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Spezielle, orthogonale Gitterbasen im R’

Peter Thurnheer

Peter Thurnheer (1946) doktorierte 1979 an der ETH Ziirich bei Professor K. Chandra-
sekharan auf dem Gebiet der Zahlentheorie und seither hat ihn die Faszination fiir
die “Konigin der Mathematik™ nicht mehr losgelassen. Er arbeitete in verschiedenen
Funktionen an Gymnasien, Fachhochschulen und Universititen und an ganz unter-
schiedlichen Orten, von Ziirich, Biilach, iiber Trogen, Paris bis Port-au-Prince. Vor al-
lem aber hielt er an der ETH Ziirich wihrend vieler Jahre Vorlesungen, hauptsichlich
iiber Calculus, aber auch iiber Darstellende Geometrie, Kombinatorik und Klassische
Zahlentheorie.

1 Einleitung

In dieser Arbeit geht es um ein Problem, das wir im folgenden das Gitterbasenproblem
nennen.

Gitterbasenproblem. Gegeben sei die natiirliche Zahl L > 1. Gesucht werden 3 paar-
weise orthogonale Vektoren A, B, C aus 73 mit der Eigenschaft |A| = |B| = |C| = L,
und hochstens einer der Vektoren ist parallel zu einer Koordinatenachse.

Ein geometrisches Problem, das — doch etwas iiberraschend — mit rein zahlentheoreti-
schen Uberlegungen gelst werden kann: Finde im R? zu einer gegebenen natiirlichen
Zahl L drei paarweise senkrechte Gittervektoren der Linge L, von denen mindestens
einer nicht parallel zu einer Koordinatenachse ist. Es wird gezeigt unter welchen Be-
dingungen und wie solche Gitterbasen gefunden werden kénnen. Eine wichtige Rolle
in diesem Zusammenhang spielen natiirlich die Darstellungen von L? als Summe von
2 oder 3 Quadraten. Es stellt sich heraus, dass es, um alle diese Darstellungen zu fin-
den, geniigt, die viel kleineren ungeraden Teiler von L zu studieren. Die dabei zur
Anwendung kommenden Aussagen erinnern, wenig iiberraschend, an den bekannten
Dreiquadratesatz. Schon erstaunlicher ist, dass sie mit elementaren Argumenten her-
geleitet werden konnen, ganz im Gegensatz zum erwihnten, sehr tiefen Theorem von
Gauss—Legendre.
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Wir unterscheiden zwei Arten von Losungen:
1. Art: Genau ein Losungsvektor ist parallel zu einer Koordinatenachse.

2. Art: Kein Losungsvektor ist parallel zu einer Koordinatenachse.

Bemerkungen

(i) In den Arbeiten [3], [4] wird eine dhnliche Frage studiert. In [4, Satz 1] wird zwar zu
Beginn auch eine elegante Bedingung angegeben, welche die Konstruktion von or-
thogonalen Gitterbasen im R3, bestehend aus Vektoren gleicher, ganzzahliger Linge
erlaubt. Bei weitem nicht alle solchen Basen erfiillen aber die Bedingung und bei-
de Arbeiten [3], [4] verfolgen schliesslich ein ganz anderes Ziel als der vorliegen-
de Text, ndmlich die Bestimmung aller orthogonalen Gitterbasen des R” (in [3])
respektive des R3 (in [4]), deren Vektoren ganzzahlige, aber iiberhaupt nicht not-
wendigerweise gleiche, vorgegebene Lange haben. Das an sich geometrische Gitter-
basenproblem kann mit rein zahlentheoretischen Uberlegungen gelost werden. Dies
ermoglicht es zum Beispiel, anders als in [3], [4], auch Existenzfragen zu beantwor-
ten.

(i1) Wichtig: Immer wenn wir im folgenden von Quadraten sprechen meinen wir, anders
als in der Zahlentheorie iiblich, Quadrate natiirlicher Zahlen, die also nicht O sind.

