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1 Introduction

If you are an organizer of a local softball tournament this summer, you probably need to
set up a schedule. Suppose there are n teams, each team plays every other team just once,
and we don’t consider whether the games are at home or away. Then if n is even, we have
a total of n — 1 rounds with 5 games for each round. If n is odd, we use a dummy team
whose opponent does not play and is given a bye that round. So for the case that » is odd,
we have a total of n rounds with ”51 games for each round. In the related literature, such
type of tournament is called a round-robin tournament. In this paper, we just simply call it

a tournament.

Im Englischen ist “round-robin tournament” die Bezeichnung fiir einen Wettkampf,
bei dem jedes Team genau einmal gegen jedes andere antritt. Ist die Anzahl der Teams
gerade, finden in jeder von n — 1 Runden 5 Spiele statt. Der “round robin” Algorith-
mus ist eine effiziente Methode, um einen entsprechenden Spielplan zu erstellen. Aber
wieviele Spielpline sind iiberhaupt moglich? Die Autoren der vorliegenden Arbeit zei-
gen, wie dieser Frage mit Hilfe chromatischer Polynome nachgegangen werden kann.
Beschriinkt man sich auf die Anzahl der Spielpline, die der “round robin” Algorithmus
liefert, so gibt eine elegante Formel die Antwort.
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Of course, there are different ways to set up a tournament schedule. A widely used method
to generate a tournament schedule, which is called the round-robin tournament scheduling
algorithm or simply the round-robin algorithm in this paper, will be reviewed in Section
3 and is described in [3] using modular arithmetic. In real-world problems, often optimal
schedules based on some criteria are requested, for example, schedules having a minimum
number of breaks [2], schedules in the presence of strength group requirements [1]. In
this paper, we do not study specific scheduling strategies, instead we are interested in
finding how many different schedules one can set up. We will describe a process to find
the number of all tournament schedules using chromatic polynomials in Graph Theory.
Since computing chromatic polynomials in general can be hard, to find the number of all
tournament schedules could be very challenging. Finding a formula to compute the number
of all tournament schedules is even more challenging. However, if we consider a subset of
all tournament schedules that are generated by the round-robin algorithm, such a formula
exists. We will provide a formula to find the number of schedules that are set up by the
round-robin algorithm in this paper.

2 The number of tournament schedules

If there is an odd number of teams, then a dummy team can be added. Therefore, in this
paper we assume we have an even number of teams. Suppose there are n teams. A sched-
ule, therefore, consists of n — 1 rounds of games with % games for each round such that
each team plays every other team just once. Mathematically, a schedule is a permutation
of n — 1 sets. Each set consists of 5 games. Therefore, two schedules are equal if and only
if the set of games in each round are the same, that is, the set of games in round one are
the same, the set of games in round two are the same, etc.

In this section, we describe a process to find the number of all schedules using chromatic
polynomials in Graph Theory. The process is described using Maple language as follows:

G := CompleteGraph(n);
H := LineGraph(G);
P := ChromaticPolynomial(H, ‘x’);
Pn—1).
Of course, we need to know some basic concepts in Graph Theory in order to understand

these commands in Maple. We also need to verify that these commands return the number
of all tournament schedules. Now we give some basic concepts in Graph Theory, [4].

Definition 1. A graph consists of two finite sets, V and E. Each element in V is called a
vertex. The elements of E, called edges, are unordered pairs of vertices. A complete graph
is a graph such that for any two vertices u and v, there is an edge connecting them, in
other words, uv € E. The line graph L(G) of a graph G is defined in the way: the vertices
of L(G) are the edges of G, and two vertices in L(G) are adjacent (there exists an edge
connecting them) if and only if the corresponding edges in G share a vertex.

Definition 2. An edge coloring of a graph is an assignment of colors to the edges of the
graph so that no two adjacent edges have the same color. A vertex coloring is a way of
coloring the vertices of a graph such that no two adjacent vertices share the same color.
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For a given graph G, the number of ways of coloring the vertices with x or fewer colors is
denoted by P(G, x) and is called the chromatic polynomial of G in terms of x.

We use K, to denote the complete graph with n vertices. If we do an edge coloring of
K, , then we need at least n — 1 colors. This is because for each vertex v in K,,, there are
n — 1 edges which have v as one of their end vertices. If we color the edges of K, with
exactly n — 1 colors, namely, ¢y, ¢2, ..., c,—1, then for each color ¢; and each vertex v,
there is one and only one edge with color ¢; and with v as an end vertex. Since for each
edge there are two end vertices, we therefore obtain that there are 5 edges for each color.
Now if we view the n vertices of K, as the n teams in a tournament and each edge v;v; as
a game between team v; and v, then an edge coloring of K, corresponds to a tournament
schedule. This can be done by corresponding ¢; with the ith round of the tournament, and
by viewing 5 edges with color ¢; as the 5 games in the i th round. With this in mind, to find
the number of all tournament schedules with n# teams, we only need to find the number of
edge colorings of K,,. Since each edge coloring corresponds to a vertex coloring of its line
graph L(K,) and each vertex coloring of L(K,) corresponds to an edge coloring of K,,,
to find the number of edge colorings of K, using n — 1 colors is the same as finding the
number of vertex colorings of L(K,) using n — 1 colors, which can be obtained by first
finding the chromatic polynomial P(L(K), x) of L(K,), and then plugginginx =n — 1
in P(L(K,), x).

