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1 Introduction

If you are an organizer of a local Softball tournament this summer, you probably need to
set up a schedule. Suppose there are n teams, each team plays every other team just once,
and we don't consider whether the games are at home or away. Then if// is even, we have

a total of // — 1 rounds with | games for each round. If n is odd, we use a dummy team
whose opponent does not play and is given a bye that round. So for the case that n is odd,

we have a total of n rounds with games for each round. In the related literature, such

type of tournament is called a round-robin tournament. In this paper, we just simply call it
a tournament.

Im Englischen ist "round-robin tournament" die Bezeichnung für einen Wettkampf,
bei dem jedes Team genau einmal gegen jedes andere antritt. Ist die Anzahl der Teams

gerade, finden in jeder von n — 1 Runden | Spiele statt. Der "round robin" Algorithmus

ist eine effiziente Methode, um einen entsprechenden Spielplan zu erstellen. Aber
wieviele Spielpläne sind überhaupt möglich? Die Autoren der vorliegenden Arbeit
zeigen, wie dieser Frage mit Hilfe chromatischer Polynome nachgegangen werden kann.
Beschränkt man sich auf die Anzahl der Spielpläne, die der "round robin" Algorithmus
liefert, so gibt eine elegante Formel die Antwort.
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Of course, there are different ways to set up a tournament schedule. A widely used method

to generate a tournament schedule, which is called the round-robin tournament scheduling
algorithm or simply the round-robin algorithm in this paper, will be reviewed in Section
3 and is described in [3] using modular arithmetic. In real-world problems, often optimal
schedules based on some criteria are requested, for example, schedules having a minimum
number of breaks [2], schedules in the presence of strength group requirements [I]. In
this paper, we do not study specific scheduling strategies, instead we are interested in

finding how many different schedules one can set up. We will describe a process to find
the number of all tournament schedules using chromatic polynomials in Graph Theory.
Since computing chromatic polynomials in general can be hard, to find the number of all
tournament schedules could be very challenging. Finding a formula to compute the number
of all tournament schedules is even more challenging. However, if we consider a subset of
all tournament schedules that are generated by the round-robin algorithm, such a formula
exists. We will provide a formula to find the number of schedules that are set up by the

round-robin algorithm in this paper.

2 The number of tournament schedules

If there is an odd number of teams, then a dummy team can be added. Therefore, in this

paper we assume we have an even number of teams. Suppose there are n teams. A schedule,

therefore, consists of n — 1 rounds of games with j games for each round such that
each team plays every other team just once. Mathematically, a schedule is a permutation
of n — 1 sets. Each set consists of | games. Therefore, two schedules are equal if and only
if the set of games in each round are the same, that is, the set of games in round one are
the same, the set of games in round two are the same, etc.

In this section, we describe a process to find the number of all schedules using chromatic

polynomials in Graph Theory. The process is described using Maple language as follows:

G := CompleteGraph(n);

H := LineGraph(G)\
P ChromaticPolynomial(H, 'x');
P(n - 1).

Of course, we need to know some basic concepts in Graph Theory in order to understand
these commands in Maple. We also need to verify that these commands return the number
of all tournament schedules. Now we give some basic concepts in Graph Theory, [4],

Definition 1. A graph consists of two finite sets, V and E. Each element in V is called a

vertex. The elements of E, called edges, are unordered pairs of vertices. A complete graph
is a graph such that for any two vertices it and v, there is an edge connecting them, in

other words, uv e E. The line graph L(G) of a graph G is defined in the way: the vertices

of L(G) are the edges of G, and two vertices in L(G) are adjacent (there exists an edge

connecting them) if and only if the corresponding edges in G share a vertex.

Definition 2. An edge coloring of a graph is an assignment of colors to the edges of the

graph so that no two adjacent edges have the same color. A vertex coloring is a way of
coloring the vertices of a graph such that no two adjacent vertices share the same color.
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For a given graph G, the number of ways of coloring the vertices with x or fewer colors is

denoted by P(G, x) and is called the chromatic polynomial of G in terms of v.

We use Kn to denote the complete graph with n vertices. If we do an edge coloring of
Kn, then we need at least n — 1 colors. This is because for each vertex v in Kn, there are

n — 1 edges which have u as one of their end vertices. If we color the edges of Kn with
exactly n — 1 colors, namely, c\,c2, c„-1, then for each color c, and each vertex v,
there is one and only one edge with color c, and with u as an end vertex. Since for each

edge there are two end vertices, we therefore obtain that there are | edges for each color.
Now if we view the n vertices of K„ as the n teams in a tournament and each edge v, Vj as

a game between team v, and n}, then an edge coloring of K„ corresponds to a tournament
schedule. This can be done by corresponding c, with the / th round of the tournament, and

by viewing | edges with color c, as the | games in the ith round. With this in mind, to find
the number of all tournament schedules with n teams, we only need to find the number of
edge colorings of K„. Since each edge coloring corresponds to a vertex coloring of its line
graph L(Kn) and each vertex coloring of L(K„) corresponds to an edge coloring of K„,
to find the number of edge colorings of Kn using n — 1 colors is the same as finding the

number of vertex colorings of L(Kn) using n — 1 colors, which can be obtained by first

finding the chromatic polynomial P(L(Kn), x) of L(Kn), and then plugging in x — n — 1

in P(L(Kn),x).
Now let us go back to the Maple commands and explain their meanings:

CompleteGraph(n) returns a complete graph with n vertices; LineGraph(G) returns
the line graph of G; Chromatic Polynomial (H, 'x') returns the number of its vertex
colorings using no more than x colors; and P(n — 1) returns the number of its proper
vertex colorings using no more than n — 1 colors.