(iii) Vielmals danken mochte ich dem Gutachter fiir seine ausfiihrlichen und hilfreichen
Hinweise zur Verbesserung dieses Textes, sowie Andreas Umbach, Mathematikleh-
rer an der Kantonsschule Pfiffikon, fiir die Anregung zur Beschiftigung mit diesen
Fragen.

2 Hauptergebnisse

Satz 1.
(a) Sei K € N. Falls gilt

K=az—|—b2+u2+02, a,b, u,vaus 7., (1)

so ist
K? = (a® +u® =% —0?)’ + (2(ab + uv))* + (v — buw))’, ()
und die folgenden Vektoren A, B, C haben Linge K und sind paarweise orthogonal.

A =(a®+u* —b* —0v* [ 2(ab +uv) [ 2(av — bu)),
B = (Z(ab — uv) / —a® — 0% + b +u? / 2(au + bv)),
C = (2(av + bu) / —=2(au — bv) / —a* — b* +u* +v?).

(b) Ist K ungerade, so liefern die obigen Vektoren A, B, C eine Losung des Gitterba-
senproblems zur Linge L = K
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1. Art, falls genau zwei der Parameter a, b, u, v gleich 0 sind, das heisst, falls K
in (1) Summe von 2 Quadraten ist.

2. Ant, falls hochstens einer der Parameter a, b, u, v gleich 0 ist, das heisst, falls
K in (1) Summe von 3 oder 4 Quadraten ist.

Satz 2. Sei K € N, K ungerade. Zu jeder Darstellung von K? als Summe von 2 respektive
3 Quadraten
K2=r2+sz+t2, r,saus N, t € Ny,

. (3)
mit ggT(K,r,s,t) =1,

existiert eine Darstellung von K als Summe von 2 respektive 3 oder 4 Quadraten der Form
(1) so, dass die entsprechende Formel (2) in Satz 1 die Darstellung (3) und Satz 1 damit
eine Losung A, B, C des Gitterbasenproblems zur Linge L = K liefert, wobei fiir eine
bestimmte Wahl der Vorzeichen gilt A = (£r/ £ s/ £ t).

Satz 3. Sei L € N, L > 1. Das Gitterbasenproblem hat zur Linge L dann und nur dann
o Losungen, wenn gilt L # 2% | k € N,
e Losungen 1. Art, wenn L einen Primfaktor p der Form p = 4m + 1, m € N, enthiilt,
o Losungen 2. Art, wenn gilt L # 2K und L # 5 - 2%, k € Ny.

Bemerkungen

(iv) Im Folgenden nennen wir eine Losung des Gitterbasenproblems zur Liange L = K
kurz eine K-Losung und eine Darstellung der Form (3), welche die Bedingung an
den ggT erfiillt, eine primitive Darstellung.

(v) Fiir ungerades K ist nach dem Satz von Jacobi ([5, Prop. 1, S. 621], [2, S. 166]) die
Anzahl der Darstellungen von K als Summe von hdchstens 4 Quadraten ganzer Zah-
len, das heisst der Form (1), gleich 8¢ (K), wobei ¢ (K) die Summe aller positiven
Teiler von K bezeichnet. Genauer gesagt gilt:

Fiir ungerades K gibt es 80 (K) verschiedene, geordnete Quadrupel a, b, u,v gan-
zer Zahlen, welche (1) erfiillen.

Offensichtlich ergeben alle diese, eingesetzt in Satz 1, Quadratsummen-Darstellun-
gen von K respektive K-Losungen, die allerdings natiirlich nicht alle verschieden
sind. Die Anzahl der verschiedenen Darstellungen und K -Losungen, die man erhilt,
hingt unter anderem davon ab, wieviele der Parameter a, b, u, v voneinander und
von 0 verschieden sind in den Fillen wo alle 4 nicht negativ sind.

(vi) Mit folgender Uberlegung lassen sich aus einer K-Ldsung weitere solche konstru-
ieren: Man denkt sich die Losungsvektoren als Spaltenvektoren einer 3 x 3-Matrix.
Multipliziert man eine Zeile oder Spalte dieser Matrix mit —1 oder vertauscht 2 ihrer
Zeilen, so dndern diese Operationen die Linge der Spaltenvektoren und den Betrag
der Determinante nicht, so dass auch die Spaltenvektoren der neuen Matrix eine K -
Losung bilden.

