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I Elemente der Mathematik

Spezielle, orthogonale Gitterbasen im M3

Peter Thurnheer

Peter Thurnheer (1946) doktorierte 1979 an der ETH Zunch bei Professor K Chandra-
sekharan auf dem Gebiet der Zahlentheone und seither hat ihn die Faszination fur
die "Konigin der Mathematik" nicht mehr losgelassen Er arbeitete in verschiedenen
Funktionen an Gymnasien, Fachhochschulen und Universitäten und an ganz
unterschiedlichen Orten, von Zunch, Bulach, über Trogen, Pans bis Port-au-Pnnce Vor
allem aber hielt er an der ETH Zunch wahrend vieler Jahre Vorlesungen, hauptsachlich
über Calculus, aber auch über Darstellende Geometne, Kombinatonk und Klassische
Zahlentheone.

1 Einleitung

In dieser Arbeit geht es um ein Problem, das wir im folgenden das Gitterbasenproblem
nennen.

Gitterbasenproblem. Gegeben sei die natürliche Zahl L > 1. Gesucht werden 3 paarweise

orthogonale Vektoren A, B_, C_ aus 1? mit der Eigenschaft \ A\ |SJ |C| L,
und höchstens einer der Vektoren ist parallel zu einer Koordinatenachse.

Ein geometrisches Problem, das - doch etwas überraschend - mit rein zahlentheoretischen

Überlegungen gelöst werden kann: Finde im M3 zu einer gegebenen natürlichen
Zahl L drei paarweise senkrechte Gittervektoren der Länge L, von denen mindestens
einer nicht parallel zu einer Koordinatenachse ist. Es wird gezeigt unter welchen
Bedingungen und wie solche Gitterbasen gefunden werden können. Eine wichtige Rolle
in diesem Zusammenhang spielen natürlich die Darstellungen von L2 als Summe von
2 oder 3 Quadraten. Es stellt sich heraus, dass es, um alle diese Darstellungen zu
finden, genügt, die viel kleineren ungeraden Teiler von L zu studieren. Die dabei zur
Anwendung kommenden Aussagen erinnern, wenig überraschend, an den bekannten

Dreiquadratesatz. Schon erstaunlicher ist, dass sie mit elementaren Argumenten
hergeleitet werden können, ganz im Gegensatz zum erwähnten, sehr tiefen Theorem von
Gauss-Legendre.
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Wir unterscheiden zwei Arten von Losungen

1 Art Genau ein Losungsvektor ist parallel zu einer Koordinatenachse

2 Art Kein Losungsvektor ist parallel zu einer Koordinatenachse

Bemerkungen

(I) In den Arbeiten [3], [4] wird eine ähnliche Frage studiert. In [4, Satz 1] wird zwar zu

Beginn auch eine elegante Bedingung angegeben, welche die Konstruktion von
orthogonalen Gitterbasen im R3, bestehend aus Vektoren gleicher, ganzzahliger Lange
erlaubt Bei weitem nicht alle solchen Basen erfüllen aber die Bedingung und beide

Arbeiten [3], [4] verfolgen schliesslich ein ganz anderes Ziel als der vorliegende

Text, nämlich die Bestimmung aller orthogonalen Gitterbasen des R" (in [3])
respektive des R3 (in [4]), deren Vektoren ganzzahlige, aber überhaupt nicht
notwendigerweise gleiche, vorgegebene Lange haben Das an sich geometrische Gitter-
basenproblem kann mit rein zahlentheoretischen Überlegungen gelost werden Dies

ermöglicht es zum Beispiel, anders als in [3], [4], auch Existenzfragen zu beantworten

(II) Wichtig Immer wenn wir im folgenden von Quadraten sprechen meinen wir, anders
als in der Zahlentheorie üblich, Quadrate natürlicher Zahlen, die also nicht 0 sind

(III) Vielmals danken mochte ich dem Gutachter fur seine ausführlichen und hilfreichen
Hinweise zur Verbesserung dieses Textes, sowie Andreas Umbach, Mathematikleh-

rer an der Kantonsschule Pfaffikon, fur die Anregung zur Beschäftigung mit diesen

Fragen

2 Hauptergebnisse

Satz 1.