As an example of this process, we compute the number of schedules for six teams. Using
Maple, we have the chromatic polynomial as follows:

P(x) x(x - l)(x - 2)(x - 3)(x - 4)(x10 - 50x9 + 1155x8

- 16245x7 + 154083x6 - 1029213x5 + 4896820x4

- 16356845x3 + 36630736x2 - 49547792x + 30666816).

Set x 5, we have P(5) 720. In other words, for six teams there are 720 different
tournament schedules.

Remark 1. Maple takes a lot of time to find the chromatic polynomial for six teams

(close to an hour). For eight teams, Maple returns an error message "Error, (in Matrix)
object too large". Computationally, finding the number of tournament schedules could be

very challenging.
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Round 1. (po plays pi p\ plays po,... S\ —

Round 2. (po plays po, p7 plays p5, S2

3 The round-robin algorithm
The round-robin algorithm is to pair the teams off in the first round. For example, if there

are eight teams named po, pi,..., p7, we may initiate the first round of games as follows:

Po Pi P2 Pi
Pi PO Pi PA

Now, we fix team po and rotate the others clockwise one position. We obtain the games
for the second round.

r
PO Pi Pi P2

PO P5 PA Pi
We rotate the teams p\, P2, Pi clockwise one more position. We obtain the games for
the third round.

r
Po Po Pi PiRound 3. (po plays p$, po plays p\, S3
P5 PA Pi P2

Round 7. (po plays p\, p2 plays p7, Sj

We use the notation > which is also called a setting of the

PO P2 Pi PA

Pi PI PO Pi

In the above tournament schedule, the games in each round (Round 2 to Round 7) are
determined by the round-robin algorithm based on the games for the previous round. Of course,
we do not have to follow this order. Actually, any permutation of Si, S2, Sj will give
a specific tournament schedule. For example, S2SsS2 Si S3 S0S4 indicates that the games in
Round 1 are determined by S2, the games in Round 2 are determined by S3, etc. Therefore,
we have a total of 7! different tournament schedules if one tournament schedule is given.

Po Pi Pm

P2mA-i P2m • • • Pm + i

round-robin algorithm in this paper, to represent the set of all tournament schedules generated

by the round-robin algorithm (po is fixed and pi, p2,.. P2m+i are rotated clockwise

or equivalently counterclockwise) for 2m + 2 teams, po, p 1, • •, pim+i - Using this
' PO Pi P2 Pi )jsthesameaJ PO PI Pi P2

Pi Po P5 Pa \ Po Pi pa Pi
which represents the set of all permutations of Si, S2,..., S7 and each permutation repre
sents a schedule of a tournament.

In this study, since we do not consider home or away games, the games determined by

Pi P2 Po PA
are same as ones determjneci by Sj. We should point out

Po Pi Pi Pi J
the difference between the notation

notation, we can see that >

Whileile ^

Po

/'2m+ 1

PO

Pi
P2m

Pm

Pm + i
and Po

P2m + l

Pi
P2m

Pm

Pm + i

Pi Pm

P2m Pm + i

PO Pi Pm

P2m + i P2m Pm + i

games, po plays p2m+l, Pi plays p2m, pm plays pm+1, in a round of a tournament.

The round-robin algorithm can also be represented by a graph, see Figure 1 for eight teams.

P2m+i

generated by the round-robin algorithm,

represents the set of all tournament schedules

represents the
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PI

Rotate 7 times

Figure 1 Round robin algorithm diagram

4 The number of tournament schedules by the round-robin algorithm
In this section, we first give several results stated as lemmas. Then we obtain an equality
regarding the number of schedules using the round-robin algorithm when a specific team
is fixed. Finally, we prove an equality regarding the number of schedules using the round-
robin algorithm when the fixed team is arbitrarily selected.

For a setting of the round-robin algorithm, a team is fixed and the others are rotated clockwise

or equivalently counterclockwise based on an initial assignment of games. Therefore,
the following result is valid due to the fact that one clockwise rotation of M is the same as

one counterclockwise rotation of N, where M and N are the ones appearing in Lemma 1.

Lemma 1. Let

PO PI Pin \ and N PH Pirn Pm +1 \
P2m + \ Plm ••• Pm+1 / \ P2m + \ P1 ••• Pm

Then M N.

We point out that in the next lemma the notation (po, p\} represents a set of two elements

po and pi and {{p0, p2m+il> iP\< P2m], • • •, {pm, Pm-tH represents a set with elements

{po, P2m+i Mpi, P2m h lPm, Pm-1}- Actually, the proof of the next lemma becomes

obvious if we view (po, pi} as the game that po plays p\.

