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Die Catalan-Zahlen tauchen nicht nur bei zahlreichen kombinatorischen Problemen

auf, sie haben auch vielfältige zahlentheoretische und analytische Eigenschaften. So

wurde in einer kürzlich erschienenen Ausgabe des American Mathematical Monthly
nach dem Wert bestimmter Reihen gefragt, bei denen die Catalan-Zahlen im Nenner
auftreten. Über diese Reihen werden die Catalan-Zahlen mit der Zahl n verknüpft.
Die Autoren der vorliegenden Arbeit verallgemeinem das Problem und finden einen

geschlossenen Ausdruck für die erzeugende Funktion der reziproken Catalan-Zahlen.
Da verschiedene Beweise angeboten werden, ist für jeden Geschmack etwas dabei:

Eine Differentialgleichung, das Gaußsche Fehlerintegral, die Mellin-Transformation
und Bessel-Funktionen. Dabei wird auch die Rolle von Computeralgebrasystemen in
derartigen Betrachtungen beleuchtet.
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1 Introduction
In a recent issue of The American Mathematical Monthly, the readers will find

Problem 11765. Proposed by David Beckwith, Sag Harbor, NY. Let C„ be the nth Catalan
1 (2n\

number, denned by Cn 1

n + 1 \ n J
Show that

^2" 3jt ^3" rand =22 + 8V3;r.
n=0 n=0

The question can be made slightly more challenging by asking:

Modified problem 11765. Find the values of the series

OO
2«
— and ^ —.r ' cn n nn=0 M=0

It is often the case that the solution of a problem becomes easier if one becomes more
ambitious and aims to answer a more general question. In this context, we ask:

Generalized question. Find a closed-form formula for

OO r
n=o

/w Z^. (i.D

The ratio test shows that the series converges for |z| <4, this will be reflected in the

expressions obtained for f(z). The original questions correspond to the values /(2) and

/(3). The reader will find a nice introduction to Catalan numbers in [9].

The results presented here come from our effort to produce different formulations in solving

the problem at hand. The goal is to use a variety of methods that illustrate the approach
that the authors use in the evaluation of series and integrals. The original question is
relatively simple, so it is a perfect example to motivate these methods. The reader will travel to
the world of Special Functions, Symbolic Computational Systems/Languages and Automatic

Proofs. Many of the solutions will lead to the evaluation of definite integrals. Aside
from classical and symbolic methods, the authors have chosen the table of integrals by
I.S. Gradshteyn and I.M. Ryzhik [6] as the main source for definite integrals. The reliability

of the entries in this table is of interest to the fourth author.

The word Show in Problem 11765 is interpreted here as Prove, so it is required to have a

preliminary discussion on what constitutes a mathematical proof. A search in the literature
reveals a large variety of documents involving a discussion on this topic. For instance,
lecture notes for an Introduction to mathematical arguments by Michael
Hutchings, begins with the following statement: A mathematical proof is an argument
which convinces other people that something is true. A colloquial mathematical joke on
this topic is: 'You only need to convince three people: one editor and two referees'. Henry
McKean [11, p. 104] provides a quote attributed to Mark Kac: 'A demonstration is to
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convince a reasonable man, a proof is to convince an unreasonable man'. From this point
of view, most of the arguments presented here fall under the category of demonstrations.
The reader will find in [2] and [17] some discussions on the role of computers in proofs,
[7] and [8] describe the role of proof in Mathematics and Physics, [14] describes the role
of proof towards progress in Mathematics and [5] presents an analysis on the role of proofs
in the classroom environment.

2 The first proof: a Mathematica evaluation

In the second decade of the 21st century, it is natural to approach the question above as

follows: What does a Computer Algebra system say about the value of this series? The
authors use Mathematica and in version 9.0 simply input the line in boldface below to
obtain the answer.

in[i]•= Sum[2n/CatalanNumber[n], [n, 0, Infinity}] // Expand
Out[l]= 5 + 3k/2

The command Expand simply transforms the answer from j(10 + 37t) to the form stated

above. This gives the first evaluation. A similar Mathematica calculation gives the second

one, this time the command FunctionExpand is used in the simplification. Is this
considered a mathematical proof? There is a variety of sophisticated, well-tested algorithms
behind the evaluation presented above. Given enough time, one could run the algorithm
by hand and verify each of the steps. Would that constitute a proof?

3 The generalization

In the process of solving a question, such as the one proposed here, the authors always keep
in mind how to explain their approach to students. The statement of the current problem
leads naturally to the following question: Is it possible to replace the values 2 and 3 by

a general variable? In other words, is it possible to find a closed form for the generating
function

This is the generalized question mentioned in Section 1.