Die hier beschriebenen Operationen auf einer Losung nennen wir unten kurz Zeilen-
umformungen.
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Korollar 1. Sei L € N, L # 2%, k € No. Mit Satz 1 lassen sich alle Darstellungen von
L? als Summe von 2 respektive 3 Quadraten aus den Darstellungen der — viel kleineren —
Zahl L, respektive ihrer ungeraden Teiler, als Summe von 2 respektive 3 oder 4 Quadraten
gewinnen. Man findet damit natiirlich auch alle Gittervektoren der Liinge L.

Korollar 2. Sei L € N, L # 2 k € Ny. Zu jedem Gittervektor A der Linge L und
nicht parallel zu einer Koordinatenachse, existieren Vektoren B, C so, dass A, B, C eine
L-Ldsung bilden.

Brauchen werden wir das folgende Lemma, welches zeigt, dass es geniigt, das Gitterba-
senproblem fiir ungerade Lidngen L zu studieren.

Lemma 1. Seien K und k aus N. SindAj, ﬁj, Qj, j=1,2,...,m, alle K-Ldsungen, so
sind ZkAj, 2k§j , Zij, j=1,2,...,m, die einzigen 2* K -Lisungen.

3 Sitze aus der Zahlentheorie, Lemmas

Satz A (Euler, [1, S. 29 und 30]). Eine ungerade Primzahl p ist genau dann Summe von
2 Quadraten, wenn p vonder Form p =4m + 1, m € N, ist.

Satz B (Vierquadratesatz; Lagrange, 1770, [1, S. 31]). Jede natiirliche Zahl ist Summe
von hochstens 4 Quadraten.

Satz C (Dreiquadratesatz; Legendre, Gauss, [5, Prop. 41, S. 372], [2, S. 161]). Eine
natiirliche Zahl n ist Summe von hochstens drei Quadraten dann und nur dann, wenn

gilt n = 4km mit k € Ny, 4t m und m # 7 (mod 8).

Satz D (siehe Bemerkung (viii)). Eine natiirliche Zahl griosser 1, welche eine Summe von
Quadraten von 2 natiirlichen, teilerfremden Zahlen teilt, ist selbst Summe zweier Quadrate
von teilerfremden natiirlichen Zahlen.

Satz E ([2, S. 168 und 169]). Zu einem pythagoreischen Tripel K% = r2 + §2, mit
geT(K,r,s) = 1, r gerade, existieren eindeutig definierte Zahlen a, b aus N mit K =
a2—|—b2,r=2ab,s = a2 — b2

Bemerkungen

(vii) Den Dreiquadratesatz haben wir an dieser Stelle nur der Vollstindigkeit halber an-
gefiihrt, werden ihn aber fiir die Beweise nicht brauchen. Das mag erstaunen, scheint
er doch auf den ersten Blick fiir unsere Zwecke speziell geeignet. Dass dem nicht so
ist liegt daran, dass er Aussagen macht tiber Darstellungen beliebiger natiirlicher
Zahlen durch hdchstens 3 Quadrate, wihrend es beim Gitterbasenproblem um Dar-
stellungen von Quadratzahlen durch genau 2 respektive genau 3 Quadrate geht. Der
Dreiquadratesatz ist wesentlich tiefer als der Vierquadratesatz und sein Beweis ([5,
S. 372 und 373]) beruht auf dusserst starken Hilfsmitteln aus der Theorie der qua-
dratischen Formen, im Gegensatz zu den entsprechenden Aussagen in diesem Text,
die mit elementaren Uberlegungen hergeleitet werden konnen.
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(viii) Die Aussage in Satz D folgt zum Beispiel aus der Argumentation in [1, S. 20 und
21]: Beim Beweis des Korollars ([1, S. 21]) wird gezeigt, dass es, falls eine natiirliche
Zahl n Teiler von A% + B2, A, Baus N, ggT(A, B) = list, ein Z € N so gibt, dass
n auch Z% + 1 teilt. Nach Satz 5 ([1, S. 20]) und der dazugehorigen Bemerkung ([1,
S. 21 oben]) ist somit n darstellbar in der Formn = s> +12, s, t aus N, ggT(s, 1) = 1.
Istalson > 1, so sind s und ¢ nicht 0.