Now let us go back to the Maple commands and explain their meanings:

CompleteGraph(n) returns a complete graph with n vertices; LineGraph(G) returns
the line graph of G; ChromaticPolynomial (H, ‘x’) returns the number of its vertex
colorings using no more than x colors; and P(n — 1) returns the number of its proper
vertex colorings using no more than n — 1 colors.

As an example of this process, we compute the number of schedules for six teams. Using
Maple, we have the chromatic polynomial as follows:
P(x) = x(x — D)(x — 2)(x — 3)(x — 4)(x'? — 50x° + 1155x®
—16245x" + 154083x° — 1029213x> + 4896820x*
— 16356845x° + 36630736x2 — 49547792x + 30666816).

Set x = 5, we have P(5) = 720. In other words, for six teams there are 720 different
tournament schedules.

Remark 1. Maple takes a lot of time to find the chromatic polynomial for six teams
(close to an hour). For eight teams, Maple returns an error message “Error, (in Matrix)
object too large”. Computationally, finding the number of tournament schedules could be
very challenging.
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3 The round-robin algorithm

The round-robin algorithm is to pair the teams off in the first round. For example, if there
are eight teams named pg, pi, ..., p7, we may initiate the first round of games as follows:

Po P1 P2 p3 ]
p1T P6 P5 P4 |

Now, we fix team pq and rotate the others clockwise one position. We obtain the games
for the second round.

Round 1. (pg plays p7, p1 plays ps, ... ) S| = [

po P17 PP ]
pe ps ps P3|
We rotate the teams py, p2, ..., p7 clockwise one more position. We obtain the games for
the third round.

Round 2. (po plays pe, p7 plays ps, ... ) $2 = [

Po Pe D7 m}

Round 3. (po plays ps, lays p4, ... ) S3 =
(po plays ps, pe plays ps ) S3 [Ps pe Py o

Po P2 pP3 P4
Pt P71 P6 ps |

In the above tournament schedule, the games in each round (Round 2 to Round 7) are deter-
mined by the round-robin algorithm based on the games for the previous round. Of course,
we do not have to follow this order. Actually, any permutation of Sy, 82, ..., 57 will give
a specific tournament schedule. For example, S, 855751535654 indicates that the games in
Round | are determined by S>, the games in Round 2 are determined by S5, etc. Therefore,
we have a total of 7! different tournament schedules if one tournament schedule is given.
Po P1 <o+ Pm

P2m+1 P2m  ---  Pm+l
round-robin algorithm in this paper, to represent the set of all tournament schedules gener-

ated by the round-robin algorithm (py is fixed and p;, p2,..., p2m+1 are rotated clock-
wise or equivalently counterclockwise) for 2m + 2 teams, po, pi,..., pam+1. Using this
po p1 p2 p3 po p1 p1p2 )

P71 Pe P5 P4 Pe D5 pa PpP3
which represents the set of all permutations of Sy, S2, ..., S7 and each permutation repre-
sents a schedule of a tournament.

Round 7. (po plays pi, p2 plays p7,... ) $7 = l:

We use the notation ( ) which is also called a setting of the

notation, we can see that ( ) 1s the same as

In this study, since we do not consider home or away games, the games determined by
[ p1 P2 po P

Po P17 P3 Ps
the difference between the notation

] are the same as the ones determined by §7. We should point out

Po Pl v« Pm anid Po Pl ceo Pm
P2m+1  P2m ---  Pm+l P2m+1 P2m -+ Pm+l ’

While ( 7° pL— ... Pm represents the set of all tournament schedules
P2m+1 P2m -+ Pm+1

o s : Po P1 s Pm

generated by the round-robin algorithm, represents the

P2m+1 P2m -+ Pm+l
games, po plays pam+1, P1 plays pam, ..., Pm plays pm+1,in around of a tournament.

The round-robin algorithm can also be represented by a graph, see Figure 1 for eight teams.
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Rotate 7 times

P2

Figure 1 Round robin algorithm diagram

4 The number of tournament schedules by the round-robin algorithm

In this section, we first give several results stated as lemmas. Then we obtain an equality
regarding the number of schedules using the round-robin algorithm when a specific team
is fixed. Finally, we prove an equality regarding the number of schedules using the round-
robin algorithm when the fixed team is arbitrarily selected.

For a setting of the round-robin algorithm, a team is fixed and the others are rotated clock-
wise or equivalently counterclockwise based on an initial assignment of games. Therefore,
the following result is valid due to the fact that one clockwise rotation of M is the same as
one counterclockwise rotation of N, where M and N are the ones appearing in Lemma 1.

Lemma 1. Let
M = Po Pl N 2] ) and N = Po P2m - Pm+l .
P2m+1 P2m -+  Pm+l P2m+1 Pl oo Pm
Then M = N.

We point out that in the next lemma the notation {py, p;} represents a set of two elements
po and py and {{po, p2m+1}, {P1s P2m}s - ... {Pm, Pm—1}} represents a set with elements
{pos p2m+11:{p1s Pam)s -« s {Pm> Pm—1}. Actually, the proof of the next lemma becomes
obvious if we view {po, p1} as the game that p plays p;.