Lemma 2. Let

and <71

CI2m

IfM N and (p,, p2m-,+i} {c/7, <72m-/+l 1 for some 0 < /, j < m, then

{{po, P2m+lh {pi, P2»|}, 1 Pm, Pm +1}} — {{</(), l2m+\), {<71, <72m },••, {<7»i, <7»i+l}} •
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Proof. It is easy to see that p, and P2m -11 i are in the same column in M and q, and

qim-i+i are in the same column in N. Consider the round that p, plays p2m-i+i- Since
M — N and {p,, p2m-i+i] ilj, qim-j+i], we know that the games for this round
generated by M and N are exactly the same. Therefore, the conclusion of the lemma is
true.

If po is fixed, then a circular permutation of pi, p2, P2m+\ corresponds to a setting of
the round-robin algorithm. Though different circular permutations of p\,pi,..., P2m+i
correspond to different settings of the round-robin algorithm, these different settings of the
round-robin algorithm may generate the same set of schedules. For example, as Lemma
1 shows, if we reverse the order of the circular permutation, it will generate the same set

of schedules. Even more as the following example shows, two totally different circular
permutations can generate the same set of schedules.

Example 1. Let

M PO pi p2 p 3

Pi P6 P5 P4
^ and N ^

PO P4 Pi P5

Pi P3 P6 P2

It can be easily seen that M and N correspond to different circular permutations. Let the
first rounds of games based on M and N be the games

Mi Po Pi P2 P3

Pi P6 P5 P4
and Ni Po P4 Pi P5

Pi P3 P6 P2
respectively.

Then the second round of games M2, the third round of games M3, the seventh round
of games M7 based on M can be obtained by rotating p\, p2, ps, P4, ps, po, pi in M\
clockwise one position, two positions, seven positions, respectively. Similarly, the
second round of games N2, the third round of games Nj, the seventh round of games
Nj based on N can be obtained by rotating 774, p\, ps, p2, po, P3, pi in N\ clockwise one

position, two positions, seven positions.

It is obvious that M\ N\. It is also easily seen that M2 A^, M3 N5, M4 — Nj,
Ni, Mo N4, and Mj No- Because M and N are the sets of all the permutations

of Mj, M2,..., Mj and N\, N2, Ny, respectively, we obtain M N.

The next lemma shows that if two different circular permutations generate the same set of
schedules, then they cannot be too different.

Lemma 3. Let M be generated by

Po Pi Pm \ (1)
\ Pita I I P2m Pm + l

If M is also generated by

PO til • • dm

\ P2m I I d2m ^m + l
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and
PO b\

P2m+l b2„ 3/11 + 1

(3)

with aj b/ p\ and a2m-]+\ — ^2m-/'+l P2m.fora fixed 1 < j < m, then a, — b,

for all 1 £ t < m.

Proof. In view of a2m-i+i ^2m-/+i P2m, we consider the round when po plays
P2m The games in this round can be easily seen by an appropriate number of rotations in

(1)—(3). Respectively, we obtain

PO P2m + \ PI
P2m P2m—l P2m-2

Pm — 1

Pm

PO

«2m-/ + l

a2m —J+2

a2m-j

and

PO b2m-j+2
b2m-] + \ b2m-j

«2//1 P2m + l a i

Ü2m-2j-\-2 @2m—2]-\-{ a2m—2j

b2m P2m + \ b\
b2m-2j+2 b2m-2j + \ ^2m-2j

*m—j
%m—j +1

um—j

bm-j+l

(4)

(5)

(6)

where (4) is based on (1), (5) is based on (2), and (6) is based on (3). The games determined

by (4)—(6) are the same. Therefore, we obtain that a2m-2j+\ f>2m-2j + i P2m-\ - In
other words, p2m-\ appears in the same location in (5) and (6), and therefore, appears
in the same location in (2) and (3). Now we consider the round that po plays p2m-\- If
we make an appropriate number of rotations in (4)-(6) and apply the same argument as

above, we obtain that p2m-2 appears in the same location in (2) and (3). Keep doing this

repeatedly, and we get that a, b, for all 1 < / < 2m.

Lemma 3 shows that if there is a circular permutation which corresponds to a setting of
the round-robin algorithm that generates the same set of schedules as in (1), then up to

reversion this circular permutation is uniquely determined by the location of the column

V P2m
its corresponding setting of the round-robin algorithm for the round that po

plays P2///+1 - However, not every location of the column " in i
V P2m

its corresponding

setting of the round-robin algorithm for the round that po plays P2m+i will give the same

set of schedules. We have the following example for in 4 indicating that if we shift
the second column to the fourth column, these settings do not generate the same set of
schedules.

Example 2. Let

M P0

V P9

PO PI P2 P3 P4

P9 PS PI PO P5
^ and N ^ Po Xl X2 Pi x4

P9 *8 A'7 pij X5

Then there does not exist x\, X2, *4, +5, xj, xg such that M N. Suppose there are

xl, X2, X4, X5,xj, x% such that M — N.
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Consider the round that po plays p$. Based on M, we get the games

(7)
P0 P9 P1 P2 P3

PS Pi P6 P5 P4

Based on N, we have the games

po x~i X8 P9 xi
PK x5 X4 PI X2

(8)

Obviously, from (7) we know that po plays p$ and pg plays pq. From (8) we know that po
plays p% and pi plays pg. By Lemma 2, we know that M ^ N.

