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Finding vector-space bases at random
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1 Introduction
Over the finite field of q elements, we consider the vector space V of finite dimension
n. Of course, for V we always have the standard basis

(1,0,..., 0), (0, 1 0) (0 0,1),

so finding a basis is never a problem. Instead, we were curious about what happens when

we search for a basis for V at random. While investigating this question, we used some

unexpected and very interesting mathematics.

All finite fields having the same cardinality are isomorphic. The finite field F? exists if
and only if q is a prime power. The symbol q will only be used to denote the cardinality
of the field F?; thus, q will always be a prime power. Also, we use the notation Q :=
(2, 3,22,5, 7,23, 32,...), the sequence of prime powers.

Eine Basis in einem gegebenen Vektorraum zu finden ist nicht immer einfach. Im
Allgemeinen benötigt man für ein solches Unterfangen das Auswahlaxiom. Aber bereits in

endlichdimensionalen Räumen über endlichen Körpern ergeben sich interessante

Fragen: Wieviele Basen hat ein solcher Vektorraum? Wie gross ist die Wahrscheinlichkeit
eine Basis zu finden, wenn man eine zufällige Kollektion von Vektoren herausgreift?
Wie verhält sich diese Wahrscheinlichkeit, wenn die Dimension oder die Kardinalität
des Körpers gross wird? Bei der Beantwortung dieser Fragen spielen zahlentheoretische

Erwägungen eine Rolle, aber auch der Eulersche Pentagonalzahlensatz und die

Theorie elliptischer Funktionen tauchen an überraschender Stelle auf. Der Autor der

vorliegenden Arbeit illustriert seine Ausführungen mit numerischen Daten.
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In the vector space V, we set out to find a basis at random. How effective is this method?
On average, how many trials are needed to succeed? What happens as q increases? As

n increases? How many distinct bases does V have? We answer these and other related

questions, and we provide numerical results that illustrate the method's performance. In-
triguingly, we were led to consider and apply the Jacobi theta functions from complex analysis.

Also, we discuss a couple of number-theoretic results that are related to the method's

success-probability limit as n —* oo, for fixed q, that is, lim?q;„^oo Pn,q(success).

The tabulated numerical data were obtained with Maple 18.02, setting the environment
variable Digits : 15. The output data were rounded to the number of decimal places
shown in the tables.

We collect and summarize our results in Section 6.

Although the motivating problems are different, our work intersects that of Brennan and

Wolfskill [5] and Waterhouse [10]. We mention differences and similarities as they occur.

Similar problems have been considered since long ago. For example, in 1893, Lands-

berg [9] determined the number of matrices - rectangular or square - that have a given
rank, modulo a fixed prime. About one hundred years later, Gerth [6] investigated more
general, related questions.

Among the novel and salient features of the paper, we have the following.

• In terms of just one Jacobi theta function, we provide an attainable, optimal lower
bound for the sequence (lim„^oo Pnq (success))^gg, whose limit as q —» oo is the

said optimal lower bound.

• We discuss and present explicit expressions for the expected value and the variance

for the number of trials until, and including, the trial when a basis is obtained. We

give expressions for the limits, both when q —»• oo and when n —» oo.

• We present extensive numerical data that illustrate the behavior toward the various
limits we discuss.

• In general, our exposition is detailed. This applies, in particular, to the Jacobi theta

functions, to the connections with number theory, and to the references.

2 Success Probability
Under the discrete uniform probability law, we sample one element {ui,..., un) from
the set S of «-element subsets of V. The selected subset is a basis for V if and only if
v\,... ,vn are linearly independent, which occurs if and only if iq ^0 and, for each

j =2,...,«, the vector dj £ Span ({tq,..., u,-i}). Thus, for tq,..., vn to be linearly
independent, there are qn — 1 choices for tq and, for each j 2,... ,n, there are qn —qJ~l
choices for Vj. Therefore, there are

(qn-l)(qn-q)(qn-q^...(qn-q"-^

such linearly independent sets {tq,..., vn} in also, that is the number of distinct bases in
V. Consequently, the success probability P„yq (success) - the probability that [iq,..., u„]
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is a basis for V - is

Pn.q(success) (q" - 1 )(q" - q)(q" - q2) (q" - q"~l)/q"2

(i ~ <?_1)(i — q~2) • • (l — q~")-

The preceding argument is essentially the same as that given in [10] to determine the

probability that the determinant of a random n x n matrix over is not zero. We present
the argument here for completeness.