Lemma 2. Let
M = Po Pl e Pm and N = qo q1 e (dm .
P2m+1  P2m ---  Pm+l 92m+1 92m -+ qm+1
If M = N and {p;, pom—i+1} = {4, Qam—j+1} for some 0 < i, j < m, then

{{1)()1 P2m+1 ) {Pl, P2m}a ceey {Pm, ])m-H}} = {{‘]()z 6]2m+1}, {611 s q2m}s ceey {(]m, q:;r+l}}-
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Proof. 1t is easy to see that p; and pj,,—i+1 are in the same column in M and ¢; and
q2m—i+1 are in the same column in N. Consider the round that p; plays p2,—i+1. Since
M = N and {p;, pam—i+1} = {qj,q2m—j+1}, we know that the games for this round
generated by M and N are exactly the same. Therefore, the conclusion of the lemma is

true. O
If po is fixed, then a circular permutation of py, p2, ..., p2m+1 corresponds to a setting of
the round-robin algorithm. Though different circular permutations of py, pa, ..., pam+i

correspond to different settings of the round-robin algorithm, these different settings of the
round-robin algorithm may generate the same set of schedules. For example, as Lemma
1 shows, if we reverse the order of the circular permutation, it will generate the same set
of schedules. Even more as the following example shows, two totally different circular
permutations can generate the same set of schedules.

Example 1. Let

M:(po P m p3) and N:(po pa  pi1 ps).
P71 Pe P5 P4 P71 P3 Pe P2

It can be easily seen that M and N correspond to different circular permutations. Let the
first rounds of games based on M and N be the games

M, = po P1 P2 P3 and N = Po ps PL D5 , respectively.
P71 Pe P55 p4 P17 P3 P6 P2

Then the second round of games M>, the third round of games M3, . .., the seventh round
of games M7 based on M can be obtained by rotating p1, p2, p3, p4, ps, pe, p7 in M|
clockwise one position, two positions, ..., seven positions, respectively. Similarly, the
second round of games N>, the third round of games N3, .. ., the seventh round of games
N7 based on N can be obtained by rotating p4, p1, ps, p2, pe, p3, p7 in Nj clockwise one
position, two positions, . .., seven positions.

It is obvious that M)} = Nj. It is also easily seen that My = N3, M3 = N5, My = N7,
Ms = Np, Mg = N4, and M7 = Ng. Because M and N are the sets of all the permutations
of M, M, ..., M7 and Ny, N2, ..., N7, respectively, we obtain M = N.

The next lemma shows that if two different circular permutations generate the same set of
schedules, then they cannot be too different.

Lemma 3. Let M be generated by

( pO pl e pm ) (l)
P2m+1 P2m  -..  Pm+l

If M is also generated by

Po ai S
(2)
P2m+1 A2m  -.. Au4l
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Po b oo by
3
( P2m+1 by ... bm+l ) 3)
withaj = b; = pyand ayy— j+1 = bam—j+1 = pam forafixed 1 < j < m, then a; = b;
Joralll <i <m.

and

Proof. In view of azy— ;41 = bam—jy1 = pom, we consider the round when pg plays
p2m- The games in this round can be easily seen by an appropriate number of rotations in
(1)—(3). Respectively, we obtain

Po P2m+1 Pl -o Pm—1 (4)
P2m P2m-1 P2m-2 .-  Pm ’
Po Am—j+2 ... A2m P2m+1 aj cee Am—j (5)
A2m—j+1  A2m—j s @2m=2j42 @m-2j+1 @2m-2j ... Am—j+1 | ’
and
Po bom —j+2 - bom P2m+1 by . bm—j (6)
b2m—j+l b2m—j s b?_m—2j+2 172m—2j+l b2m—2j s bm—j—i—l J ’

where (4) is based on (1), (5) is based on (2), and (6) is based on (3). The games determined
by (4)—(6) are the same. Therefore, we obtain that a2, —2j 11 = bam—2j+1 = pam—1. In
other words, p2,,—| appears in the same location in (5) and (6), and therefore, appears
in the same location in (2) and (3). Now we consider the round that pg plays pa,—1. If
we make an appropriate number of rotations in (4)—(6) and apply the same argument as
above, we obtain that p,,—2 appears in the same location in (2) and (3). Keep doing this
repeatedly, and we get thata; = b; forall | <i < 2m. O

Lemma 3 shows that if there is a circular permutation which corresponds to a setting of

the round-robin algorithm that generates the same set of schedules as in (1), then up to

reversion this circular permutation is uniquely determined by the location of the column
) B 2 . . : .

( ;}1 ) in its corresponding setting of the round-robin algorithm for the round that pg
2m

P1

P2m
setting of the round-robin algorithm for the round that pg plays p2p,+1 will give the same

set of schedules. We have the following example for m = 4 indicating that if we shift
the second column to the fourth column, these settings do not generate the same set of
schedules.

plays pa2,+1. However, not every location of the column ( ) in its corresponding

Example 2. Let

(P P23 p4) - N:(p“ Xiox2oprox4)
P ps P1 Pe Ps5 pPo Xg X7 pg8 X5

Then there does not exist xy, x2, x4, x5, X7, xg such that M = N. Suppose there are
X1, X2, X4, X5, X7, Xg such that M = N.
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Consider the round that pg plays pg. Based on M, we get the games

[ Po Po PL P2 P3 :} . o
P8 P1 P6 P5 P4
Based on N, we have the games
pPo X7 X8 P9 X (8)
ps X5 x4 p1 x2 |’
Obviously, from (7) we know that pg plays pg and pg plays p7. From (8) we know that pq
plays pg and p; plays pg. By Lemma 2, we know that M # N.