Using Mathematica again,

ln[2].= Sum[zn/CatalanNumber[n] [n, 0, Infinity)]
Out[2]= Hypergeometric2Fl [l,2,l/2,z/4]

The answer now involves the hypergeometric function

(3.1)

(3.2)

with
(ia)n a(a + l)(a + 2) • • (a + n - 1) (3.3)
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the Pochhammer symbol. These might be expressed in terms of the gamma function

POO

FC5) / ts~le~' dt, for Res > 0 (3.4)
J0

as
T(a+n)

(a)„ ————. (3.5)
T (n)

The reader will find in [3] extensive information about this special function.

To the non-expert, the use of a symbolic package to evaluate a series, has had a positive
effect: it leads him/her to one of the most beautiful non-elementary functions. Fora teacher

of Mathematics, this is great. Naturally, this brings many questions, the most basic of
which is whether the expression for the generating function (3.1) can be simplified.

00

A power series h(z) ^ u„z" is called hypergeometric if the ratio "+1 is a rational
n "«71=0

function of n. Most functions encountered in elementary courses are hypergeometric. The
1 un+\ 1

exponential h{z) ez is one of them, since in this case u„ — — and is
n\ un n + 1

a rational function of n. The geometric series, for which u„ — 1 is also hypergeometric
function. The canonical notation for these functions comes from the factorization

m«+iz"+1
_

(n + ai)(n + a2) (n + ap) az

u„z" (n + b\)(n + b2) (n + bq) n + 1

where {—a} : 1 < j < p] are the zeros of the numerator and {—bj : 1 < j < q} are
the zeros of the denominator. The constant a comes from the leading coefficients in the

factorization of the rational function. The convention is to always include the factor n\ so
°° z"

as to get an exponential generating function h(z) / un —. This can be accomplished
n\

n=0
by adjusting the definition of un and to obtain the term n + 1 in the denominator of (3.6).
The notation is

h(z)=PF,(j,\ H'::. abpq\az)- (3.7)

As a second example of the representation of an elementary function, the reader can check

directly that

ArcTanW,r, (3.8)(Vh2)z

To get the power series expansion of ArcTan z, expand 1/(1 + z2) as a geometric series

and integrate term by term.

The hypergeometric representation for the generating function f(z) in (3.1) comes from
identifying
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and the computation

Un+lZ
UnZn

.n + 1

(n + 1 ){n + 2) z

^+\ 4
(3.10)

from which one can read off the zeros a\ 1, aj 2 and the pole b\ \ to obtain

/M 2F,(Y|i). (3.11)

This confirms the evaluation given by Mathematica.

4 A simplification

Now that a hypergeometric expression for the generating function has been produced,
it remains to explore the possibility of transforming it to simpler functions. This is, in

general, a complicated process. Once more, we return to Mathematica for help.

A direct command yields the expected answer:

ln[3]:= Hypergeometric2Fl[1,2,1/2,z/4] // FunctionExpand //

The singularity at z 4, coming from the radius of convergence of the series, is revealed

in this formula.

The values stated in the original problem now follow from this formula. An elementary

proof of (4.1) is presented next.

The first part of the argument is to generate a recurrence for the coefficients 1 / C„. This
has already appeared in the computation of the ratio (3.10):

FullSimplify

This can be reformulated as

(4.1)

(n + 2)C„+i — 2(2n + 1 )Cn. (4.2)

Then
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The goal is to express the right-hand side in terms of f(z). As a first step, multiply by z to
obtain

00 fj 00 m

z „ ^ z
zf(z) =4^— -6^-C„ (n + 1)C„

n=1 n=I

and multiplying by z one more time gives

-fl+ 1

z2f(z) - 4z/(z) + 4z -6^ (n + 1)C„

The second step is to eliminate the term n + 1 in the denominator. This is accomplished
by differentiation. It follows that

z(z — 4)/'(z) + 2(z + l)/(z) 2. (4.3)

This is a non-homogeneous first-order differential equation. To solve it, multiply by the

integrating factor (4 — z)5,/2z~l/2 (this is the integral of the exponential of the quotient of
2(z + 1) by z(z. — 4)) to transform the left-hand side of (4.3) into a perfect derivative. Then

integrate to obtain the result.

Theorem 4.1. The generating function of the reciprocal of Catalan numbers is given by

+ <44)

The length of a solution to a mathematical question depends on what is assumed by the

authors. Readers familiar with [10] will know the power series expansion

z"' 4 zArcSin(z/2)
00 ,2n

S /2»\ 4 — z2
n=0 V n

i +
V4 - z2

(4.5)

To obtain the generating function (4.4), replace z by z, multiply by z and differentiate.