Zum Beweis von Satz 3 brauchen wir die folgenden beiden Lemmas.

Lemma 2. Die einzigen Primzahlen, die sich nicht als Summe von 3 oder 4 Quadraten
schreiben lassen, sind 2 und 5.

Lemma 3. Ein Produkt p\ - py--- pr von Primzahlen pj, die alle von der Form pj =
4mj+3,m; € No, j = 1,2,...,k sind, kann nicht als Summe von 2 (nicht verschwin-
denden!) Quadraten geschrieben werden.

4 Beweise
Beweis Satz 1 (a). Sei K € Nund

K=a*+b*+u*+0v?,  a,b,uvausZ. (1)
Mit w = b* + 02 ist K — w = a* + u? und
K2 — (K —2w)? = 4(K —w)w = 4(a> +u?) (b? +0?) = (2(ab+uv))’ + (2(av —bu))’.
Mit K — 2w = a® 4+ u? — b* — v? erhilt man

K*= (a2 +u? — b* - 02)2 + (2(ab + uv))2 + (2(av - bu))z.
Folgerung:
Ist K wie in (1), so hat der Vektor
A= Aa,b,u,v) = (£(a* +u* —b* —v?) [ £2(ab+ uv) / £2(av — bu))

die Lénge K fiir irgendeine Wahl der Vorzeichen. Da die rechte Seite in (1) unabhiingig ist
von der Reihenfolge der Summanden, erhélt man, wenn man in A die Argumente a, b, u, v
permutiert, wieder einen Vektor der Linge K. Solche Vektoren sind

B* = (:l:(a2 +1% =9~ g% / +2(au + bv) / +2(ab — uv)) (abuv — auvb),
Cr = (£(@* +b* —u* —v?) [ £2(av + bu) [ £2(au — bv))  (abuv —> avbu).

Durch Vertauschen der Komponenten dieser Vektoren erhélt man die Vektoren A, B, C
des Satzes. Diese sind paarweise orthogonal,dagilt A-B=A-C=B-C =0. O

Beweis Satz 1 (b). Die Behauptungen folgen aus der Voraussetzung, dass K ungerade ist.
Sind genau 2 der Parameter a, b, u, v nicht 0, so sind diese damit verschieden und in 2
der Vektoren A, B, C sind 2 Komponenten nicht 0, wihrend im dritten 2 Komponenten
verschwinden.

Sind 3 der Parameter a, b, u, v nicht 0, so gilt, wieder weil K ungerade vorausgesetzt ist,
a’ + b? #* uz + 1)2, a4 u? #* b2 + 1)2, al + v? #* b2 + uz, sodass in allen Vektoren
A, B, C mindestens 2 Komponenten nicht 0 sind. O
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Beweis Satz 2. Istt = 0, so folgt die Behauptung aus Satz E.

Sei also t € N. Wiren alle 3 Zahlen r, s, t ungerade, so wire K 2 kongruent 3 modulo 4,
was der Tatsache widerspricht, dass ein Quadrat nur die Werte 0, 1 annimmt modulo 4.
Also sind 0.B.d.A. die Zahlen s, r gerade und r ist ungerade. Damit enthilt der ggT(s, t)
einen Faktor 2 und r kann in folgender Form geschrieben werden

r=K-2w, ggT(s,t)=2z, z,w aus N,

Istd = ggT(K — 2w, w) = ggT(r, w), so ist wegen ggT(K,r,s,t) = 1 auch ggT(z,d) =
1 und mit teilerfremden natiirlichen Zahlen m, n respektive x, y gilt

w=dm, K —w=dn 4)
und
K*—r? = K? — (K —2w)* = 4(K — w)w = 4d’mn = s> +1* = 42 (2 +y?) (5)
oder
d’mn =22(x*+ %), ggTm,n) = ggTlx,y) = ggT(d, 2) = 1.
Wegen ggT(m,n) = 1 und ggT(d, z) = 1 gibt es teilerfremde natiirliche Zahlen x, v und

mi, n] mit

2.2 2 2 2
pvi=z7, m=up‘my, n=von, (6)

und damit ist
dmi-dny = x?+ yz, geT(x,y) = 1.