It would be interesting to ask what circular permutations will generate the same set of
schedules. The next lemma provides a necessary and sufficient condition for circular per-
mutations that lead to the same set of schedules.

Lemma 4. Let M be

Po Pl oo Pm 9)
P2m+1 P2m -+ Pm+l

and N be
p() Cl[ e (["1 (10)
Am+1 d2m ... dm41

with aym+1 = pam+1 and ay = py for a fixed k € {1,2,...,m}. Then M = N if and
only if gcd(2m + 1,k) = 1 and ajix) = pi fori € {1,2,...,2m + 1}, where [x] denotes
the unique integer in {1,2,...,2m + 1} congruent to x modulo 2m + 1 and gcd (ky, k2)
represents the greatest common divisor of natural numbers k| and k.

Proof. First let us prove that if M = N, then ajix) = pi.
By an appropriate number of rotations, (9) and (10) equivalently become

Po P2 pP3 <o Pm+l (11)
Pl P2m+1 P2m -+ Pm+2
and
Po ap+1 ... dA2k—1 A2k a1 - Atk (12)
ax(= Pl) dk—1 ... d] P2m+1  a2m e Okl ’

respectively. The games determined by (11) and (12) for the round that pg plays p; are
the same. Therefore, we obtain that ajpx; = a2 = p2. Now let g; = piyq) in (11) and
bi = ap4ipin(12) fori =1,2,...,2m + 1. Then (11) and (12) become

Po qi e Ym (13)
q2m+1 (= P1) Q2m  --- Gmtl B
and
Po by cin  Dm
14
( b2m+l(: [71) b2m ce bm+l ) ( )

with by = ay; = P2 =41.
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Now we consider the round that pg plays p;. Using (13) and (14) and applying the same
argument as the one we use to obtain ajpx) = az; = p2, we know that by = ¢, which
implies that aj3x) = p3. Similarly, by relabeling the teams and using the same argument,
we can prove that apjx) = p; fori =4,5,...,2m + 1.

Next we prove that if M = N, then ged(2m + 1, k) = 1. We prove it by contradiction.
Suppose that gecd(2m +1, k) =1 > 1. Then 2'",—’” + lis anintegerin {2, ...,2m+ 1} and
(2L + 1)k] = [k] because (ZZEL + 1)k — k = & x (2m + 1). Therefore, p; = ap) =

_ . C . 2m+1
Ap(2msl | pyp) = P(2msl gy which is impossible due to the fact that == + 1 # 1. Hence,

ged(2m+ 1,k) = 1.

On the other hand, if gcd(2m + 1, k) = 1 and ajj) = pi fori € {1,2,...,2m + 1}, then
[ik] # [jklfori # jandi, j € {1,2,...,2m + 1}. Therefore, {a; : i =1,2,...,2m+
1}y ={ajx) : i =1,2,...,2m + 1}. This shows that foreach a;, i € {1,2,...,2m 4+ 1},
thereis a j € {1,2,...,2m + 1} such that ¢; = ajx) = p;. We now prove that M =
N. Consider the round that py plays pan+1. Let (aj,, a2m+1-i,) be any pair representing
a column in (10) with iy € {1,2,...,2m + 1}. We need to show that (a;,, azm+1-i,)

is also a pair representing a column in (9). For a;,, there is an r € {1,2,...,2m + 1}
such that a;, = aj4) = pr. For azy41-j,, there is ans € {1,2,...,2m + 1} such that
Qm+1—i, = ask) = ps. Hence, ip = [rk] and 2m + 1 — iy = [sk], which give that

rk —ig and sk — (2m + 1 — ip) are multiples of 2m + 1. Therefore, (r + s)k is a multiple
of 2m + 1. Since gcd(2m + 1,k) = 1, r,s € {1,2,...,2m + 1} and r # s, we obtain
that  + s = 2m + 1, which implies that (p,, ps) ((aiy, @2m+1—i,)) is a pair representing
a column in (9). Because ig € {1,2,...,2m + 1} is arbitrarily chosen, we know that M
and N lead to the same set of games for the round pg plays p2,,+1. We now consider the
round that pq plays p;. Using (13) and (14) and applying the same argument, we obtain
that each game determined by a pair (b;,, bay +1—,) in (14) forip € {1,2,...,2m + 1}
is also a game determined by a pair in (13) . Since (13) is the same as (9) and (14) is the
same as (10), we obtain that M and N lead to the same set of games for the round pg plays
p1. Similarly, we can prove that M and N lead to the same set of games for the rounds that
po plays pa, po plays ps, ..., and pg plays pa,,. Hence, M = N. ]

Let us look back at Examples 1 and 2. In Example 1, m = 3 and k = 2, so ged(2m +
1,k) = 1. By Lemma 4, we know that there is a different setting of the round-robin
algorithm leading to the same set of schedules (with p; being in the first row and the third
column). In Example 2, we know m = 4 and k = 3, therefore, gcd(2m + 1,k) = 3,
which implies that no such setting of the round-robin algorithm leading to the same set of
schedules exists by Lemma 4.