3 Success Probability as q —> oo

For fixed n, it is reasonable to think that, for q e Q and as q oo, linear dependencies
should be less and less likely in a random set of n vectors, and, therefore, the success

probability should increase. Indeed, for a fixed integer n > 0, and for each positive integer

r, let

ar(n) := (1 — r_1)(l — r~2) ••(!— r~n).

Then, as r —> oo, the sequence (ar(n))'^_l converges because it is strictly monotone

increasing and bounded above by one. In fact, limr^oo ar{n) — 1. Therefore, the

subsequence Q has the same limit; that is,

lim P,uq(success) lim (1 — #-1)(l — q~2) (1 — q~") 1.
qeQ.q^-oo ' qQ',q^>00

For fixed n, and as q —* oo, the data in Tables 1 through 3 illustrate how P„i<7 (success)
increases to its limit value of 1. For example, when n 10, already Pn,q(success | q
26) % 0.98, and then P„>9 (success | q 56) «a 0.999936.

Table 1: The success probability f["= i (' - when q 2, 23, and 25, for increasing values of n

n q= 2
CIII q= 26

10 0.289070298 0.859405995 0.984130860

100 0 288788095 0 859405994 0.984130860

500 0 288788095 0.859405994 0 984130860

oo (limit value) 0 288787934 0 859405994 0.984130860

Table 2. The success probability nlt=i 0 — 1 *) when q 3, 33, and 36, for increasing values of n

n 9 3 CIII q 36

10 0.560130821 0.961591291 0.998626376

100 0.560126078 0 961591291 0.998626376

500 0.560126078 0961591291 0 998626376

oo (limit value) 0.560126078 0.961591291 0.998626376
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Table 3 The success probability fli=i (1 — <? when q 5, 5\ and 56, for increasing values of n

n q 5 q= 51 q 56

10 0 760332815 0 991936000 0 999935996

too 0 760332796 0 991936000 0 999935996

500 0 760332796 0 991936000 0 999935996

00 (limit value) 0 760332796 0 991936000 0 999935996

4 Success Probability as n -* oo

Intuitively, for fixed q Q and as n —* oo, linear dependencies should be more and more
likely in a random set of n vectors, and, therefore, the success probability should decrease.

Indeed, for a fixed integer r > 1, and for each positive integer n, let

ßn(r) := (1 — r-1)(l — r~2) •••(!— r~").

Then, as n oo, the sequence ißn(r))^Li converges because it is strictly monotone
decreasing and bounded below by zero. Thus, for each q e Q,

lim P,uq(success) lim (1 — c/_1)(l — q~2) (1 — q~") (1)
qQ,n—> oo

*

qeQ.n—* oo

exists, but it is not equal to zero, as one might be tempted to think; in fact, that limit value

is always greater than 0.2887, as shown in Section 4.2. The limit in (1) can be determined

through old, venerable functions that we discuss next.

4.1 The Jacobi theta functions

Part of elliptic-function theory, the four Jacobi theta functions d\, 1)2, $3, and $4 are functions

of a complex variable z, and they also depend on a constant parameter s. Instead of

i, the usual notation for the parameter is <7; however, we have already reserved q for the

cardinality of a finite field.

Let the variable z C, and let the constant parameter s := eKlT, where the imaginary
part Im(r) > 0, so that |s| < 1. The definitions ([8, p. 156J and [11, pp. 463^164]) are as

follows;

OO

tMz.s) :=2^(-l)*si(2*+1)2 sin{(2& + l)z),
*=0
00

$2(z, s) '= 2 ^\y?(2*+1>2 C0s{(2£ + l)z),
*=0

00

i?3(z,a) := 1 + 2 cos(2kz),
k=i
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and

i?4(z,s) := 1 + 2 Y,(-1)V2 cos(2kz)
k= 1

All of these series converge very fast [8, p. 157]; this is illustrated by our tabulated numerical

data. For a fixed constant s, the four Jacobi theta functions are entire functions of z.

