,F,T)=F.

Elementary combinatorics yields 2° = 32 such functions. Thus Pr(P7(¢) = 0) = % =

%. One shows analogously that Pr(P7(p) = 1) = %. A similar argument establishes
(3.7). Alternatively, note that if one restricts the domain of the Boolean functions to
{(T,F,F),(F, T, F),(F, F,T)}, then one obtains but 8 different functions, and (3.6),
(3.7) follow.

It is now an hour before Mary is to appear on Let’s Play a Game. One of the doors is
randomly picked, and the show’s staff puts $20,000 behind the chosen door and motor
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oil behind the other two. Monty randomly chooses a proposition ¢ to present to Mary,
and then Mary is brought on stage and given ¢. She is allotted several minutes to analyze
@, after which time Monty reveals ¢’s truth value (relative to the randomly selected prize
configuration) and then asks Mary to choose a door. Again, we remind the reader that Mary
knows that the money is behind exactly one of the doors. You now consider the possible
cases systematically.

Case 1: P7(p) = 0. This is somewhat unfortunate for Mary in that even after Monty
reveals the truth value of ¢, Mary gains nothing. She can compute (via a truth table, if she
is fast enough) that v; (p) = F for all i € {1, 2, 3} (recall that v; is defined in (3.1)—(3.3)).
Since she knows that exactly one of the three truth assignments (1)—(3) is to be realized, she
doesn’t need Monty to tell her that ¢ is false (even though he will); she already figured this
out from the truth table. Said another way, the assumption that the money is behind exactly
one of the three doors implies —¢, so she has gained no new information. Thus all Mary
can do is pick her favorite integer between 1 and 3, and the probability of winning is 1/3.

Case 2: P7(p) = 1. The analysis proceeds exactly as in Case 1, and again, the probability
of winning is %

Case 3: Pr(p) = % Then there is a unique i € {1, 2, 3} such that v;(¢) = T. Moreover,
by a truth table, Mary can find i. Now, if Monty tells her that ¢ is true, then Mary wins:
the money is behind door i. If Monty tells her that ¢ is false, then Mary knows the money
is not behind door i, and thus the probability Mary will find the cash is 4. Therefore, the

probability that Mary will find the $20,000 in this case s 4 - 1+ 2. 1 =2,

Case 4: Pr(¢p) = % The analysis proceeds as in Case 3, and the probability of Mary of

winning is % in this case as well.

At long last, you have enough data to compute the probability of Mary finding the money.

Theorem 1. The probability P| that a contestant playing Truth Triad with optimal strategy
will win is % (or 58.3%).

Proof. By (3.6), (3.7), and Cases 1-4 above, the probability that a contestant playing with

. T owwin 1 131 1,3 233 2 I 1 7
optimal strategy will winisPy =g -3+ g-3+3-5+5 5= +t3=13- 0

4 Full Monty

As we did with Truth Triad in the previous section, we quickly review Full Monty for the
reader. Mary is presented three doors labeled 1, 2, and 3. But now there are no restrictions
placed on how many doors house the money, and all possibilities are equally likely. This
gives 8 equally likely outcomes, and Mary is made aware of this in advance. One of the 8
configurations is chosen at random, but not revealed to her. Then Monty randomly chooses
a proposition ¢ and presents it to Mary along with its truth value (relative to the randomly
chosen prize configuration). Again, she is informed in advance that this will be done. Af-
ter being given a period of time to ponder the proposition and its truth value, she chooses
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a door. Then Monty opens the chosen door and she wins the prize which lies behind it.
Note that there is no loss of generality in assuming that Monty gives Mary a true propo-
sition relative to the randomly chosen prize configuration, since a false proposition can
be negated (by us and by Mary). Henceforth, we shall assume that Mary is always given
a true proposition by Monty and, moreover, that Mary knows in advance that she will be
given a true proposition.

Before beginning our analysis, a few remarks are in order. Recall that in Truth Triad, Mary
starts off (before Monty’s help, that is) with a 33.3% probability of finding the money.
With Monty’s assistance, the probability increases by 25%. In Full Monty, it is easy to
see that Mary begins with a 50% chance of finding money. However, Truth Triad endows
Mary with more knowledge than does Full Monty. Specifically, she knows that money will
be behind exactly one door. Playing Full Monty, Mary goes in blind. Therefore, you don’t
expect Monty to be as helpful to Mary as he was in the first game. After the smoke clears,
will Mary be better off playing Truth Triad or Full Monty? Let’s find out.

Your first goal is to determine Mary’s optimal strategy for finding money (note that we
omit the article “the” preceding “money” because money may lie behind multiple doors).
Toward this end, you set up some notation. As before, for a proposition ¢, let B, denote the
corresponding Boolean function. For | <i < 3,letxr; : {T, F}® — (T, F} be projection
onto the ith coordinate.

Describing the optimal strategy is fairly straightforward. Suppose that it has been randomly
determined which doors (if any) house money. The formal model is simply that a member
of {T, F}3 is chosen at random, and for 1 < i < 3, there is a T in the ith coordinate if
and only if there is money behind the ith door. Now, Monty picks a formula ¢ that is true
relative to the chosen configuration (formally, if x € {T, F 1 s picked at random, then ¢
is also chosen randomly subject only to B, (x) = T'). Mary may construct a truth table to
find the function B,,. For a fixed formula ¢ and 1 < i < 3, let Pr,, (i) denote the probability
that money lies behind door i (given ¢). Then it is easy to see that

the number of members of B(;I (T') with a T in the ith coordinate
the cardinality of B(L,_l (T)

1B na (D)

TP Co [N

Pry (i) =

4.1)

Thus Mary’s best strategy is to choose i € {1,2, 3} such that |B;1(T) N ﬁi_l(T)l is a
maximum (note that there may be multiple such 7).