Now we are ready to give the first result regarding the number of schedules. We use ¢ (2m+
1) to denote the Euler totient, which is the number of positive integers less than or equal
to 2m + 1 that are relatively prime to 2m + 1.

Theorem 1. Suppose there are 2m—+2 teams, namely po, pi, . .., p2m+1. Let n(m) denote
the number of different schedules with pq being fixed using the round-robin algorithm.
Then

Cm)!'2m + 1)!

n(m) = ¢(2m + 1)
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Proof. There are 2m+2 teams, and hence there are 2m+ 1 rounds. If we have a tournament
schedule, we may reorder the rounds, so we can obtain different schedules. In other words,
a given tournament schedule determines a set of (2m + 1)! different schedules.

Since pg is fixed, a circular permutation of py, p2, ..., pam+1 corresponds to a set of tour-
nament schedules. There are (2m)! different circular permutations. By Lemma 1, we know
that if we reverse the order of a circular permutation, we will obtain the same set of tourna-
ment schedules by using the round-robin algorithm. If a circular permutation is given, for
example, a circular permutation corresponds to (1), then a different circular permutation
which generates the same set of tournament schedules as (1) is determined by the position
) ;
of the column ( ;)l ) by Lemma 3. By Lemma 4, for each k € {1,2,...,m} that is
2m
relatively prime to 2m + 1, there is a circular permutation which generates the same set of
tournament schedules. There are ¢ (2m + 1) /2 numbers in {1, 2, ..., m} that are relatively
prime to 2m + 1. Combining all these results, we obtain that the number of tournament
. ! !
schedules is equal to (—% O
Next, we try to answer the question: Is it possible to get the same set of tournament sched-
ules using a different fixed team by the round-robin algorithm? We find that this is only
possible for the case that there are 4 teams or 6 teams. Actually, by a straightforward
computation, we can see that

po Pty _( P3 Pl anid po pr P2 )\ _( P5 P2 Ppi
Py P2 po P2 Ps Ps P3 po Py ps )
Therefore, the numbers of schedules generated by the round-robin algorithm for four and

six teams are obtained by Theorem 1, that is, six schedules for four teams and 720 sched-
ules for six teams.

If there are more than six teams, then we have the following theorem.

Theorem 2. Let po, pi1, ..., Pam+1 represent 2m + 2 teams. If we use the round-robin
algorithm to generate tournament schedules with different fixed teams, for example, pg
and pay+1, then the resulting schedules are different form > 3.

Proof. We assume that the tournament schedules are generated by

( Po Pl oy p,,, ) . (15)
P2m+t P2m v Pm+l

Suppose to the contrary that the schedules can be generated by the round-robin algorithm
using a different fixed team. We may assume that the schedules are generated by

( P2m+1 X1 Pi X3 B ) (16)

Po X2m  P2m—i+1  X2m-2 -+  Xm+l

with 1 <i < m being a fixed index and x;, 1 < j <2m, j # 2,and j # 2m — 1, to be
determined.
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Consider the round when pg plays p2,,—i+1. Using (15) we obtain

Po P2m—i+2 P2m—i+3 --- P2m 2m—+1 Pl oo Pm—i
P2m—i+1  P2m—i P2m—i—1 -+ P2m-=2i+2 P2m-=2i+1 P2m-2i .- Pm—i+l
(17)
We should point out that when m — i = 0, (17) should be understood as
Po Pm+2 Pm+3 -« P2m  P2m+1
Pm+1  Pm Pm-1 ... P2 Pl
Using (16), we have
P2m+1 PO X1 Pi X3 e Xm—1 (18)
X2m P2m—i+1 X2m-2 X2m-3 X2m—4 ... Xm ’

Comparing (17) with (18), we obtain that x3,, = p2,—2i+1, Which in view of (15) and (16)
further implies that x; = p2;. Now we will try to find x2,,—2 and x7,,_3. It depends on
where p; and p»; are located in (17). We consider the following cases, which list all the
possible locations of p; and p2; in (17).

Case 1: i < m —iand 2i < m —i. In this case, we obtain that x2,,—2 = pam—4i+1
and x2,,—3 = pam—3i+1 by comparing (17) and (18). Consider the round that py plays
P2m—3i+1. Since 2m — 3i + 1 = m + 1 due to the assumption that 2i < m — i, poy—3i+1
is in the second row of (15). By the round-robin algorithm and using (15), we obtain that

Po P2m=3i+2 ---  P2m P2m+1 Pl cee o Pm=3i
P2m=3i4+1  P2m-3i ceo P2m—6i+2  P2m—6i+1  P2m—6i .- Pm=3i+1
(19)
Using (18), we have
P2m+1 P2m-2i+1 PO P2i Di A ) 20)
P2m—i+1  P2m—4i+1  P2m-3i+1 X2m—4 X2m—-5 ... Xm—I

Because the games determined by (19) and (20) are the same, we know that pa,,—i+1 =
P2m—6i+1, Which implies that 2m — 6i + 1 = 2m — i + 1. It is impossible.

