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Sine integrals and tiny numbers
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Von den Borwein-Integralen

POO "
in I! Si

J° k=I
Bn := / sinc(o^x) dx, ak

2k — I'

ist bekannt, dass B\ B2 — B-j j aber B„ < j für n > 8. Die Abweichung
vom Wert j ist bei n 8 enorm klein. Betrachtet man für X > 1 die Variante

rOC "
— X I sinc(Ax) M sinc(fljtx) dx,

J0
iw

t=l

wobei n so gewählt wird, dass Xü=1 ak > ^
1 ak' so aus einem Resultat

von David und Jon Borwein

ta, Ui-,u„ mi,
2 2" >nl \ [k=laL

Mit wachsendem X werden die Zahlen t(X) schnell sehr klein. In der vorliegenden
Arbeil wird gezeigt, wie numerische Werte dieser Zahlen, und damit die Integrale 1(2),
schnell und mit hoher Genauigkeit berechnet werden können. Zum Beispiel ist der

Integrand von 7(10) das Produkt von 68100152 sinc-Funktionen und

/(10) 9.6492736004286844634795531209398105309232... IQ"554381308.
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1 Introduction

The sine function is defined as

sin(x)/x if x^O,
1 if x =0.

sinc(x)

We consider the integral

,n^=*L sinc^x^ rtsinc (2^-1)^^
where A is a real number > 1. For abbreviation we put

^ 1

s<n>
2k- 1

k= 1

(2)

From [1, pp. 3—4] it is known that /„(A) n/2 if s(n) < A, and /„(A) < tt/2 if s(n) > A.

We will show that, when n becomes large enough that

s(n) > A > s(n — 1) (3)

holds, then /„(A) can be less than 7r/2 by a very tiny amount.

From Corollary 1 of [4] (see also Theorem 2 of [3]), we know that, if

2ak > a„ > 0 for k 0, 1,..., n — 1, (4)

and
n n — 1

^ dk > ao > ^ ak (5)
r=i k=\

then
roc

Jo

Eq. (6) may be written as

nsinfax) _
TT /A

_
(ai + a2 H 1- a„ - a0)" \

x 2 \
^ ^ * 2n_1 «! /k=o \k=1 /

(6)

/"°° ft / \ a n (i (ai + ci2 + + an — ao)" \ao || sinc(arx) dx - I 1 (7)
Jo £=0 2 V 2» 1 n! f]*=i ak

We put

ao A, ak
1

for k l,2,(8)2k — 1

so the left-hand side of Eq. (7) is equal to /„(A) (see Eq. (1)). Since A > 1, the a* in Eq.
(8) satisfy the inequalities (4): they are all positive with ak > an for k 0, 1,..., n — 1,
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which implies that 2a* > a„. If, in addition, (5) and, equivalently, (3) hold, then the value

of /„ (A) is given by the right-hand side of (7).

If inequalities (3) hold, then n is uniquely determined by the value of A. In this case, we
can use the simpler notation /(A) instead of /„(A). We have

A 1 1 1 1

_
2n (2n - 2) • 4 2

_
2"n!

°k ~ 2n - 1
'

2/? -3 " '
3

' I ~ 2/7-(2/7- 1) - - - 2 - 1
~~

(2n)! '

so it easily follows that

70 n=
nsi,,c(5FrT)<L, ^11-'1(A) A / sinc(Ax) | | sine — dr — (1 — /(A)), (9)

where

We now describe the problem to be solved in the present paper: t (A) can be a very tiny
number. We will show how to calculate these numbers, and therefore the integrals 1(A),
with high precision in short time. Numerical examples will be given for integer values of A.

2 Calculating t(k) for X 1,..., 10

Given the value of A, the first task is to find the value of n such that the inequalities (3)
are satisfied. For A < 10, it is not difficult to find this by simply computing the partial
sumsi(/i) until one finally exceeds A. Then, with the help of (10) we compute the decimal

approximations of the t (A) values for A 1,2,..., 10, shown in Table 1. These values

are rounded in the last (40th) decimal place. In Mathematica on a standard laptop, only
the last two n values took more than a minute to calculate. One sees that the numbers t(A)
quickly become rather tiny.

Examples: For A 1 we have

j(1) 1 <A < i + I l=s(2)

and therefore, using the inequalities (3), n 2. Hence Eq. (9) delivers

V 12/ 24

(£ _ 4! i n
l(\) ^-g—-L - and /(1) -(l__| ^1* 0.458333*.

Mathematica can calculate this integral directly:

r°° — — 11 TT

/(!) J sinc(l x) sinewy) sine d.x
24

For A 2 we find

88069 91072
s(l) 1.95513 ...< A < 2.02181... ,v(8),

45045 45045
v '
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hence n 8, and, therefore,

(ihi-2)8 16! 3377940044732998170721
f(2)

215 8!2 168579263752214678679209808915000000

TT 168579263752211300739165075916829279 n
7(2) — (1 — r(2))

2 337158527504429357358419617830000000

« 0.49999999999998998115 tt

Mathematica is able to calculate

1(2) — 2 j sinc(2 jc) sine sine ^ • • sine (y^)

directly and finds the same result (see also [1, p. 4]).