It would be interesting to ask what circular permutations will generate the same set of
schedules. The next lemma provides a necessary and sufficient condition for circular
permutations that lead to the same set of schedules.

Lemma 4. Let M be

and N be

PO Pi ••• Pm \
\ P2m 1 P2m • • Pin+i /

Po «1 a,„ \
\ a2m + i a2m r'm + 1

(9)

(10)

with ajm+l P2m+1 and ak pi for a fixed k e {1,2,...,»/}. Then M — N if and
only if gcd(2m + 1, k) 1 and a\p] p, for i (1,2,..., 2m + 1}, where [x] denotes
the unique integer in {1,2,..., 2m + 1} congruent to x modulo 2m + 1 and gcd(ki, kq)

represents the greatest common divisor of natural numbers k\ and kq.

Proof. First let us prove that if M N, then «[,£] p,.

By an appropriate number of rotations, (9) and (10) equivalently become

/ PO P2 P3 Pm + l

\ Pi P2m + l P2m Pm+2

and

(11)

/ Po ak+i 02*-1 02* U2K+1 am+k \
\ ak(— pi) ak—i ai p2m+\ 02m • J

respectively. The games determined by (11) and (12) for the round that po plays pi are
the same. Therefore, we obtain that a[2k\ 02* P2- Now let q, — /zp+i] in (11) and

b, «[*+;] in (12) for / 1,2,..., 2m + 1. Then (11) and (12) become

PO qi q,n \ (13)
\ tf2m + \(— Pi) C}2m ••• ^f/n + 1 /

PO bi bm \
\ b2m + l(- P1) t>2m ••• bm +1 J

and

with bk - a2k — P2—qi-
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Now we consider the round that po plays pi. Using (13) and (14) and applying the same

argument as the one we use to obtain ci[2k] Q2k — P2, we know that Z>2d which
implies that cqn] pi. Similarly, by relabeling the teams and using the same argument,
we can prove that am] p, for / 4, 5,..., 2m + 1.

Next we prove that if M N, then gcd(2m + 1, k) 1. We prove it by contradiction.
Suppose that gcd(2m + 1, k) — I > 1. Then 2"'/+l + 1 is an integer in {2,..., 2m + 1) and

[(2m+i + [k] because (2m+i + ^ * A

x (2m + i). Therefore, pi a[k]

a^2m+i } j),.j p(2m+l+iy which is impossible due to the fact that 2,"+1 +1/1. Hence,

gcd(2m + 1, k) — 1.

On the other hand, if gcd(2m + 1, k) 1 and a\,,q p/ for /' e {1,2,..., 2m + 1), then

[ik] / [jk] for i / j and i, j e (1,2,..., 2m + 1}. Therefore, {a, : i 1,2,..., 2m +
1} : / 1, 2,..., 2m + 1}. This shows that for each «/, i e {1, 2,..., 2m + 1},

there is a j e {1, 2,..., 2m + 1) such that a, a\jk] — pt. We now prove that M
N. Consider the round that po plays p2m+\- Let (a,u, a2m+i-iH) be any pair representing
a column in (10) with /o e {1, 2,..., 2m + 1). We need to show that (alf), a2m+i-iu)
is also a pair representing a column in (9). For «/„, there is an /• e {1,2,..., 2m + 1}

such that ah) — a[rk\ pr For ci2m+i-i0, there is an s e {1,2,..., 2m + 1) such that

fl2m+t-i(i ß[s/t] Ts- Hence, /o [rk] and 2m + 1 — i'o [sk], which give that
rk — /o and sk — (2m + 1 — io) are multiples of 2m + 1. Therefore, (r + s)k is a multiple
of 2m + 1. Since gcd(2m + 1, k) 1, r, s e (1,2,..., 2m + 1} and r / s, we obtain
that /- + 2m + 1, which implies that (pr, /rs) ((a,0, a2,„+i_/0)) is a pair representing
a column in (9). Because ;'o e {1, 2,..., 2m + 1} is arbitrarily chosen, we know that M
and N lead to the same set of games for the round po plays P2m+\- We now consider the

round that /jq plays pi. Using (13) and (14) and applying the same argument, we obtain
that each game determined by a pair (b,0, f>2m+i-i0) in (14) for /o e [1,2,... ,2m + 1}

is also a game determined by a pair in (13) Since (13) is the same as (9) and (14) is the

same as (10), we obtain that M and N lead to the same set of games for the round po plays

pi. Similarly, we can prove that M and N lead to the same set of games for the rounds that

po plays p2, po plays pi,..., and po plays p2,„. Hence, M N.

Let us look back at Examples 1 and 2. In Example 1, m — 3 and k 2, so gcd(2m +
1 ,k) 1. By Lemma 4, we know that there is a different setting of the round-robin
algorithm leading to the same set of schedules (with pi being in the first row and the third
column). In Example 2, we know m 4 and k 3, therefore, gcd(2m + 1 ,k) 3,

which implies that no such setting of the round-robin algorithm leading to the same set of
schedules exists by Lemma 4.