The notation i? is sometimes used for 1)4 [11, pp. 463—464],

It is clear that 0i(O, s) 0. When z 0, and the value of the constant parameter s is

understood, it is customary to omit the arguments, and simply write

(0, s) =: tfj for j 2, 3,4,

0,'((U) =:0,'

and

for the derivative of 0] (z, s) with respect to z, at z 0.

When z 0, the four theta functions are related by the following equation ([8, p. 166]
and [11, p. 470]);

0j(O, 5) 02(0, 5)03(0, 5)04(0, s). (2)

The Jacobi theta functions have product representations, as follows ([8, p. 163] and [11,
Sections 21.3 and 21.42, pp. 469-470,472-473]):

0l(z,s) 2|f[(l-s2*)

02 (z,s) — 2

03(Z,5)

04 (z, J)

k=1
OO

54

no-'24)
*=1

OO

4 sin(z) ]"[{! _ 2s2k cos(2z) + s4k],

k=1
OO

cos(z) fji1 + 2slk cos(2z) + s4k},

k=l

no - su) j no+2sik~x c°s^)+
k= 1 J *=1

OO 1 OO

]"[(! _ s2k) I JlO ~~ 2s2i~' cos(2z) + s

(3)

Ak-2i

Ak-2i

and

k=1 k=1

Each of the product representations in (3) contains fltli (1 s2k) as a factor; this suggests
that these theta functions may be used to determine the limit 0 — <j~k) that we are

interested in.

4.2 The value of - g_1)( 1 - q~2) •••(!- q~n)

Our departure point is the fact that ([8, Equation (13.5.32), p. 165] and [11, pp. 472^173])

0|(O,5) 2S* no-*2*) no-'24)2 2s* n(i-5a) > (4)
4=1 lk=\ lk=l
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since the products converge absolutely. In (4) we replace s by q 1,/2, and then

i T00 ?n~l3 00

«;(O,,-"2) 2[] i-(r") =2,-|/8 n('-^')L=i ' J U=i

Therefore, we can now obtain the value of the desired limit:

1

no-*-') U<?,/8^(o^-,/2)
<:=!

1/3
4 v»i(o.<r"2)

1/3

(5)

simpler than the expression given in [5, Theorem 4, p. 313], which involves three of the

theta functions. Another, more complicated, expression for the desired limit follows by
applying the result in Equations (2) to (5). Doing so, we find

00 | I 1/3

fl(l ~1~k) =1* 2^2 (°' ^-1/2)^3(0,9-1/2)i?4(0,9-1/2)
*=i

which, however, does not appear to be the same as that given in [5, Theorem 4, p. 313],
taking into account that, as we have mentioned earlier, sometimes the notation 'ß is used

for ß4. Nevertheless, our numerical data agree with the corresponding data in [5], always
to at least five decimal places.

For fixed q e Q, and as n —> 00, the data in Tables 1 through 3 illustrate the manner
in which Pn,q{success) decreases to its limit value. For example, when q 2, already
Pn,q(success I n 10) % 0.289070, and, in this case, the limit value lim^gg;,,-,^ P,uq

(success) 0.28878793. For larger values of q, we see in these tables that the convergence
is faster.

4.3 Attainable, optimal lower bound for the sequence
('im«-»00 riLi (1 _ 9 k))qeQ

Brennan and Wolfskill [5, Theorem 2, p. 312] state that, for q e Q,

" 2
lim ]~[(! — Q-n—>00 A A y

*=1

Following a referee's question, we present an outline of Brennan and Wolfskill's argument.
Let q e Q. They begin by showing that

00 ~

L\ 1 ~1

This is achieved by first using induction on n to obtain the inequality

n n

na-?"*)> j-X?4,
k=\ k= 1
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and then taking limits as n —> oo and summing the geometric series X?ii 1 *" They then

state that

n<i - ?~k) ^ o - 9_i) n(i -
t=i *=i

oo [

n -(«')
jfc=i1

-it
(6)

Finally, the conclusion is obtained by using the previous lower bound (q — 2)/(q — 1)

and the fact that the sequence (lim,,-^ I~|"=i 0 — 1~k))qeQ's monotonically increasing.