Case 2:i <m —iand2i > m — i+ 1, that is, # << % In this case, we know
pi is in the first row and p»; is in the second row of;(17) and 2i < 2m — 2i. By the same
argument as in Case 1, we obtain that x2,,—2 = pay—4i+1 and x2,,—3 = pam—3i+1. Since
2m — 3i + 1 < m due to the assumption that 2i > m — i + 1, p2,,—3i4+1 is in the first row

of (15). Consider the round that po plays p2,,—3i+1. Using (15), we obtain

l: Po P2m=3i+2 -+  Pdm—6i+1  Pim—6i+2 Pdm—6i+3 -  P3m—3i+] ]
P2m=3i4+1  P2m-=3i ... Dl P2m+1 P2m <o P3m—3i+2 ’

(21)
Using (18), we obtain (20). Comparing (20) with (21), we have pay—6i+2 = Pam—i+1,
which shows that 4m — 6i +2 = 2m — i + 1. So 2m + 1 = 5i. Therefore, x2;, 2 =
P2m—4i+1 = pi. which is impossible due to (16) unless m = 2.



32 A. Cherry, D. Olejniczak and Q. Zhang

Case3:m—i+1 <i < 2m—2i.Inthiscase, wealsohave 2m —2i +1 < 2i <2m—i+1.
It shows that p; and p,; are in different portions of the second row separated by pay,—2;
in (17). We obtain that x3,,—2 = pam—ai+2 and x2,,—3 = pam—3i+1 by comparing (17)
and (18). Consider the round that pg plays pam—3i+1. From 2m — 2i + 1 < 2i, we know
2m — 3i + 1 <i < m. Now using (15) we obtain (21). Using (18), we have

P2m+1 P2m-2i+1 PO P2i Pi e X2 (22)
P2m—i+1  Pdm—4i+1 P2m-3i+1 X2m—4 X2m-5 ... Xm—1

Comparing (21) with (22), we obtain that p2y—i+1 = Pam—6i+2, Which implies 2m +
1 = 5i. If m > 3, then x2,1—2 = pam—4i+2 = Pei, Which in view of (15) implies that
X3 = pam—6i+1. Using the fact that 2m + 1 = 5i, we get a negative index —i, which is
impossible.

Case4:2m —2i+1<i<2m—i+land2m —2i+1<2i <2m—i+ 1.In this case,
we obtain that @%1 o % So we have 2m + 1 = 3i, plugging this into (16) and
noting that x; = p;, we know pa,,—i+1 = pa2i = x1, which is impossible.

Case 5:2m —=2i+ 1 <i<2m—i+land2m—i+2 <2i <2m+ 1. We, therefore,
have 2"73—+2 <i<m+ % We now have x2,,—2 = pam—ai+2 and x2,y—3 = pam—3i4+2 by
comparing (17) and (18). Consider the round when pg plays p4;,—3it+2. Using (15) and in

view of the fact that 4m — 3i + 2 > m + 1 (due to the assumption i < m), we have

PO Pam-3i+3 ...  P2m P2m+1 P1 <o P3m=3i+1
Pim—3i+2 Pdm=3i+1 ... Pem—6i+4 Poém—6i+3 Pom—6i+2 .- PIm=3i42
(23)
Using (18), we obtain
pZm-i-l p2m—2i+l pO p21 Pl LR xm—2 (24)
P2m—i+1  Pam—4i+2  Pdm-3i+2 X2m—4 X2m-5 --- Xm—]

Comparing (23) with (24), we have pa;,—i+1 = Pem—6i+3, Which implies 5i = 4m + 2. If
m > 3, then x2,,_2 = pam—4i+2 = pi, which is impossible since p; appears twice in (16).

Since Cases 1-5 include all the possibilities of the locations of p; and py; in (17), we,
therefore, complete the proof of the theorem. U

Using Theorem 2, we have the following result.

Theorem 3. Suppose there are 2m + 2 (m > 3) teams, po, p1, ..., Pam+1. Let T (m)
denote the number of tournament schedules using the round-robin algorithm. Then

_ @m+2)2m)!2m + 1)!
N dQ2m + 1)

T'(m)

Proof. Form > 3, by Theorem 2, we know for different fixed teams, we obtain different
sets of tournament schedules. There are a total of 2m + 2 teams. Therefore, T (m) =
(2m + 2)n(m), which by Theorem 1 indicates that the equality is true. U
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5 Does the round-robin algorithm generate all the schedules?

For six teams, both approaches using chromatic polynomials and Theorem 1 give 720 dif-
ferent schedules. Therefore, in this case the round-robin algorithm generates all schedules.
For two teams or four teams, we can verify in a straightforward manner that all schedules
are generated by the round-robin algorithm. Is the statement still true if there are more
than six teams? The answer is no. In fact, two, four, and six are the only numbers with the
property that all schedules of the tournament are generated by the round-robin algorithm.
We have the following examples for more than six teams. We first consider the case that
there are an even number of games in each round. In other words, there are 4 p teams in
the tournament with p > 2.