Now we are ready to give the first result regarding the number of schedules. We use 4>(2m +
1) to denote the Euler totient, which is the number of positive integers less than or equal
to 2m + I that are relatively prime to 2m + 1.

Theorem 1. Suppose there are 2m +2 teams, namely po, pi,..., P2m+t• Let n(m) denote

the number of different schedules with po being fixed using the round-robin algorithm.
Then

(2m)\(2m + 1)!

«2» +
'
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Proof. There are 2m +2 teams, and hence there are 2m +1 rounds. If we have a tournament
schedule, we may reorder the rounds, so we can obtain different schedules In other words,
a given tournament schedule determines a set of (2m + l)1 different schedules.

Since po is hxed, a circular permutation of pi, P2,..., pim+\ corresponds to a set of
tournament schedules. There are (2m)\ different circular permutations. By Lemma 1. we know
that if we reverse the order of a circular permutation, we will obtain the same set of tournament

schedules by using the round-robin algorithm. If a circular permutation is given, for
example, a circular permutation corresponds to (1), then a different circular permutation
which generates the same set of tournament schedules as (1) is determined by the position

of the column I Pl by Lemma 3. By Lemma 4, for each k e (1,2,...,«/} that is
\ P2m

relatively prime to 2m + 1, there is a circular permutation which generates the same set of
tournament schedules. There are <f>(2m + l)/2 numbers in {1, 2,..., m} that are relatively
prime to 2m + 1. Combining all these results, we obtain that the number of tournament
schedules is equal to ^

Next, we try to answer the question: Is it possible to get the same set of tournament schedules

using a different fixed team by the round-robin algorithm7 We find that this is only
possible foi the case that there are 4 teams or 6 teams Actually, by a straightforward
computation, we can see that

p° P] ^ p* Pl ^ and P{) Pl P2\ P2 Pl \
V /A P2 V PO P2 V p* P4 /'I V /><> Pi PJ>

Therefore, the numbers of schedules generated by the round-robin algorithm for four and

six teams are obtained by Theorem 1, that is, six schedules for four teams and 720 schedules

for six teams.

If there are more than six teams, then we have the following theorem.

Theorem 2. Let po, p\,. pim+\ represent 2m + 2 teams. If we use the round-robm

algorithm to generate tournament schedules with different fixed teams, for example, po
and p2m+\. dien the resulting schedules are different for m > 3.

Proof. We assume that the tournament schedules are generated by

m Pl Pm (15)
\ P2m+1 P2m Pm + l

Suppose to the contrary that the schedules can be generated by the round-robin algorithm
using a different fixed team We may assume that the schedules are generated by

P2m+\ *1 pi |
PO *2m P2/H-I+1

YS Y,„ \
*2m-2 Lh+I /

with 1 < i < m being a fixed index and v;, 1 < j < 2m, j ^ 2, and j ^ 2m — 1, to be

determined.
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Consider the round when po plays p2m~,+\. Using (15) we obtain

P0 P2m-i+2 /'2m-i+3
P2m-; + l P2m-i P2m-i-\

P2m P2m + l Pi
P2m—2i+2 P2m-2i + l P2m-2i

Pm—t

Pm-i+1
(17)

We should point out that when m — i 0, (17) should be understood as

P0 Pm+2 Pm+3

Pm + l Pm Pm — 1

P2m P2m + \

P2 PI

Using (16), we have

/'2m+ 1 PO X i

X2m P2m—i+\ -12m—2

Pi XT,

X2m—3 X2m—4

Xm — 1

•I'm
(18)

Comparing (17) with (18), we obtain that X2m — P2m-2i+u which in view of (15) and (16)
further implies that x\ p2i- Now we will try to find X2m-2 ar|d a'2m-3- It depends on
where p, and p2, are located in (17). We consider the following cases, which list all the

possible locations of p, and p2, in (17).

Case 1: / < m — i and 2/ < m — i. In this case, we obtain that xjm-2 P2m-4i+\
and X2m—3 /'2m-3i + i by comparing (17) and (18). Consider the round that po plays

P2m-3i+i- Since 2m — 3i + 1 > /« + 1 due to the assumption that 2/ < m — /', p2m-3i+i
is in the second row of (15). By the round-robin algorithm and using (15), we obtain that

PO P2m-3t+2

P2m-3i + \ P2m-3i

P2m /'2m+ 1 /'I
P2m—bi+2 P2m-6i + l /'2m—6;

Pm—31

/'m-3i + l

Using (18), we have

/'2m+1

/'2m—i + l

P2m-2i + \

P2m—4/ + 1

PO

/'2m-3/ + i

P2,

' 2m —4

Pi
X2m—5

Xm— 2

Xm —I

(19)

(20)

Because the games determined by (19) and (20) are the same, we know that p2m-i+i
/'2m—6/-H, which implies that 2m — 6/ + 1 2m — i + 1. It is impossible.