Die Zahlen dm | und dn; konnen nicht beide gleich 1 sein. Nach Satz D ist somit mindes-
tens eine von ihnen Summe von 2 Quadraten. Also gibt es ganze Zahlen a, b, u, v, von
denen mindestens 3 nicht 0 sind, so, dass mit (4) und (6) gilt

w=,uza’m1 =b%+0%, K —w=1v%dn =a®+u°

Damit erhilt man
K =a*+b* +u® + 02,

also eine Darstellung von K der Form (1), und wenn man noch (5) beachtet
r=K-2w=a’4+u?-b*—0% s*+1*=4K —w)w = 4(a® + u?) (b* +0?),
sodass die entsprechende Formel (2)

K? = (a2 Joi® —~ B - 02)2 + (Z(ab + uv))2 + (2(av — bu))2
= r2+4(t12—|-uz)(b2 +1)2) :r2—|—52+12

wie behauptet die Darstellung (3) liefert. g
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Beweis Lemma 1. Es geniigt, die Aussage fiir k = 1 zu beweisen. Sie folgt dann daraus,
dass es keine anderen Darstellungen von (2L)? als Summe von 2 oder 3 Quadraten gibt
als ,.die Doppelten” der Darstellungen von L2, das heisst zu jeder Darstellung

QL =4L?=r>+s>+¢*,  rsausN, 1 e Ny, (7)
existiert eine Darstellung
L? = x* 4+ y? + 2%, x,yausN,z e Ng, wobeir =2x,s =2y,t =2z.

Dies folgt unmittelbar aus der Tatsache, dass die rechte Seite der letzten Gleichung in (7)
nur genau dann kongruent 0 modulo 4 ist, wie die linke, wenn alle 3 Zahlen r, s, t gerade
sind. (]

Beweis Korollar 1. Um alle gesuchten Darstellungen von L? zu finden geniigt es nach
Lemma 1 offensichtlich, fiir alle ungeraden Teiler K von L die entsprechenden primitiven
Darstellungen von K2 zu bestimmen. Nach Satz 2 erhilt man diese, indem man alle Dar-
stellungen der Form (1) von K in Satz 1 einsetzt. (In der Praxis braucht man dabei gemaéss
Bem. (v) bei weitem nicht alle 8¢ (K') derselben zu beriicksichtigen.) 0

Beweis Korollar2. Sei A = M (x/y/z), M € N, ein Vektor der Linge L und mindestens
2 der 3 ganzen Zahlen x, y, z nicht 0, sowie

24y 4 =K% und geT(K, Ixl, Iyl lzl) = 1.

Also ist nach Lemma 1 K ungerade und L = K M. Nach Satz 2 existiert eine Darstellung
der Form (1) von K, welche, eingesetzt in Satz 1, eine K-Losung A; = (£x/ £ y/ £ z),
B,, C, liefert. Durch Zeilenumformungen (s. Bem. (vi)) erhilt man aus dieser eine K-
Losung A* = (x/y/z), B*, C*, so dass B = MB*, C = MC* die gesuchten Vektoren
sind. O

Beweis Lemma 2. Dass 2 und 5 die fragliche Eigenschaft haben ist klar.

Es bleibt zu zeigen, dass alle iibrigen Primzahlen p, p # 2, p # 5, als Summe von 3 oder
4 Quadraten geschrieben werden konnen.

1. p=4m+3,m € Ny.
Nach Satz A und Satz B kann p in diesem Fall in der gewiinschten Form dargestellt
werden.

2. p=4m+1,meN.
Nach Satz A kann p geschrieben werden in der Form p = r? 4 52, r, s aus N.