Example 3. Suppose there are 4p teams in the tournament, which gives an even num-
ber of games in each round of the tournament. We divide them into two groups called
Group A and Group B. In each group there are 2p teams. We use ao, ay, ...,azp—1 and
bo, by, ..., by, to denote the teams in Group A and Group B, respectively. Now we
construct a schedule that will be proved not to be generated by the round-robin algorithm.
We use

( an aj cee dp| b() bj b[;_J ) (25)
02p_1 (1217_2 - a[, [)2,)_1 bZsz . e bp

to denote 2 p — | rounds of games concatenated by the games generated by the round-robin
algorithm individually in Group A and Group B. In other words, these 2p — 1 rounds of
games are as follows:

-
ap aj ... dp—| b() b1 bpﬁl
azl)_l azp_z e al) bzl)_l bzl)—z ‘e bp ] ’
ay — ap-1 ... QAp-2 bo byt ... bp2
axp—2 ap-3 --- Ap—1 by o brp 3 ... by 1’
agp a . ap bo br e by
ap ap-1 ... 4py1 b1 bpy ... bpyr |

We use

( ao aj co. Ap—| ] bo b b,,_l) (26)

bap1 brp—2 ... bp ap—1 dap—2 ... ap

to denote p rounds of games concatenated by the games obtained by fixing ag, ay, ...,
ap—1, bo, b1, ..., bp_1, and rotating the sequences by, 1, b2p—2, ..., bp and azp—1, azp—2,
..., ap simultaneously. These p rounds of games are

b2p—l pr—Z cee bp ap—-1 A2p-2 ... ap ’
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ap ay e aljfl bO b] ca bp—l
bap—3 brp-3 v bap—1 G2p3 @Wp-3 «.v @ap—1 |’
ao a) ce. Ap—i b() bl & W 1),;_1
[)[} bzp_l s bl)+l a[) 612[,_1 . (l[)+[
With this notation,
agn ag P ap_l a:,) ap+1 § s 021;_] (27)
[)0 bl oo IJP—I l)’) bp+i - bzI;_l

represents the other p rounds of games. Now, if we put the rounds in (25)—(27) together,
we get 4 p — 1 rounds of games, which give us a schedule of the tournament with 4 p teams.
We should also point out that for each round in (25) teams in Group A only play teams in
Group A and teams in Group B only play teams in Group B, and for each round in (26)
and (27) teams in Group A only play teams in Group B and teams in Group B only play
teams in Group A. Now we prove that the round-robin algorithm does not generate this
schedule.

Suppose to the contrary that the round-robin algorithm generates this schedule. Without
loss of generality, we may assume that ¢; is the fixed team in the setting of the round-robin
algorithm. In the circular permutation which corresponds to the setting of the round-robin
algorithm, if at least two consecutive teams are from group A, for example, a; and ai, then
the round when a; plays a;, which is a round in (25), can be written as follows:

a;  aj X4P_3 X2p
a; Xxi X2 prf]

Because teams in Group A only play teams in Group A in all rounds in (25), we should
know that x| should be a team in Group A. By rotating the sequence a;, ax, X4p -3, ..., X|
clockwise one position, we have a round with a game that @; plays x;. Since x; is in Group
A, we know that this round is in (25). However, in all rounds in (25), teams in Group A
play teams in Group A, we obtain that x; and x3 are in Group A, too. In a similar way, we
obtain that all x;, 1 <i < 4p — 3 are in Group A. Of course, this is impossible because no
teams in Group B are presented in the setting of the round-robin algorithm. Therefore, we
cannot have two consecutive teams from Group A in a setting of the round-robin algorithm
in order to generate a schedule determined by (25)—(27).

Now, suppose there is a setting of the round-robin algorithm that generates a schedule
determined by (25)—(27). Then in the circular permutation corresponding to the setting of
the round-robin algorithm, teams in Group A should be separated by teams in Group B. In
other words, no two consecutive teams are from Group A. Since q; is fixed, we only have
2p — 1 teams in Group A and 2 p teams in Group B in the circular permutation. Therefore,
there exists one and only one subsequence with two consecutive teams from Group B,
namely b;, bi. We now consider a round that is as follows:

a; ... bj bk
Z ... Xy |
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In this round, b plays x and by plays y. Since no two consecutive teams are from Group A
and b;, by is the only subsequence with two consecutive teams from Group B, we obtain
that one of x and y is in Group A and the other one is in Group B. Therefore, either the
game that b; plays x or the game that by plays y is a game between two teams in Group
B and the other game is one between a team in Group A and a team in Group B. This is
impossible because for each round in (25) teams in Group A only play teams in Group A
and teams in Group B only play teams in Group B, and for each round in (26) and (27)
teams in Group A only play teams in Group B and teams in Group B only play teams in
Group A. Therefore, the round-robin algorithm does not generate the schedule which is
put together by (25)—(27).

Example 4. Suppose there are an odd number of games in each round of the tournament.
We may assume that there are 4p — 2 teams with p > 3. As in the previous example,
we divide these 4 p — 2 teams into two groups still called Group A and Group B. In each
group, there are now 2p — 1 teams. We use ay, az, . .., azp— to represent teams in Group
A and by, by, ..., bap—1 to represent teams in Group B. In order to use the round-robin
algorithm within each group, we add a dummy team for each group. We add ag to Group
A and by to Group B. Now we construct a schedule that will be proved not to be generated
by the round-robin algorithm. We use

ao aj cam W by b oo o bp (28)
ap—1 d2p-2 ... dap pr—l [7217—2 . bp

to denote 2 p — 1 rounds of games concatenated by the games generated by the round-robin
algorithm individually in Group A and Group B. We note that if ag plays a; and by plays
bj, because ag and by are dummy teams, we should understand this is equivalent to the
game that @; plays b;. With this in mind, the set of rounds in (28) consists of the following
rounds