(a) Sei K g N Falls gilt

K a2 + b2 + u2 + v2, a,b,u,uaus Z, (1)

so ist

K2 (a2 + u2 — b2 — v2)2 + (2 (ab + uv))2 + (2 (ao — bu))2, (2)

und die folgenden Vektoren A, B_, C haben Lange K und sindpaarweise orthogonal

A [a2-\-u2 — b2 — v2/ 2(ab + uv) / 2(ao — bu)),

ß (2(ab — uv) / —a2 — v2 + b2 + u2 / 2(au + bv)),

C (2(ao + bu) / —2(au — bv) j —a2 — b2 + u2 + v2)

(b) Ist K ungerade, so liefern die obigen Vektoren A, ß, C eine Losung des Gitterba-
senproblems zur Lange L K
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1. Art, falls genau zwei der Parameter a, b,u,v gleich 0 sind, das heisst, falls K
in {l) Summe von 2 Quadraten ist.

2. Art, falls höchstens einer der Parameter a, b, u, v gleich 0 ist, das heisst, falls
K in (1) Summe von 3 oder 4 Quadraten ist.

Satz 2. Sei K e N, K ungerade. Zu jeder Darstellung von K2 als Summe von 2 respektive
3 Quadraten

K2 — r2 + s2 + t2, r, s aus N,(e No,

mit ggT(K, r, s, t) 1, ^
existiert eine Darstellung von K als Summe von 2 respektive 3 oder 4 Quadraten der Form
(1) so, dass die entsprechende Formel (2) in Satz 1 die Darstellung (3) und Satz 1 damit
eine Lösung A, B_, C des Gitterbasenproblems zur Länge L K liefert, wobei für eine
bestimmte Wahl der Vorzeichen gilt A (±r/ ± s/ ± t).

Satz 3. Sei L N, L > 1. Das Gitterbasenproblem hat zur Länge L dann und nur dann

• Lösungen, wenn gilt L ^ 2k k e N,

• Lösungen 1. Art, wenn L einen Primfaktor p der Form p 4m + 1, m N, enthält,

• Lösungen 2. Art, wenn gilt L / 2k und L 5 2k, k e No-

Bemerkungen

(iv) Im Folgenden nennen wir eine Lösung des Gitterbasenproblems zur Länge L — K
kurz eine K-Lösung und eine Darstellung der Form (3), welche die Bedingung an
den ggT erfüllt, eine primitive Darstellung.

(v) Für ungerades K ist nach dem Satz von Jacobi ([5, Prop. 1, S. 621], [2, S. 166]) die
Anzahl der Darstellungen von K als Summe von höchstens 4 Quadraten ganzer Zahlen,

das heisst der Form (1), gleich 8o(Ai), wobei <r(K) die Summe aller positiven
Teiler von K bezeichnet. Genauer gesagt gilt:

Für ungerades K gibt es 8a(K) verschiedene, geordnete Quadrupel a, b, u, v ganzer

Zahlen, welche (1) erfüllen.

Offensichtlich ergeben alle diese, eingesetzt in Satz 1, Quadratsummen-Darstellungen

von K2 respektive K-Lösungen, die allerdings natürlich nicht alle verschieden
sind. Die Anzahl der verschiedenen Darstellungen und Ä'-Lösungen, die man erhält,
hängt unter anderem davon ab, wieviele der Parameter a, b, u, o voneinander und

von 0 verschieden sind in den Fällen wo alle 4 nicht negativ sind.

(vi) Mit folgender Überlegung lassen sich aus einer K -Lösung weitere solche konstru¬
ieren: Man denkt sich die Lösungsvektoren als Spaltenvektoren einer 3 x 3-Matrix.
Multipliziert man eine Zeile oder Spalte dieser Matrix mit — 1 oder vertauscht 2 ihrer
Zeilen, so ändern diese Operationen die Länge der Spaltenvektoren und den Betrag
der Determinante nicht, so dass auch die Spaltenvektoren der neuen Matrix eine K -

Lösung bilden.