Case 2: i < m — i and 2/ > m — i + 1, that is, < i < In this case, we know

Pi is in the first row and pn is in the second row of (17) and 2i < 2m — 2i. By the same

argument as in Case 1, we obtain that X2m-2 P2m-4i+\ and X2m-3 /'2m-3/+i- Since
2m — 3/ + 1 < m due to the assumption that 2i > m —i + l, p2m-3i + \ is in the first row
of (15). Consider the round that po plays P2m-3i+\ Using (15), we obtain

Po

P2m-3/ + 1

P2m-3i+2
P2m-3i

P4m—6i +1

/'I
/'4m-6i+2
/'2m+ 1

/'4m—6;+3

P2m

/'3m—3( + l

/'3m—3/+2
(21)

Using (18), we obtain (20). Comparing (20) with (21), we have p4m-(,t+2 Pim-i+u
which shows that Am — 6i + 2 2m — i + 1. So 2m + 1 5i. Therefore, X2m-2

/?2m—4/+i /'m which is impossible due to (16) unless m — 2.
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Case 3: m — i + 1 < i < 2m — 2i. In this case, we also have 2m — 2i +1 < 2/ < 2m — i +1.
It shows that p, and pi, are in different portions of the second row separated by p2m-2,
in (17). We obtain that x2m-2 P4m-4,+2 and x2m-3 P2m-3,+\ by comparing (17)
and (18). Consider the round that po plays p2m-3i+\ - From 2m — 2i + 1 < 2i, we know
2m — 3/ + 1 5 i < m. Now using (15) we obtain (21). Using (18), we have

p2m + \ P2m—2f + l P0 P2i Pi • Xm — 2

P2m—i-\-l p4m-4i-\-l P2m—3i + \. 4 X2m—5 • • • Xm — 1

(22)

Comparing (21) with (22), we obtain that p2m-,+i p4,„_6,+2, which implies 2m +
1 5i. If m > 3, then x2m-2 P4m-4i+2 P6,, which in view of (15) implies that

JC3 /?2m-6;+i- Using the fact that 2m + l — 5/, we get a negative index —i, which is

impossible.

Case 4: 2m — 2i + l<i< 2m — i + 1 and 2m —21 + 1 < 2i < 2m — i + 1. In this case,

we obtain that 2m+l < i < 2m+l. So we have 2m + 1 3i, plugging this into (16) and

noting that xi p2t, we know p2m-,+i p2, — xi, which is impossible.

Case 5: 2m — 2i + 1 < i < 2m — ; + 1 and 2m — i + 2 <2i < 2m + 1. We, therefore,
have ^3^ < i < m + \. We now have x2m_2 P4m-4,+2 and x2m-3 P4m-3,+2 by
comparing (17) and (18). Consider the round when po plays p4m_3,+2. Using (15) and in
view of the fact that Am — 3i + 2 > m + 1 (due to the assumption i < m), we have

po P4m—3i+3 • P2m P2m4-V P1 • P3m—3i + l
P4m-3i-\-2 P4tn—3i4~l P6m—6i+4 P6m—6/+3 P6m—6i-\-2 • • • P3m—3i4~2

Using (18), we obtain

/^m+l P2m—2iJti PO P2i Pi • • • Xm—2

P2m-i-\-\ P4m—4i+2 P4m-3i-\-2 x2m—4 X2m—5 • • • Xm — \

(23)

(24)

Comparing (23) with (24), we have p2m-<+i P6m-6i+3, which implies 5/ Am + 2. If
m > 3, then x2m-2 P4m-4i+2 p,, which is impossible since p, appears twice in (16).

Since Cases 1-5 include all the possibilities of the locations of p, and p2, in (17), we,
therefore, complete the proof of the theorem.

Using Theorem 2, we have the following result.

Theorem 3. Suppose there are 2m + 2 (m >3) teams, po, pi,..., P2m+\- Let T(m)
denote the number of tournament schedules using the round-robin algorithm. Then

(2m+2)(2my.(2m + iy.
cp(2m + 1)

Proof. For m > 3, by Theorem 2, we know for different fixed teams, we obtain different
sets of tournament schedules. There are a total of 2wj + 2 teams. Therefore, T(m) —

(2m + 2)n(m), which by Theorem 1 indicates that the equality is true.
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5 Does the round-robin algorithm generate all the schedules?

For six teams, both approaches using chromatic polynomials and Theorem 1 give 720
different schedules. Therefore, in this case the round-robin algorithm generates all schedules.

For two teams or four teams, we can verify in a straightforward manner that all schedules

are generated by the round-robin algorithm. Is the statement still true if there are more
than six teams? The answer is no. In fact, two, four, and six are the only numbers with the

property that all schedules of the tournament are generated by the round-robin algorithm.
We have the following examples for more than six teams. We first consider the case that
there are an even number of games in each round. In other words, there are 4p teams in
the tournament with p > 2.