Thus, when q := 2, from (6),

°0 if 00 2
1 /T\ 2

n,i-2-')^ no-4-*) M(!)
2

9'

The lower bound 2/9 can be improved to produce an attainable, optimal lower bound in
terms of just one Jacobi theta function, as follows.

We have seen that, for a fixed positive integer n, and for each positive integer r, if

ar(n) := (1 — r-1)(l — r-2) •••(!— r~n),

then the sequence (ar (n))^j is strictly monotone increasing. Thus, for a fixed positive
integer n, and for each integer r > 2,

(1 - 2 )(1 - 2 (!- 2_") < (1 - r )(1 - r •••(!- r-"). (7)

We have also seen that, for a fixed q e Q, and for each positive integer n, from (5),

lim (l-q ')(1 — 2) • • (1 -q ") q
yQ,n—>oo

1
0/ (»•T"2)

1/3

(8)

Therefore, from (7) and (8), we have, for each q e Q,

lim (1 — 2~')(1 — 2~2) • (1 — 2~") < lim (1 - g-')(l - q~2) (1 - q~n)
n-> oo oo

and, from Table 1,

0.2887 < 2S» (0,2-'/2)
1/3

i \ 1 1/3

(9)

In (9), the lower bound

l
254

1/3

is best possible for the sequence

("„USSofl ('"i"')) •

\ k=l /qQ
and it is attained if and only if q =2.
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4.4 Connections with number theory

The infinite product n«Li 0 t}~") ''m<7eQ;/i->-oo Pn,q (success) is connected to number

theory, via the pentagonal numbers and the partition function. These connections lead

to additional expressions - infinite power series - for the product fln^i 0 — <?")•
Convergence of these series is not necessarily an issue in number theory, where such series

are often treated as formal expressions. However, we are interested in the limit values, and

that is why we have stated convergence conditions on x in the theorems in this section.

The first connection ([2, Theorem 14-4, pp. 176-177], [3, Theorem 14.3, p. 312], and [4,
Theorem 1.2, p. 139]) goes back to Euler.

Theorem 1 (Euler's pentagonal-number theorem). To ensure convergence, we let x be

a complex variable with |jc| < 1. Then

OO

f[(l-x*) 1_x_x2+x5+x7-xi2_xi5 + .--
k=l

00 00

1 + jT(-l)* jx(3*2-A)/2+x(3*2+*)/2} jr (-1 )V3*2-*>/2.
k=1 k=—oo

Substituting q~l for x in Euler's pentagonal-number theorem, we have, for each q e Q,

OO

lim /'„^(success) I I (1 — q~")
qeQ;n-»oo ' 1

n=1

1 -q~l - q~2 + q~5 + q~7 - q~12 - q~'5 -i

00

1 + £(-1)* j^2-*)/? +^—(3^)/2j
it=l

oo

^ (_1 fq-Ok2-k)/2_
k=—oo

Euler's theorem is called pentagonal because the (generalized) pentagonal numbers

(k (3k ± 1) /2)£1] are related to pentagonal arrangements of points on the plane; see,

e.g., [1, p. 16] and [7, p. 224].

For the second connection, we recall that a partition of a positive integer k is a multiset of
positive integers whose sum is equal to k. The value p(k) of the partition function p() is

the number of distinct partitions of k. It is convenient to set p(0) := 1. The next result is

well known; see, for example, [3, Theorem 14.2, p. 308], [4, Corollary 1, p. 139], and [7,

p. 223],

Theorem 2 (Generating function for partitions). To ensure convergence, we let x be a

complex variable with |.r| < 1. Then the generating function F for partitions

00 00
J

F(x) ^ p(k)xk ]~[ r — 2771 37 • D^ Ll -*)(! -* -*J)---
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We can now relate lining/«^(success) to partitions, as follows. Substituting q
1

for x in Theorem 2, it follows that

oo oo

lim (success) FT (i - q~") 1 / Y\p(k)q'k.
„=1 /

Brennan and Wolfskill [5] and Waterhouse [10] use Euler's pentagonal-number theorem
to express fln^i 0 ~ 1~") as an infinite series. Waterhouse [10] mentions partitions, but
does not say what the limit value of n«Li 0 — 1~n) 's actually equal to.