Die hier beschriebenen Operationen auf einer Lösung nennen wir unten kurz
Zeilenumformungen.
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Korollar 1. Sei L e N, L ^ 2k, k e Nq Mit Satz 1 lassen sich alle Darstellungen von
L2 als Summe von 2 respektive 3 Quadraten aus den Darstellungen der - viel kleineren -
Zahl L, respektive ihrer ungeraden Teiler, als Summe von 2 respektive 3 oder 4 Quadraten

gewinnen Man findet damit naturlich auch alle Gittervektoren der Lange L

Korollar 2. Sei L e N, L 2k, k e Nq Zu jedem Gittervektor A der Lange L und
nicht parallel zu einer Koordinatenachse, existieren Vektoren ß, C so, dass A, ß, C eine
L-Losung bilden

Brauchen werden wir das folgende Lemma, welches zeigt, dass es genügt, das

Gitterbasenproblem fur ungerade Langen L zu studieren

Lemma 1. Seien K und k aus N Sind Aj, B_;, Cy, j — 1, 2, ,m, alle K-Losungen, so

sind 2kAj, 2kB_}, 2kCL], 7 1,2, m, die einzigen 2kK-Losungen

3 Sätze aus der Zahlentheorie, Lemmas

Satz A (Euler, [1, S 29 und 30]). Eine ungerade Primzahl p ist genau dann Summe von
2 Quadraten, wenn p von der Form p 4m + 1, m N, ist

Satz B (Vierquadratesatz, Lagrange, 1770, [1, S 31]). Jede natürliche Zahl ist Summe

von höchstens 4 Quadraten

Satz C (Dreiquadratesatz, Legendre, Gauss, [5, Prop 41, S 372], [2, S 161]). Eine
natürliche Zahl n ist Summe von höchstens drei Quadraten dann und nur dann, wenn

gilt n 4km mit k e No, 4 \ m und m 7 (mod 8)

Satz D (siehe Bemerkung (vin)). Eine natürliche Zahl grosser 1, welche eine Summe von

Quadraten von 2 natürlichen, teilerfremden Zahlen teilt, ist selbst Summe zweier Quadrate
von tellerfremden natürlichen Zahlen

Satz E ([2, S 168 und 169]). Zu einem pythagoreischen Tripel K2 r2 + s2, mit
ggT(K,r,s) 1, r gerade, existieren eindeutig definierte Zahlen a,b aus N mit K
a2 + b2, r 2ab, s a2 — b2

Bemerkungen

(vn) Den Dreiquadratesatz haben wir an dieser Stelle nur der Vollständigkeit halber an¬

geführt, werden ihn aber fur die Beweise nicht brauchen Das mag erstaunen, scheint

er doch auf den ersten Blick fur unsere Zwecke speziell geeignet Dass dem nicht so

ist hegt daran, dass er Aussagen macht über Darstellungen beliebiger naturlicher
Zahlen durch höchstens 3 Quadrate, wahrend es beim Gitterbasenproblem um
Darstellungen von Quadratzahlen durch genau 2 respektive genau 3 Quadrate geht Der

Dreiquadratesatz ist wesentlich tiefer als der Vierquadratesatz und sein Beweis ([5,
S 372 und 373]) beruht auf äusserst starken Hilfsmitteln aus der Theorie der
quadratischen Formen, im Gegensatz zu den entsprechenden Aussagen in diesem Text,
die mit elementaren Überlegungen hergeleitet werden können
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(viii) Die Aussage in Satz D folgt zum Beispiel aus der Argumentation in [1, S. 20 und

21]: Beim Beweis des Korollars ([1, S. 21]) wird gezeigt, dass es, falls eine natürliche
Zahl n Teiler von A2 + ß2, A, B aus N, ggT(A, B) 1 ist, ein Z e N so gibt, dass

n auch Z2 + 1 teilt. Nach Satz 5 ([1, S. 20]) und der dazugehörigen Bemerkung ([1,
S.21 oben]) ist somit «darstellbar in der Form« s2+t2,s, t aus N, ggT(.y, t) 1.