2.1. Einer der Summanden enthélt einen Primfaktor g > 3. Dieser ist keine Quadrat-
zahl, lidsst sich somit nach Satz B als Summe von 2, 3 oder 4 Quadraten schreiben.
Aus Satz 1 folgt, dass damit q2 Summe von 2 oder 3 Quadraten ist, was eine Dar-
stellung der gewiinschten Art ergibt.
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Zu untersuchen bleiben Primzahlen p der Form
22. p=2%4+1,keN.
22.1. p=2*% 41,k =2ngerade,n € N.
Dann erhilt man mit p = 24" + 1 = (227 — 1)2 +2.2%m = (220 - 1)2 +
(2”)2 + (2" )2 das Gewiinschte.

222 p= 22k 4 1, k=2n+1 ungerade, n € Np.
Nunist p = 24n+2 4 | Eine einfache Induktion zeigt, dass 5 die Einerziffer
aller natiirlichen Zahlen dieser Form ist. Die einzige Primzahl dieser Form
ist somit 5. [

Beweis Lemma 3. Wir machen die indirekte Annahme
2 2
pL-p2---pr=a" +b", a,bausN,

Dann gibt es eine natiirliche Zahl z und teilerfremde natiirliche Zahlen x, y so, dass gilt
p1-p2--pk = 22(x* + y?). Dax? + y? > 1 ist, kann z* nicht alle auf der linken
Seite auftretenden Primfaktoren enthalten. Somit gibt es mindestens eine Primzahl p; =
4m; +3,m; € Ny, welche die Summe x? + y? mit ggT(x, y) = 1 teilt. Nach Satz D ist
pj Summe von 2 Quadraten, was nach Satz A einen Widerspruch darstellt, der Lemma 3
beweist. (]

Beweis Satz 3.
a) Notwendige Bedingungen.
al) Es gibt keine 2X-Losungen, k € N.

a2) Es gibt keine 5 - Zk—Msungen 2. A, k € Ny.
Aufgrund von Lemma 1 giibe es andernfalls insbesondere eine 2-Losung, re-
spektive eine 5-Losung 2. Art, das heisst insbesondere, eine Darstellung von
4 als Summe von 2 oder 3, respektive von 25 als Summe von 3 Quadraten.
Solche Darstellungen existieren aber nicht.

a3) Ist L = pi1 - p2--- pk ein Produkt von lauter Primzahlen p; der Form pj =
dm;+3,mj € No, j =1,2,...,k, so gibt es keine L-Losungen 1. Art.
Eine notwendige Bedingung fiir die Existenz einer L-Losung 1. Art ist die Dar-
stellbarkeit von L2 als Summe von 2 Quadraten. Enthilt L nur Primfaktoren
p der Form p = 4m + 3, m € Ny, so auch L? und nach Lemma 3 kann die
Bedingung nicht erfiillt werden.

b) Hinreichende Bedingungen. Natiirlich bilden mit einer M-Losung A, B, C die Vek-
toren KA, KB, KC, K € N, eine M K-Losung und umgekehrt. Um die Existenz
einer L-Losung zu garantieren, geniigt es somit, fiir irgendeinen Faktor K von L die
Existenz einer entsprechenden K -Losung nachzuweisen.

bl) Enthiilt L einen Primfaktor p der Form p = 4m + 1, m € N, so gibt es L-
Losungen 1. Art.
Nach Satz A ist die Primzahl p = 4m+ 1, m € N, als Summe von 2 Quadraten
darstellbar. Aus Satz 1 folgt die Behauptung.
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b2) Enthdilt L einen Faktor 25, so gibt es L-Ldsungen 2. Art.
Da gilt 25 = 4% 4 22 4 22 4 1? erhilt man aus Satz 1 mita = 4, b = 2,
u = 2,0 = 1die 25-Losung 2. Art A = (15/20/0), B = (12/ —9/20),
C =(16/—12/ - 15).

b3) Enthdlt L irgendeinen Primfaktor p verschieden von 2 und 5, so gibt es L-
Losungen 2. Art.
Die Behauptung folgt unmittelbar aus Lemma 2 und Satz 1.

Die obigen 6 Aussagen zusammengefasst ergeben Satz 3. ad
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