The referee noted that Euler's pentagonal-number theorem is used to prove the Jacobi

triple-product identity and asked whether that theorem is used to prove (2). In their discussion

of Jacobi theta functions, the references [8, 11] do not mention Euler's pentagonal-
number theorem or the Jacobi triple-product identity. The pentagonal-number theorem is

itself a special case of the triple-product identity [7, p. 226], Next, for completeness, we
state two forms of the triple-product identity [4, Problem 28, p. 195] and [7, Theorem 8,

p. 226],

Theorem 3 (Jacobi triple-product identity). Ifx and y are complex numbers such that
|x| < 1 and y f=0, then

• n~iO ~x2k)(\ + x2k~ly)( 1 +x2k~ly-1) IX-o<yy and

• n~iO -X2k)(\ -x2*-'y2)(l - x2k~ly-~2) Xr=-oc(-DkxL2y2k-

One form of the Jacobi theta function $4(2,5) lends itself well to the application of the

triple-product identity. Let |j| < 1. The Jacobi theta function $4(2, 5) can be written [11,

p. 463]
00

$4(2,5)= ^ (—l)*s*2e2*'z. (10)
k=—oo

Thus, it is clear that, by taking x := s and y := e'z, we can apply the second form of the

Jacobi triple-product identity in Theorem 3 to the series in (10) to obtain

OO

$4(z,5) [~[(1 -52*)(1 -s2k~le2'z)(l -s2k-le-2,z). (11)
*=1

Moreover, using Euler's formula e'u' cos(uj) + i sin(to) and basic trigonometric identities,

it is straightforward to show that

(1 — s2k~:e2,z)( 1 — s2k^ie~2,z) 1 — 2s2k~x cos(2z) + s4k~2,

and so (11) becomes

OO

$4(2,5) f](l -52*)(1 -252*-'cOs(22) + 54*-2),

k=\

the expression given earlier in (3) for $4(2,5). Thus, we see a connection between the

tools we use and the Jacobi triple-product identity.
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5 How Many Trials?

Under the discrete uniform probability law, and drawing one item at a time, we sample with
replacement from S until we obtain a basis for V. If T is the number of samples taken until,
and including, the trial when we obtain a basis, then T is a geometric random variable with

support {1, 2, 3,...} and parameter - the constant success probability - equal to

(1 - <7_1)(1 - <T2) •••(!— <T") =: Wn,q

The probability law for T is

P(T t) Ifn.qi 1 — Wn,q) » f 1, 2, 3, ;

the expected value E[T] 1 /i//„,q\ and the variance Var[TJ (1 — yn,q)lVn q- F°r fixed
n and q, small values simultaneously for both E\T | and Var[7"] suggest that a basis is

likely to be found after just a few trials.

5.1 Expected value and variance as q — oo

From Sections 3 and 5, it is clear that, for fixed n,

lim E[T] 1 and lim Var[T] 0.
oo qeQ.q^oo

These limit values make sense. Intuitively, for fixed n, and as q —> oo, dependencies
between vectors should be less and less likely, so for large q we would expect to draw a

basis very quickly. The data in Tables 4 through 6 support this conclusion.

Table 4- Cumulative probability of obtaining a basis on or before the rth trial, and the expected value E[T],
for q 2,2 and 26, and some values of n

t

q= 2 q 23 q 26

n 2 n 4 n 10 n 2 n 4 n 10 n 2 n=4 n 10

1 0.3750 0.3076 0.2891 0 8613 0 8594 0.8594 0.9841 0.9841 0 9841
2 0 6094 0.5206 0.4946 0.9808 0.9802 0.9802 0.9997 0.9997 0.9997
3 0.7559 0.6681 0.6407 0.9973 0.9972 0.9972 1.0000 1 0000 1.0000
4 0.8474 0.7702 0 7445 0 9996 0.9996 0 9996 1 0000 1 0000 1 0000
5 0 9046 0 8409 0.8184 0.9999 0 9999 0.9999 1.0000 1.0000 1 0(X)0