Ist also n > 1, so sind s und t nicht 0.

Zum Beweis von Satz 3 brauchen wir die folgenden beiden Lemmas.

Lemma 2. Die einzigen Primzahlen, die sich nicht als Summe von 3 oder 4 Quadraten
schreiben lassen, sind 2 und 5.

Lemma 3. Ein Produkt p\ pj Pk von Primzahlen pJy die alle von der Form p}
4m j + 3, nij e No, j 1,2,,k sind, kann nicht als Summe von 2 (nicht verschwindenden!)

Quadraten geschrieben werden.

4 Beweise

Beweis Satz 1 (a). Sei K 6 N und

K a2 + b2 + u2 + v2, a, b, u, v aus Z. (1)

Mit w b2 + v2 ist K — w a2 + u2 und

K2 — (K — 2w)2 4(K — w)w 4[a2 + u2) (f>2 + u2) (2(ab + uv))2 + (2(at> — bu))2.

Mit K — 2w a2 + u1 — b2 — v2 erhält man

K2 (a2 + u2 — b2 — d2)2 + (2 (ab + uv))2 + (2 (av — bu))2.

Folgerung:

Ist K wie in (1), so hat der Vektor

A A (a, b, u, o) (±(a2 + u2 — b2 — v2) j ±2 (ab + uv) / ±2(av — bu))

die Länge K für irgendeine Wahl der Vorzeichen. Da die rechte Seite in (1) unabhängig ist
von der Reihenfolge der Summanden, erhält man, wenn man in A die Argumente a, b,u,v
permutiert, wieder einen Vektor der Länge K. Solche Vektoren sind

ß* (±(a2 + v2 — b2 — u2) / ±2(au + bv) / ±2(ab — uv)) (abuv —> auvb),

C* (±(a2 + b2 — u2 — v2) / ±2{av + bu) / ±2(au — bv)) (abuv —>• avbu).

Durch Vertauschen der Komponenten dieser Vektoren erhält man die Vektoren A, B_, C_

des Satzes. Diese sind paarweise orthogonal, da gilt A-B_=A-C B_-C 0.

Beweis Satz 1 (b). Die Behauptungen folgen aus der Voraussetzung, dass K ungerade ist.

Sind genau 2 der Parameter a, b, u, v nicht 0, so sind diese damit verschieden und in 2

der Vektoren A, 5, C sind 2 Komponenten nicht 0, während im dritten 2 Komponenten
verschwinden.

Sind 3 der Parameter a, b, u, v nicht 0, so gilt, wieder weil K ungerade vorausgesetzt ist,
a2 + b2 / u2 T v2, a2 + u2 b2 + v2, a2 + v2 b2 + u2, sodass in allen Vektoren

A, ß, C mindestens 2 Komponenten nicht 0 sind.
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Beweis Satz 2. Ist t 0, so folgt die Behauptung aus Satz E.

Sei also e N. Wären alle 3 Zahlen r, s, t ungerade, so wäre K2 kongruent 3 modulo 4,

was der Tatsache widerspricht, dass ein Quadrat nur die Werte 0,1 annimmt modulo 4.

Also sind o.B.d.A. die Zahlen s, t gerade und r ist ungerade. Damit enthält der ggT(s, t)
einen Faktor 2 und r kann in folgender Form geschrieben werden

r K — 2w, ggT(s, t) 2z, z, w aus N.

Ist d ggT(^f — 2w, w) ggT(r, w), so ist wegen ggT(W, r, s, t) 1 auch ggT(z, d)
1 und mit teilerfremden natürlichen Zahlen m, n respektive x, y gilt

w dm, K — w dn (4)

und

K2 -r2 K2 -(K - 2w)2 4(K - w)w 4d2mn s2 + t2 4z2(x2 + y2) (5)

oder
d2mn z2(x2 + y2), ggT(m, n) ggT(jc, y) ggT(d, z) 1.