Look what happens when we take ratios of successive n values:

419/57 % 7.35087719

3092/419 ~ 7.37947494

22846/3092 % 7.38874515

168804/22846 % 7.38877703

1247298/168804 «a 7.38903107

9216354/1247298 « 7.38905538

68100151/9216354 ~ 7.38905548

These ratios appear to be approaching e2 ~ 7.38905610. That is, the n that corresponds to
2 + 1 is roughly e2 times the n that corresponds to X. Here is the explanation. The sum of N
terms of the harmonic series, Xf=i 1 is about ln(lV). We have ln(e N) ln(A) + 1.

Therefore, if N terms of the harmonic series are required to reach a sum 5(~ ln(iV)),
then about e N terms are needed to make the sum reach 5+1. The terms in our series

s(n) are about 1 /2 as large as the corresponding terms in the harmonic series. Therefore,
to increase our sum by 1 requires about as many terms as the harmonic series needs to
increase its sum by 2, which is about e • e e2. As a result, we can estimate that, for a

given X, the corresponding n is about 68100151 • e2'/l_H)\ so that n is an exponentially
increasing function of X.

Let t(X) be written in the form t(X) — P/Q with coprime integers P and Q. As X

increases, P and Q quickly become very large. For example, with 2 6, P and Q have

453130185 and 453237210 digits, respectively. Displaying the first and last 20 digits for
this case, we have

P 34293043773392420460(453130145 digits) 34573721229967337961
'(6) - — - 26251415654224851611 (45 3237170 digits) 00000000000000000000

'

Standard IEEE double precision ("machine precision") uses mantissas with 53 bits (about
15 decimal digits). This simply is not enough for most of the calculations we discuss here.
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Eq (10) requires that we compute the sum s(n), then raise (s(n) — A) to a very high
power Many, or even all, of the significant digits in t(X) will be lost if we calculate s{n)
to only machine precision This is caused, m part, by the well-known phenomenon that

significance is lost when we subtract two numbers that are nearly equal For example, with
/ 7, we have n 168804 Computing the sum to only machine precision (in either
C or Mathematica) gives s(168804) ss 7 00000179178 We then compute (s(168804) —

7)168804 exponent consumes 6 significant digits, so the mantissa loses about another
6 digits

Therefore, we did our calculations twice first, we computed each s(n) to 60 decimals,
then used this value for the calculation of t(?) (see Eq (10)) Then, we repeated the
calculations, this time, computing each s(n) to 70 decimals These high-precision results

agree with each other to more decimals than we show in Table 1 On the other hand, for
7=7, only the first three digits of the machine precision calculation agree with these

high-precision results Worse, when we do the calculation for X 8 in machine precision,
we get, approximately,

^ (l - 1 03496 10"8742942)

Note that all digits and the exponent are different from the high-precision result in Table 1

7 ii td)
1 1 8 3333333333333333333333333333333333333333 10"2

2 8 20037696034181553438737278689296078869394 10 14

3 57 4 2814541036242680424608725308114449824436 10"143

4 419 2 3710999975681168329914604542463318249729 10~1326

5 3092 25899544469237193354708111256703110686749 10 13544

6 22846 1 3063312175270580087816919230036297407401 lO"107025

7 168804 1 2084753305711806308265054034357601336007 lO"970071

8 1247298 6 9312222993226491135738066834549327656340 lO"8742945

9 9216354 3 3216970999036058275367686941671199966288 10"67342884

10 68100151 9 6492736004286844634795531209398105309232 10"554381308

Table 1 Values ol t(?) tor the evaluation of the integrals / (/l)

3 The program for the calculation of t (X) for X > 10

When trying to calculate t (7) for > 10 one is faced with the following problems

• 7i increases exponentially with 7 So, given 7, the time to find the corresponding n

by computing partial sums s{n) also increases exponentially

• Therefore, the time to compute id and (2n)' also grows exponentially
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• The differences s(n) — X become smaller as X increases. High-precision values of
s(n) — X are needed because these differences are raised to the power n.

• The calculations involve both very large and very small numbers. This may lead to
overflow and underflow.

So our program to compute high-precision values of t (A) for X > 10 in short time includes
the following measures:

• We will use logarithms. Taking the natural logarithm of (10), we get

In t (1) n ln(.?(n) — X) — (2n — 1) In2 + ln((2n)!) — 2 ln(n!). (11)

• We will use the Euler-Maclaurin summation formula to calculate approximate values
for s(n) and the logarithms of the factorials. In order to yield the desired precision
we will compute partial sums exactly to many digits and obtain error bounds.

• Let £ denote the value of Igt(X) (lnt(2))/(ln 10) where Int(X) is obtained with
Eq. (11) and lg is the log base 10. In order to avoid underflow when trying to evaluate

t(X) with t (2) 10f, we will extract the mantissa m and the exponent p of t(X), and
then display t(X) in scientific notation

t(X) m 10'' with m lO^LI and p ]_£\

4 Calculating n

Now, we calculate the value of n that satisfies the inequalities (3) for given value of X.