6 0 9404 0 8898 0.8709 1 0000 1 0000 1.0000 1 0000 1.0000 1 0000
7 0.9627 0.9237 0 9082 1 0000 1.0000 1 0000 1 0000 1 0000 1.0000
8 0 9767 0.9472 0.9347 1 0000 1 0000 1.0000 1.0000 1.0000 1 0000
9 0 9854 0 9634 0 9536 1 0000 1.0000 1.0000 1 0000 1.0000 1 0000

10 0 9909 0 9747 0 9670 1.0000 1 0000 1.0000 1 0000 1 0000 1.0000

E{T] 2 67 3.25 3.46 1 16 1.16 1.16 1.02 1 02 1.02

For fixed n, and as q —> oo, the data in Tables 7 through 9 illustrate the manner in which

E[T] and Var|T] approach their limit values. For example, when n — 10, E[T \ q — 2] %

3.46 and £[7" | q 5] % 1.32, and Var[T | q 2] % 8.51 and Var[T | q 5] % 0.42.
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Table 5 Cumulative probability of obtaining a basis on or before the rth trial, and the expected value E[T],
for q 3, 3\ and 36, and some values of n

t

q= 3 q 33 II
n 2 11 — 4 n 10 n 2 n 4 ii 10 n 2 11 4 11 10

1 0 5926 0 5636 0 5601 0 9616 0 9616 0 9616 0 9986 0 9986 0 9986
2 0 8340 0 8096 0 8065 0 9985 0 9985 0 9985 1 0000 1 0000 1 0000
3 0 9324 0 9169 0 9149 0 9999 0 9999 0 9999 1 0000 1 0000 1 0000
4 0 9725 0 9637 0 9626 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
5 0 9888 0 9842 0 9835 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
6 0 9954 0 9931 0 9928 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
7 0 9981 0 9970 0 9968 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
8 0 9992 0 9987 0 9986 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
9 0 9997 0 9994 0 9994 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000

10 0 9999 0 9997 0 9997 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000

£[T] 1 69 1 77 1 79 1 04 1 04 1 04 1 00 1 00 1 00

Table 6 Cumulative probability of obtaining a basis on or before the rth trial, and the expected value £[71,
for q 5, 53, and 56, and some values of n

t

<7 5 q 53 q 56

ii 2 n 4 1! 10 n 2 ii 4 11 10 11 2 1! =4 1! 10

1 0 7680 0 7606 0 7603 0 9919 0 9919 0 9919 0 9999 0 9999 0 9999
2 0 9462 0 9427 0 9426 0 9999 0 9999 0 9999 1 0000 1 0000 1 0000
3 0 9875 0 9863 0 9862 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
4 0 9971 0 9967 0 9967 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
5 0 9993 0 9992 0 9992 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
6 0 9998 0 9998 0 9998 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
7 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
8 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000
9 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000

10 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000 1 0000

E[T] 1 30 1 31 1 32 1 01 1 01 1 01 1 00 1 00 1 00

5.2 Expected value and variance as n —y oo

From Sections 4.2,4.4, and 5, it is clear that, for fixed q e Q,

-1/3
lim E[T] q

qtQ. n—>oo
i/24(^;(o,«-"2)

OO

^p(k)q'k,

1 / £ (_!fq-(^-k),2

k=0

and

lim Var[7"]
qQ n->oo

"24jk(o.,-"!)
1/3" -2

k=—oc

1/3'
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jr {-{fq-o^-kvi
_k=—oo
" 00

oo

£ (_1)kq-W2-k)/2

X p^q k ~1 X pwq

Jk=—oo

k

-k=0 U=0

For fixed q e Q, and as n —> oo, the data in Tables 7 through 9 show that for all tabulated
values of q, both E[T] and Var[7"] already achieve their rounded limit values when n 10.