Wegen ggT(wt, n) 1 und ggT(d, z) 1 gibt es teilerfremde natürliche Zahlen /;, v und

m i, n i mit

[zv =z, m [im\, n=vn\, (6)

und damit ist

dm\ -dn\ x2 +y2, ggTQc, y) 1.

Die Zahlen dmi und dn\ können nicht beide gleich 1 sein. Nach Satz D ist somit mindestens

eine von ihnen Summe von 2 Quadraten. Also gibt es ganze Zahlen a, b, u, v, von
denen mindestens 3 nicht 0 sind, so, dass mit (4) und (6) gilt

9 9 9 9 9 9
w n dm\ b + d K — w v dni a + u

Damit erhält man

K a2 + b2 + u2 + v2,

also eine Darstellung von K der Form (1), und wenn man noch (5) beachtet

r K - 2w a2 + u2 — b2 — v2\ s2 + t2 4(K — w)w 4(a2 + u2){b2 + d2),

sodass die entsprechende Formel (2)

K2 (a2 + u2 — b2 — v2)2 + (2 (ab + ud))2 + (2{av — bu))2

r2 + 4 (a2 + u2) (b2 + v2) — r2 + s2 + t2

wie behauptet die Darstellung (3) liefert.
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Beweis Lemma 1. Es genügt, die Aussage für k 1 zu beweisen. Sie folgt dann daraus,
dass es keine anderen Darstellungen von (2L)2 als Summe von 2 oder 3 Quadraten gibt
als „die Doppelten" der Darstellungen von L2, das heisst zu jeder Darstellung

(2L)2 4L2 r2 + s2 + t2, r, s aus N, t e No, (7)

existiert eine Darstellung

L2 x2 + y2 + z2, x, y aus N, z e No, wobei r 2x, s 2y, t 2z.

Dies folgt unmittelbar aus der Tatsache, dass die rechte Seite der letzten Gleichung in (7)
nur genau dann kongruent 0 modulo 4 ist, wie die linke, wenn alle 3 Zahlen r, s, t gerade
sind.

Beweis Korollar 1. Um alle gesuchten Darstellungen von L2 zu finden genügt es nach
Lemma 1 offensichtlich, für alle ungeraden Teiler K von L die entsprechenden primitiven
Darstellungen von K2 zu bestimmen. Nach Satz 2 erhält man diese, indem man alle
Darstellungen der Form (1) von K in Satz 1 einsetzt. (In der Praxis braucht man dabei gemäss
Bern, (v) bei weitem nicht alle 8u (K) derselben zu berücksichtigen.)

Beweis Korollar 2. Sei A — M (x/y/z), Me N, ein Vektor der Länge L und mindestens
2 der 3 ganzen Zahlen x, y, z nicht 0, sowie

x2 + y2 + z2 K2 und ggT(ff, |x|, \y\, |z|) 1.

Also ist nach Lemma 1 K ungerade und L — KM. Nach Satz 2 existiert eine Darstellung
der Form (1) von K, welche, eingesetzt in Satz 1, eine AI-Lösung Aj (±x/ ± y/ ± z),
Z?i, Cj liefert. Durch Zeilenumformungen (s. Bern, (vi)) erhält man aus dieser eine K-
Lösung A* {x/y/z), B*, C*, so dass _ß MB//, C MC* die gesuchten Vektoren
sind.

Beweis Lemma 2. Dass 2 und 5 die fragliche Eigenschaft haben ist klar.

Es bleibt zu zeigen, dass alle übrigen Primzahlen p, p ^ 2, p / 5, als Summe von 3 oder
4 Quadraten geschrieben werden können.

1. p Am + 3, m e No.
Nach Satz A und Satz B kann p in diesem Fall in der gewünschten Form dargestellt
werden.

2. p Am + 1, m e N.
Nach Satz A kann p geschrieben werden in der Form p r2 + s2, r, s aus N.