612,,_1 a| e al)——l bl .’ ne b[’*l
| Dapr a2p2 .. ap byp—2 ... by ’
ap—2 d2p—1 ... dp-2 bzpfl cen bp—2
| b2[7—2 (12])_3 F—_— ‘l[)—l b217_3 ¥ e b,)_l
aj a N b . by
by axp—-1 ... dap4i bap—1 ... by ’
We use
ao a| cee Ap—] 1)() b[ s W bp—l (29)
b1 byp2 ... by ap-2 @p-3 ... A2p—|

to denote p rounds of games concatenated by the games obtained by fixing ao, ay, ...,
a,—1, bo, by, ..., b,_1, and rotating the sequences by, 1, b2p 2, ..., bp and azp 2, azp 3,
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..., Gp, azp—| simultaneously. In other words, the set of the rounds in (29) consists of the
following rounds

azp-_2 aj B b1 oo by
b2p71 b2p72 - bp azp*B o e a2p_-l ’
azp-3 aj wes  Gp—1 by e Bipes]
bap—2 brp-3 ... byp1 @p-a ... azp_2 |’
Clzpfl ai e apf] bl o us b[)—l

bp bzP‘l . e bp+l azpfz e ap

We note that for each round in (28), there is only one game between a team in Group A
and a team in Group B which can be described as a; plays b;. All other games are played
within their groups. We also find that for each round in (29), there is no game between a
team in {ay,az,...,ap—1} and a team in {by, b, ..., b, 1}, and there is only one game
between a team in {ap, apy1,...,a2p—1} and a team in {b,, by 1, ..., b2p—1} Which is
either a game that a; plays b for p < i < 2p — 2 or a game that az,_ plays b.
Therefore, the following p — 2 rounds of games

a ... dp-2 dp—| ap ap+1 ... A2p-3 4azp-2 d4azp—1 (30)
by ... bp—1 b bpy2 bpy3 ... bap-i bp bpti
obtained by fixing aj, az, ...,ap—1 and ap,apy1, ..., a2p—1, and rotating the sequences
by, b3,....bp_1,brand by, bpi3, ..., bpyy simultaneously p — 3 times, can be added

to (28) and (29) to form a schedule of the tournament.

We should point out that only rounds in (28) have games between teams within Group A
or Group B and if a game that @; plays a; in a round in (28), then there is also a game
between b; and b; for that round. Now we prove that the round-robin algorithm does not
generate this schedule formulated above.

Suppose to the contrary that the round-robin algorithm generates this schedule. Without
loss of generality, we may assume that @; is the fixed team in the setting of the round-robin
algorithm. In the circular permutation which corresponds to the setting of the round-robin
algorithm, if at least two consecutive teams are from Group A, for example, a; and a,
then we may assume a subsequence a;, ay, by in the circular permutation. We consider the
round when a; plays ai, which is a round in (28) and can be written as follows:

a; b[ X4pg(, XQP,Q (31)
ap daj X1 cee X2p-3

Because a; and b; are in Group A and Group B, respectively, due to a property of the
rounds in (28), we obtain that/ = j. Now we rotate the sequence a;, ax, b;, x4p—6, - . ., X1
clockwise one position and consider the round that a; plays a; that is also a round in (28),
we have the following games

[ai ag b x4p6 ... xzpz] (32)

aj Xxp x2 X3 cee X2p—3
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Now if x; is in Group B, then x; = b by (32), which by (31) further implies that
X4p—6 = bi, which by (32) again implies that x3 = b;, which is a contradiction since
by = b; already appeared in the setting. If x; is in Group A, by (31) we know that x4, _¢

is also in Group A. Now rotating the sequence x|, x2, ..., X4p—6, by, ax, a; in (31) coun-
terclockwise one position, we have
a X4p—6 X4p—5 ... X2p-3 (33)
by a aj co. X2p—4

Since x4p—¢ 18 in Group A, a game between teams in Group A in the round (33), that is the
game that x4, _¢ plays ay, shows that the round (33) must be in (28). Therefore, b; = b;,
which shows that I = i. However, we already know that [ = j. We have a contradiction.

Now, suppose there is a setting of the round-robin algorithm that generates a schedule
determined by (28)—(30). Then in the circular permutation corresponding to the setting of
the round-robin algorithm, teams in Group A should be separated by teams in Group B.
Therefore, there exists one and only one subsequence with two consecutive teams from
Group B, namely bj,, b;,. We now consider a round that is as follows:

[a; ceeoajy bjl bj: aij, } (34)
z ...oajs by oay bj

In this round, b, plays bj,. Since only the rounds in (28) have games between teams in
Group B, we know that the round (34) must be in (28). However, for all rounds in (28),
there is only one game between a team in Group A and a team in Group B and there are
two such games in the round (34). We, therefore, get a contradiction.

Therefore, there does not exist a setting of the round-robin algorithm which generates a
schedule put together by (28)—(30).

6 Conclusion

We have proved an equality for the number of schedules generated by the round-robin
algorithm. As Examples 3 and 4 show, some tournament schedules may not be generated
by the round-robin algorithm. It might be interesting to develop a practical approach to
find the number of all tournament schedules for n teams. Though chromatic polynomials
can be used to describe the total number of schedules for n teams, it is not easy to compute
chromatic polynomials even for a small number of teams, for example eight teams. So we
further ask if an equality or an inequality exists for the number of all tournament schedules
for n teams. It seems to us that this is not an easy problem. Our future work will try to
answer this question.
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