Example 3. Suppose there are 4p teams in the tournament, which gives an even number

of games in each round of the tournament. We divide them into two groups called

Group A and Group B. In each group there are 2p teams. We use ao,a\,, «2/7-1 and

bo,b\,..., Z?2/j-i to denote the teams in Group A and Group B, respectively. Now we
construct a schedule that will be proved not to be generated by the round-robin algorithm.
We use

«o «J

«2/7—1 «2/7—2

dp—I
Cln

bo

b2p-\
b\

b2p—
p~
bn

(25)

to denote 2p— 1 rounds of games concatenated by the games generated by the round-robin
algorithm individually in Group A and Group B. In other words, these 2p — 1 rounds of

games are as follows:

«0 « i

«2/7—1 «2/7-2
lp-\ bo b 1

b2p-\ b2p-2
bp-1

bp

«0 «2/7-1

«2/7-2 «2/7-3

ap-2
dp—1

bo

b2p-2
b2p-\
b2p-3

do Cl2

«1 ci2P-\
Up

ap+1

bo

b\
b2

b2p-l
Up

bp+1

We use

«0

b2p—\

a i

b2p-2
dp—i bo

«2/7-1

b{

d2p-2
(26)

to denote p rounds of games concatenated by the games obtained by fixing «o, «i,
ap-1, bo, bi,..., bp-1, and rotating the sequences bjp-i, b2P-2, bp and d2P-\, fl2/)-2,

dp simultaneously. These p rounds of games are

do

b2P-\
a i

b2p-2
dp-l

bn

bo

«2/7-1

b i

«2/7-2

3/7-1
«,7
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fl() a i
1*2 p—2 1*2 p—3

ap-1 bo b\

b2p-\ «2/)-2 A2p-3 «2/7—1

ao a 1

bp b2p—\

a p—\ bo b i

bp+1 dp «2/7—1 dp+i

With this notation,

fl() — 1 CI p dp-\-{ Cl2p—\

bo bi bp-\ J bp bp+i b2p— i
(27)

represents the other p rounds of games. Now, if we put the rounds in (25)—(27) together,
we get 4/7 — 1 rounds of games, which give us a schedule of the tournament with 4p teams.
We should also point out that for each round in (25) teams in Group A only play teams in

Group A and teams in Group B only play teams in Group B, and for each round in (26)
and (27) teams in Group A only play teams in Group B and teams in Group B only play
teams in Group A. Now we prove that the round-robin algorithm does not generate this
schedule.

Suppose to the contrary that the round-robin algorithm generates this schedule. Without
loss of generality, we may assume that a, is the fixed team in the setting of the round-robin
algorithm. In the circular permutation which corresponds to the setting of the round-robin
algorithm, if at least two consecutive teams are from group A, for example, a} and ak, then
the round when a, plays a}, which is a round in (25), can be written as follows:

Because teams in Group A only play teams in Group A in all rounds in (25), we should
know that x\ should be a team in Group A. By rotating the sequence cij, cik,x4/;_3,..., xi
clockwise one position, we have a round with a game that a, plays x\. Since x\ is in Group
A, we know that this round is in (25). However, in all rounds in (25), teams in Group A

play teams in Group A, we obtain that x2 and X3 are in Group A, too. In a similar way, we
obtain that all x,, 1 < i £4/7 — 3 are in Group A. Of course, this is impossible because no
teams in Group B are presented in the setting of the round-robin algorithm. Therefore, we
cannot have two consecutive teams from Group A in a setting of the round-robin algorithm
in order to generate a schedule determined by (25)-(27).

Now, suppose there is a setting of the round-robin algorithm that generates a schedule

determined by (25)-(27). Then in the circular permutation corresponding to the setting of
the round-robin algorithm, teams in Group A should be separated by teams in Group B. In

other words, no two consecutive teams are from Group A. Since a, is fixed, we only have

2/7—1 teams in Group A and 2/7 teams in Group B in the circular permutation. Therefore,
there exists one and only one subsequence with two consecutive teams from Group B,
namely b3, 6/. We now consider a round that is as follows:

(if (lk X4p—3 %2p

Clj X1 X2 X2/7-l

a,

z

bj bk

x y
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In this round, bj plays x and bj plays y. Since no two consecutive teams are from Group A
and bj, b; is the only subsequence with two consecutive teams from Group B, we obtain
that one of x and y is in Group A and the other one is in Group B. Therefore, either the

game that b, plays x or the game that bj plays y is a game between two teams in Group
B and the other game is one between a team in Group A and a team in Group B. This is

impossible because for each round in (25) teams in Group A only play teams in Group A
and teams in Group B only play teams in Group B, and for each round in (26) and (27)
teams in Group A only play teams in Group B and teams in Group B only play teams in

Group A. Therefore, the round-robin algorithm does not generate the schedule which is

put together by (25)—(27).

Example 4. Suppose there are an odd number of games in each round of the tournament.
We may assume that there are 4p — 2 teams with p > 3. As in the previous example,
we divide these Ap — 2 teams into two groups still called Group A and Group B. In each

group, there are now 2p — 1 teams. We use ai, a2,. (ijp-\ to represent teams in Group
A and b\, bj, bjp-1 to represent teams in Group B. In order to use the round-robin
algorithm within each group, we add a dummy team for each group. We add ao to Group
A and bo to Group B. Now we construct a schedule that will be proved not to be generated
by the round-robin algorithm. We use

to denote 2p — 1 rounds of games concatenated by the games generated by the round-robin
algorithm individually in Group A and Group B. We note that if ao plays a/ and bo plays

bj, because ao and bo are dummy teams, we should understand this is equivalent to the

game that a, plays br With this in mind, the set of rounds in (28) consists of the following
rounds

a l

aip-2
bo b i bp-\

bjp—i bjp—2 • • • bp
(28)