2.1. Einer der Summanden enthält einen Primfaktor q > 3. Dieser ist keine Quadrat¬

zahl, lässt sich somit nach Satz B als Summe von 2, 3 oder 4 Quadraten schreiben.
Aus Satz 1 folgt, dass damit q2 Summe von 2 oder 3 Quadraten ist, was eine
Darstellung der gewünschten Art ergibt.



Spezielle, orthogonale Gitterbasen im M3 107

Zu untersuchen bleiben Primzahlen p der Form

2.2. p 2a + UeN.
2.2.1. p 2lk + 1, k 2n gerade, n e N.

Dann erhält man mit p 24" + 1 (22" — l)2 + 2 • 22" (22" — l)2 +
(2")2 + (2")2 das Gewünschte.

2.2.2. p 22k + 1, k 2n + 1 ungerade, n e No-

Nun ist p — 24"+2+1. Eine einfache Induktion zeigt, dass 5 die Einerziffer
aller natürlichen Zahlen dieser Form ist. Die einzige Primzahl dieser Form
ist somit 5.

Beweis Lemma 3. Wir machen die indirekte Annahme

PI P2 Pk — o2 + b2, a, b aus N.

Dann gibt es eine natürliche Zahl z und teilerfremde natürliche Zahlen x,y so, dass gilt
pi p2 Pk — z2(x2 + y2)- Da x2 + y2 > 1 ist, kann z2 nicht alle auf der linken
Seite auftretenden Primfaktoren enthalten. Somit gibt es mindestens eine Primzahl pj —

4m} +3,mj e No, welche die Summe x2 + y2 mit ggT(x, y) 1 teilt. Nach Satz D ist

Pj Summe von 2 Quadraten, was nach Satz A einen Widerspruch darstellt, der Lemma 3

beweist.

Beweis Satz 3.

a) Notwendige Bedingungen.

al) Es gibt keine 2k-Lösungen, k e N.

a2) Es gibt keine 5 2k-Lösungen 2. Art, k e No-

Aufgrund von Lemma 1 gäbe es andernfalls insbesondere eine 2-Lösung,
respektive eine 5-Lösung 2. Art, das heisst insbesondere, eine Darstellung von
4 als Summe von 2 oder 3, respektive von 25 als Summe von 3 Quadraten.
Solche Darstellungen existieren aber nicht.

a3) Ist L p\ P2 Pk ein Produkt von lauter Primzahlen p} der Form p} —

4m j + 3, m j e No, j 1,2,... ,k, so gibt es keine L-Lösungen 1. Art.
Eine notwendige Bedingung für die Existenz einer L-Lösung 1. Art ist die
Darstellbarkeit von L2 als Summe von 2 Quadraten. Enthält L nur Primfaktoren

p der Form p 4m + 3, m e No, so auch L2 und nach Lemma 3 kann die

Bedingung nicht erfüllt werden.

b) Hinreichende Bedingungen. Natürlich bilden mit einer M-Lösung A, ß, C die
Vektoren KA, Kß, KC, K e N, eine MK-Lösung und umgekehrt. Um die Existenz
einer L-Lösung zu garantieren, genügt es somit, für irgendeinen Faktor K von L die
Existenz einer entsprechenden K -Lösung nachzuweisen.

bl) Enthält L einen Primfaktor p der Form p 4m + 1, m e N, so gibt es L-
Lösungen 1. Art.
Nach Satz A ist die Primzahl p 4m + 1, m e N, als Summe von 2 Quadraten
darstellbar. Aus Satz 1 folgt die Behauptung.
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b2) Enthält L einen Faktor 25, so gibt es L-Lösungen 2. Art.
Da gilt 25 42 + 22 + 22 + l2 erhält man aus Satz 1 mit a 4, b 2,

u 2, v 1 die 25-Lösung 2. Art A (15/20/0), B (12/ - 9/20),
C (16/ — 12/ — 15).

b3) Enthält L irgendeinen Primfaktor p verschieden von 2 und 5, so gibt es L-
Lösungen 2. Art.
Die Behauptung folgt unmittelbar aus Lemma 2 und Satz 1.

Die obigen 6 Aussagen zusammengefasst ergeben Satz 3.
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