5 A direct evaluation of / (z)

The starting point of a proof can be crucial in determining its length. This section presents
an evaluation of the series (3.1) based on an integral representation for the reciprocal of
the central binomial coefficients

1

_
n\n\

_
T2(n + 1)

(2n)
~ (2n)! ~ T(2n + 1)'

This proof also appears in [13].

The basic connection

5(*,y) ^Z) (5.2),y) T(x+y)
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the beta function, defined by

B{x,y) [ tx~l(\-t)y-1 dt, (5.3)

yields
1

nB(n, n + 1). (5-4)

This identity appears in [4, Exercise 10.2.2, p. 193].

Summing (5.4) for n 1, 2,... and interchanging the series with the integral yields

This last integral can be evaluated by partial fractions to produce (4.5). The generating
function (3.1) is now obtained as before.

6 A connection with the error function

This section presents another evaluation of the generating function f(z) in (1.1) based on
the error function

encountered by the reader in basic Probability courses.

The story begins with a modification of the generating function for f(z), namely

The relation between f(z) and h(z) is part of a general result of power series described

next.

The standard notation for the coefficient of z" in the expansion of the power series for a

function R(z) is |z" \R. The next statement is of Laplace transform type and it is obtained

by a term by term integration of the series on the right-hand side.

r oc

Lemma 6.1. Assume A(z) / e~'B{zt)dt. Then [z"]A n\ x [z"]S.

Now apply this lemma to the function h(z) in (6.2) to obtain an expression for /(z). The

integral m Lemma 6.1 is evaluated first using a symbolic language. Indeed, Mathematica
offers

(6.1)

(6.2)

(6.3)
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This can be verified using the expansion

erf(z) —j=^ i F\
y/7C

(6.4)

Lemma 6.1 now gives

/(z) ^ e ' ^1 + ^ ^ ez'/4V?rz7 (zt +6)erf^^^ dt. (6.5)

The first two terms can be integrated in elementary terms. To simplify (6.5), make the

change of variables u s/zi/1 and replace erf(tt) by 1 — erfc(w), where erfc is the
complementary error function and then introduce the notation

roo
Hn,m(p) / x"e~bx [erfc(x)]m dx. (6.6)

Jo

After the computation of some elementary integrals, (6.5) becomes

The integrals Hn m{b) have been discussed in [1]. There, the reader will find the values

f(z) 1 +
4 (4 - zy/z z

[2tf4,i(4/z - 1) + 3JZ2,i(4/z - 1)]. (6.7)

(6.8)

and

(6.9)

Replacing these evaluations in (6.7) gives (4.4).

7 A Mellin transform approach

Start with the expansion

and interpret the Gamma integral

r (n)

as the Mellin transform
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of the exponential function h(x) e x on R+ computed at s n. Since

00 n

Z (^"! +1)!>

we compute
n\ (n + 1 )l M [e~x] M [xe~x] (n + 1)

and apply the Mellin convolution theorem

M [h\ (x)] M \h2 (x)] (s) M [h (x)] (s)

with

h(x)= f hi (xi)h2 (—) —.Jo \xij xi
In our case, this gives

f°° -v x -*-dxi „— e ' — e *1 2sfxK\ (2y/x)
Jo Xl Xl

h (x)

where Kv (z) is the modified Bessel function of the second kind with integral representation

1 /z\v f°° e~('+^
X"«=2(i)I —'"

appearing as entry 8.432.6 in [6]. Now

00 n 00 roo

/®= Z14W1 <n) "">

poo
h(t) cosh -Jtz dt

Jo

gives the generating function / (z) as a formidable integral

f(z) J cosh *Jtz 2-ftKi dt.

The simpler looking version

1 f°°
f(z) - / t2cosh (yt) K\{t)dt, withy (7.1)

2 Jo

is obtained by the change of variables ~Jt i->- t.
The remainder of this section is dedicated to its evaluation. First observe that Mathe-
matica gives

1 [°° -> 2 + y2 3y
- t2 cosh (yt) Ki (t) dt — 272+^Tj 2W2

ArcSln 7 (7'2)
2 Jo 2(1 — ylY 2(1 — y z)i//

and, with y y/z/2, this produces (4.5). Symbolic languages do perform!
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The authors now propose the following challenge: find a proof of the formula (7.1) using
only the entries appearing in the table of integrals [6]. Aside from promoting this table,
the restriction is meant to reflect the way the authors work: given an integral, the first step
is to check if it appears in this table.