aip-\ a i

bjp-l ('2p-2
ttp— 1 b\

b2p-2

«2/J-2 aiP-\ ap-2 bjp-\ bp-2
bjp—2 «2/1-3 • • ap-1 bjp—2, bp-1

a\ a 2 ••• cip bj bp
b\ cijp-\ ap+1 b2p-i bp+1

We use

(29)

to denote p rounds of games concatenated by the games obtained by fixing ao, a\,
ar-1, bo, b\,..., bp-1, and rotating the sequences £>2/j-i bjp-2,..., bp and ajp-j, cijp-j,
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..ap, ci2P-i simultaneously. In other words, the set of the rounds in (29) consists of the

following rounds

«2/7-2 «1

t>2p-l t>2p-2
üp— \

bn
b\

«2/7—3

up-1
«2p-l

d2p-3 « i

blp-2 b2p-3
dp-1 bi
b2p—l a2p—4

bp—I

d2p-2

d2p-\
bn

a i

b2p-\
dp-1
bP+1

b\

d2p-2

bp—i

We note that for each round in (28), there is only one game between a team in Group A
and a team in Group B which can be described as a, plays b,. All other games are played
within their groups. We also find that for each round in (29), there is no game between a

team in {«i, «2, • «/7-il and a team in {by,b2,..., bp-1), and there is only one game
between a team in {ap, ap+\,..., d2P-\) and a team in [bp, bp+1,..., b2P-i} which is

either a game that a, plays b,+y for p < / 5 2p — 2 or a game that d2P-i plays bp.
Therefore, the following p — 2 rounds of games

ai dp—2 dp—i
b2 bp-1 by

dp ap+i
bp+2 bp+3

02/7-3
b2P-y

d2p-2
bn

«2/7-1
bp+1

(30)

obtained by fixing ay,d2,..., dp-\ and dp, dp+y,..., «2/7-1, and rotating the sequences
b2, b-i, bp—i, by and bp+2, bp+3,..., bp+y simultaneously p — 3 times, can be added

to (28) and (29) to form a schedule of the tournament.

We should point out that only rounds in (28) have games between teams within Group A

or Group B and if a game that «, plays dj in a round in (28), then there is also a game
between b, and bj for that round. Now we prove that the round-robin algorithm does not

generate this schedule formulated above.

Suppose to the contrary that the round-robin algorithm generates this schedule. Without
loss of generality, we may assume that a, is the fixed team in the setting of the round-robin

algorithm. In the circular permutation which corresponds to the setting of the round-robin
algorithm, if at least two consecutive teams are from Group A, for example, dj and dk,
then we may assume a subsequence d},dk, by in the circular permutation. We consider the

round when «, plays «£, which is a round in (28) and can be written as follows:

a,

dk

by

a,
*4/7—6

Xy

*2/7-

*2/7-
(31)

Because «; and by are in Group A and Group B, respectively, due to a property of the

rounds in (28), we obtain that / j. Now we rotate the sequence «7, dk, by, *4/7-6,..., *1
clockwise one position and consider the round thata, plays d} that is also a round in (28),
we have the following games

di dk by X4p—(y *2/7—2

aj Xy X2 *3 *2/7-3
(32)
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Now if xi is in Group B, then xi bi by (32), which by (31) further implies that

X4p-fi b,, which by (32) again implies that xj — bj, which is a contradiction since

bi bj already appeared in the setting. If x\ is in Group A, by (31) we know that X4P-r,
is also in Group A. Now rotating the sequence x\, X2, X4P-6, b/,aj, üj in (31)
counterclockwise one position, we have

Since X4P-6 is in Group A, a game between teams in Group A in the round (33), that is the

game that Jt4p_6 plays ai, shows that the round (33) must be in (28). Therefore, bj bt,
which shows that I — i. However, we already know that I j. We have a contradiction.

Now, suppose there is a setting of the round-robin algorithm that generates a schedule
determined by (28)-(30). Then in the circular permutation corresponding to the setting of
the round-robin algorithm, teams in Group A should be separated by teams in Group B.
Therefore, there exists one and only one subsequence with two consecutive teams from
Group B, namely bJ], bj2. We now consider a round that is as follows:

In this round, bJI plays bjA. Since only the rounds in (28) have games between teams in

Group B, we know that the round (34) must be in (28). However, for all rounds in (28),
there is only one game between a team in Group A and a team in Group B and there are

two such games in the round (34). We, therefore, get a contradiction.

Therefore, there does not exist a setting of the round-robin algorithm which generates a

schedule put together by (28)-(30).

6 Conclusion

We have proved an equality for the number of schedules generated by the round-robin
algorithm. As Examples 3 and 4 show, some tournament schedules may not be generated
by the round-robin algorithm. It might be interesting to develop a practical approach to
find the number of all tournament schedules for n teams. Though chromatic polynomials
can be used to describe the total number of schedules for n teams, it is not easy to compute
chromatic polynomials even for a small number of teams, for example eight teams. So we
further ask if an equality or an inequality exists for the number of all tournament schedules

for n teams. It seems to us that this is not an easy problem. Our future work will try to

answer this question.
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X4p—6 %4p—5 • • • %2p—3

bj Qj X2p—4
(33)

a,

z
ah bj, bj2 a,2

aJS bj4 a,A bj,
(34)
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