Table 7. Expected value £[71 and variance Var[71 when q 2, 23, and 26, for increasing values of n

n

9 2 9 23 9 26

EIT\ Var[T] E[T] Var[T] E[T] Var[T]

10 3 46 851 1 16 0 19 1 02 0 02
100 3.46 8.53 1 16 0 19 1 02 0.02
500 3.46 8.53 1 16 0.19 1 02 0.02

oo (limit value) 3.46 8.53 1 16 0.19 1.02 0.02

Table 8. Expected value £[7"[ and variance Var[7"] when q 3, 33, and 36, for increasing values of n

n

9 3 9 33 9 36

E[T] Var[T] E[T] Var[T] E[T] Var[T]

10 1 79 1 402 1 04 0 042 1 00 0 001

100 1 79 1.402 1 04 0 042 1 00 0.001

500 1.79 1.402 1 04 0.042 1 00 0.001

oo (limit value) 1.79 1.402 1.04 0 042 1 00 0 001

Table 9: Expected value E[T] and variance Var|T| when q 5, 53, and 5®, for increasing values of n

n

9 5 9 53 9 5"

£[T1 Var( 7"] £[71 Var[7"] £[71 Var[71

10 1.32 0.415 1 01 0.008 1.00 0.00006
100 1.32 0415 1 01 0.008 1.00 0 00006
500 1.32 0.415 1.01 0 008 1.00 0.00006

oo (limit value) 132 0.415 101 0.008 100 0.00006

6 Summary and Conclusion

Next, we collect and summarize our results.

Theorem 4. Let Q := (2, 3, 22, 5,7, 23, 32,...), the sequence ofprime powers, and let

q e Q. Over the finite field ofq elements, let V be a vector space offinite dimension n.

Let S be the set ofn-element subsets of V. Under the discrete uniform probability law, and
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drawing one item at a time, we sample with replacement from S until we obtain a basisfor
V. Let Pn,q(success) denote the success probability. Then the following conclusions are
valid.

• There are (q" — 1 )(q" — q)(qn — q2) (q" — c/"~1) distinct bases in V.

• For each individual draw, the probability ofobtaining a basis is equal to

,q(

- For fixed n,

P„,q(success) (1 -q ])(1 -q 2) (I - q ").

lim Pn,q{success) lim (1 — q ')(1 — q 2) (1 — q ") 1.

qeQ;q^>oc ' qeQ;q^>oo

- For fixed q e Q,

lim (success) lim (1 — q~X)(\ — q~2) (1 — q~")
i/eQ;n->oo ' qeQ;n->oo

1/3

til (o,<7~l/2) tii (0,<TI/2) ti4 (o,<T'/2)
1/3

where d\, ih, i'h, and 1)4 are the Jacobi theta functions.

- The sequence

0 p«« (success096ß=(Ä fi (i -crk))
\ k—1 /qsQ

is monotonically increasing. For each q e Q,

/ X 1 1/3

2-'\— /
Best possible for the sequence

0.2887 < 2H | ^ti[ (0, 2"1/2) < qT4 1(o, <T1/2)

Llzp"-« <success)),ea (»'i~n ('-«"')) o-

':(o,2-"2)|'

r/eß

the lower bound

,n 1'/3
2" I a"1

is attained ifand only if q 2.

• Let the random variable T be the number of trials - samples drawn - until, and

including, the trial when we obtain a basis. Set

(1 — 9_1)(1 — q~2) * • • (1 — q~") =' Vn,q-

Then T is a geometric random variable with probability law P(T t) yn,q{ 1 —

y/„,q)'~\ t 1, 2, 3,..expected value E[T\ 1 /if/n,q; and variance Var[T|
(1 - H>n,q)lvl,r



82 O Marrero

- For fixed n, lim^g^^ E[T\ 1 and lining ,9^oo Var[T] 0.

- For fixed q e Q,

q&Q
lim E[n=g_1/24 -tf|(0,<T1/2)
2,n-»>oo [ 2 V /

oo

l/ X (-\fq-i^-k)l2

-1/3

k——OQ

and

lim Var[7"]
qeQ\n-f 00

XM*)9~*>
4=0

1/3"

1/3'

_£=—oo

00

^P(k)q~k-

-2 00

X (-1)*«4 —(342—4)/2

L4=0
Xpw*

4=—oo

-4

-1

L4=0

where p() is the number-theoretic partition function.

Of course, the preceding results can also be stated in terms of linear independence, rank,
and other concepts related to a basis in linear algebra.

Our work shows that, in a finite-dimensional vector space over a finite field, finding bases

at random is an efficient procedure, as we are likely to come up with a basis after just a

few trials.

Acknowledgement. The author thanks a referee for constructive, thoughtful comments
that helped improve the paper.
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