To begin with, the integral is a linear combination of entry 6.621.3:

tf-ie-a'Kv(ßt)dt

^fn{2ß)v T(p + v)T(p — v)

FJo

2 Fl
(<x+ß)K+l T(/r + i)

that in the special case p 3, v 1 and ß 1 gives

32

p + V, V + j
P + k

a — ß

a + ß

(7.3)

/Jo
Fe~a'Ki(t)dt

5 (a + l)4
2 Fi (4,1 a-l\

V Z « + 1/
(7.4)

The relation cosh u j(e" + e ") and the expression (3.11) show that the evaluation of
the generating function f(z) is equivalent to the hypergeometric identity

2 Fi (VIS)
128 1

(V^ + 2)4

1

+
(Vz-2)'

/4> i V~z-2\
V 1

iim)}
(7.5)

The proof of this identity begins with an application of Pfaff's formula to the right-hand
side. This is one of the most basic transformation rules for hypergeometric functions and

it states

x
iF\ (1 - x) a2F\

It can easily be deduced from the integral representation

c — b

c ^t)

tz)~a dt,

(7.6)

(7.7)

appearing as entry 9.111 in [6], In the current problem, this has the positive effect of
canceling out the fourth powers and converts (7.5) into

(7.8)

with z 4x.



A series involving Catalan numbers: Proofs and demonstrations 119

The proof presented here has been restricted to what is available in the table [6]. Therefore
it is natural to search there for hypergeometric identities that look like (7.8). There are not
so many identities of this type in [6], but fortunately entries 9.136.1 and 9.136.2 give

„ 2a,2b
2 1

\a + b + i
1 ± y/x\ T{a + b+\)^/n (a,b\ \

-
~ nTTTifT+Ti2'1 v I r/

/ V (7-9)
2^/xx Y{a + b + ~)

2^1
r(fl)T(fe)

And this is precisely what is needed. To prove (7.8), simply add both cases of (7.9) with
the special values a 2 and b — 1. The proof of (7.9) is a direct consequence of a basic

hypergeometric identity [3, formula 3.1.12, page 128]:

/ 2a,2b
2F,U + + l

z + l\ T(a + b + j)T(j) /a, b\ 2\
~) ~

r(o + i)r«. + i)2 ' I j r /2 / 1 VU T 2JX V r 2 J

T(a+b+^T(-\)
Z

r(fl)T(Ä)
2 1

The proof of the formula for the generating function of {1 / Cn} is now complete.

This section has shown that the evaluation of f(z), the generating function of the

reciprocal of Catalan numbers, is equivalent to the identity (7.8). Having established this

hypergeometric identity, the evaluation of f(z) has been achieved. Now it is natural to ask

whether it is possible to prove (7.8) by expanding both sides as power series and comparing

coefficients of equal powers. A simple calculation, left to the reader, shows that this is

equivalent to

— =V (4)*(2)*
(711)

for every n e N. This brings us back to the reciprocal of Catalan numbers. This is an

unexpected turn of events. To finish our discussion, a direct proof of (7.11) is presented
next. The authors have been unable to find identities of this type in the literature.

Denote the summand in (7.11) by f(n,k). In order to normalize the sum to start at 0, write
g(n, k) f(n, k + 2n). Then

g(n, k + 1)
_

(k + 2n + 2){k + 2n + 4)

g(n,k) (k + Y)(2k + 4/1 + 7)

The representation (3.6) now gives

^ (4)*(2)k (k\ ^ r (2n + 2,2n+4\l\
,g,5G),t:2^U)=8",'0>2Fll 2„ +

(7-12)

(7.13)
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In order to complete the proof, one needs a formula for the hypergeometric function at

argument \. Now Gauss comes to the rescue. The required evaluation is his second
summation formula (see [3, p. 148], [12, formula 15.4.28], [16, Chapter XIV, Exercise 13])

Replacing in (7.13) and some slight simplification using Euler's duplication formula

yields the desired result (7.11). It is too bad that (7.14) does not appear in [6], It should
definitely be included in the next edition.

8 Conclusions

A variety of methods have been used to prove formulas for the generating function of the

reciprocal of the Catalan numbers. These methods include traditional proofs, some modern

proofs based on algorithms included in symbolic languages and also a proof based only on
entries of a classical table of integrals. The authors hoped to illustrate their habitual ways
in which they approach a problem.
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presented at the end of the last section and also Atul Dixit for many discussions on this

problem. The fourth author acknowledges the partial support of NSF-DMS 1112656. The
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