Now that you have determined the optimal strategy for winning the game, you turn your
attention to the global problem of finding the probability that Mary Contestant will win
$20,000 using the strategy just described. You have a nice insight into how to transform
this probability problem into an elementary linear algebra problem. Toward this end, in
what follows, we denote F by 0 and T by 1. This conversion allows you to represent
Boolean functions as certain 8 x 4 binary matrices (that is, as matrices all of whose entries
are either O or 1). The details follow.
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Let

, and z:=

O~ O O == O =

O OO O = = = e
e
I

OO == O O — =

Then notice that for any formula ¢, the Boolean function B, can be represented by the
8 x 4 matrix [xy zb?], where foreachi, 1 <i <8, b? := By (xi, yi, zi). It should now be
clear to the reader how the definitions of X, y, and z came into being: the set of rows of the
matrix [X y z] is precisely the domain of the Boolean function B,, for any formula ¢. Let us
agree to call the matrix M, := [xy z b?] the Boolean matrix of ¢ (matrices whose entries
are all either O or 1 are often called Boolean matrices, (0, 1) matrices, or logic matrices).
Let Fpmu denote the collection of the 256 formulas given to Monty earlier. Then

M, : 9 € Fun)=1{lxyzvl:vel0,1}*. (4.2)
Moreover, if a, f € Fyp are distinct, then B, # Bg. Thus
ifa, f € Fyp are distinct, then M, # Mp. (4.3)

You are almost ready to determine the probability of Mary winning Full Monty. The fol-
lowing lemmas will be required.

Lemma 1. Let ¢ € Fyp. The probability that Monty chooses ¢ and presents it to Mary
(recall that we reduced to the case where Monty only presents true formulas to Mary

; G ; y . b?.b?
relative to the randomly chosen prize configuration) is Sy -

Proof. The original probability space for Full Monty consists of all 2048 equally likely
points (x, v, z, ¢) such that (x, y,z) € {0, 1}3 and ¢ € Fyp. Since we reduced to the
case where Monty only presents true formulas to Mary relative to the randomly cho-
sen prize configuration, we fold the probability space to consist of 1024 equally likely
points (x, y, z, ¢) that satisfy the condition B, (x, y, z) = 1, with the understanding that
(x, v, z) is identified with the Boolean triple determined by the dictionary F* = 0 and
T = 1. Indeed, given any fixed prize configuration (x, y, z) € {0, 1}, it is easy to see
that there are precisely 27 = 128 many ¢ € Fpyy such that B,(x, y,z) = 1. Now, for
any ¢ € Fuyp, we have that ¢ is a true proposition for anywhere from 0 to 8 differ-
ent prize configurations (x, y, z). The actual number is given as the number of 1s in b?, or
b? -b?, since for precisely b? -b? many rows of M, we have a prize configuration (x, y, z)
such that B, (x, y, z) = 1. We have established that the folded probability space has 1024
equally likely points and for ¢ € Fyr g, there are b? - b? prize configurations such that
B,(x,y,z) = 1. The result now follows. O
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Lemma 2. Suppose that Monty has given the formula ¢ to Mary. Using optimal strategy,
the probability of Mary choosing a door which houses money is equal to
max(x-b?, y-b?, z-b?)
b? - b? ’

Proof. The proof consists, essentially, of “translating” (4.1) to the realm of Boolean ma-
trices. So assume that Monty has given ¢ to Mary. Recall from (4.1) that the probability
that money lies behind door 1, given ¢, is given by

the number of members of B’; 1(T) with a T in the 1st coordinate

Proll) = the cardinality of B(,,_I(T)
_ the number of rows of M, whose first and last entries are 1 (4.4)
the number of 1s in b?
x-b?
~ bobe
Analogous arguments apply for doors 2 and 3, and the proof is complete. |

You are now equipped to prove your second theorem:

Theorem 2. The probability P> that a contestant playing with optimal strategy will win
Full Monty is 2 (or 64.0625%).

Proof. The probability of winning Full Monty with optimal strategy is given by

P; = Z (probability ¢ will be chosen)(probability of finding money, given ¢)

peEFMH
b? .b? .b(P’ _b(p, .b?
N Z % el : i (by Lemmas 1 and 2)
1024 b? . b?
peFun
1
=] max(x-b?, y-b?, z-b?)
1024
peFmu
1
= oEaT max(X-v, Vv, Z-v by 4.2
03q 2. Max(xv,yv,zv)  (by4.2)
vel0,1}3
1
= 1024 x 656 (this follows from a direct computation)
4l
64’
concluding the argument. -

Success! You are quite happy with yourself for a job well done: both games you invented
are less likely to pay dividends to the contestant than the original game, and the opti-
mal strategies require much more of the player than simply memorizing “I should always
switch.” Your next task: convince the execs to give you a shot at playing for a car before
they usher in your new games (and your 1995 Ford station wagon gives up the ghost).
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