With the nth harmonic number

^ 1

k= 1

Eq. (2) may be written as

s(n) H2n~i - -
From the inequalities (see [5, p. 76] and [7, Eq. 15])

1 / 1 \ 1

< Hn — In n + - — y <
24(rc +l)2 " V 2/ 24"2 '

where y is the Euler-Mascheroni constant, it follows that

1

2n + y -| —^ < //2n-i < In \ 2n +
V 2/ 7

24(2n)2 \ 2)

/ 1\ 1 / 1\
In | n | + y -| z- < Hn-\ < In I « | + y

v 2/ / 24ii2 V 2/ 24(11 - l)2

24(2n - l)2 '

1

hence

S((ri) < s{n) < su(n),
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where

s((n) s*(n) + [ - su(n)=s*(n) +
24(2n)2 48(n - l)2 ' 24(2/7 - l)2 48//2 '

(12)

with

s*(n) In

Note that

20/?^ - 33/j2 + 18/7 - 3
/su(n) - sf(n) - 96(4n6 _ i2n5 + 13/?4 - 6//3 + n2)

~~

Therefore, if n is large, the bounds in (12) provide very good approximations to s(n).

Now we consider the equation s*(n) X for a fixed value X > 2. From this equation we
get

,-1/2
cx-yi\H)H) -

Solving for n yields

77 ^ (2 + eu~7 ±e~y Ve42 -4e22 + ^
The equation

77 |~^ (l + e2'-? + Ve4X-4e2X + r"j (13)

where f ] denotes the ceiling function, gives an integer value of n. This n satisfies inequalities

(3) if it satisfies the inequalities

su(n ~ 1) < X < sc(n). (14)

Example: We will calculate n for X 10. This allows us to check our result against Table
1. Eq. (13) gives

77 (68100150.0149) 68100151.

We find

s„ (68100150)% 10- 1.09045- 10"'°,

^(68100151) % 10 + 7.23308 • 10"9

and know that we have found the correct value of n.
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5 Estimating s (n)

We use the Euler-Maclaurin summation formula to calculate the sum of the ak for any
large n. This method applies to general ak, and gives us an estimate of the error.

One version of the Euler-Maclaurin summation formula is (see, e.g., [6, pp. 542-543])

£/"(*) [" f(x)dx+f(m) + J(n)

k=m

ß
(15)

with the remainder term

R (!,M1
Jm (2fi + 1)!Jm W -r >) •

I.—i (16)

^ / B2fl+[(x) f{2/,+l)(k + x) &x
(2R + lV k=,J0

Bk(x) denotes the kti\ Bernoulli polynomial, and Bk Bk(0) the klh Bernoulli number.
In our case we have

f(x) 0

1

and ak f(k)
1

2x - 1 2k — 1

Now we will derive an estimate of Rfl (in, n). For the kth derivative of /', one finds

/(%)= {-V)k2kkl
J ' (2x - l)*+i '

Since all the functions |/(*l(x)|, k 0, 1,2,..., are strictly decreasing, for the terms in
the sum of (16) we find

/ B2ß+\(x) /(2',+1)(& + 1 + x) dx < / B2/l+[(x)fi2f,+l)(k+x)dx
Jo Jo

The absolute value of each integral on the right-hand side of Eq. (16) is at most

• i

/ B2ß+i(x) f(2fl+l)(m +x) dx
Jo10

and there are n — m of these integrals. Therefore

|^(w;,n)| < \Rfl(m,n)\ (17)

where
c ^

Rlt(m,n)
" m / ß2/i+i(x) /(2',+l)(m + x) dx

(Zfi + 1)! ,/o
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Eq. (17) is the desired estimate for RM(m, n). Furthermore, all

[ B2M+i(x) /(2/i+1)(/c + x) dx k m,..., n — 1,
Jo

have the same sign which is equal to the sign of Rfl (m, n), and to the sign of R^ (m,n).
Using the integral

f" f" dx 1

/ f(x) dx — I - - [ln(2/7 - 1) - In(2w - 1)],
./,„ Jm 2x - 1 2

we get the explicit summation formula

" 1

X 2k - 1 ^ + R/l
k=m

with the approximation

(P[, ("i, n) ^ ^ln(2/j - 1) - In(2m - 1) + ^ | j
y-22>-1B2J( 1 1 \
^ 2j \ (277 — l)2-' (2777 -l)2^

and the remainder term

11-1 -1

R/t (in, n) -22/,+1 ^ f
k=ir

The explicit formula for the error bound is

dx.
*=,„"» [2(^ + -*) — l]2/,+2

(18)

(19)

(20)Rft(m,n) — 22/,+i (77-777) / B2/l+\(x)
f 'Jo [2 (777 + X) - l]2/<+2

Using Eq. (18), we have

s(n) s(m - 1) + <pfl(m,n) + Rft(m,n).

Hence an approximation for s(n) is

sm,fi s(m - 1) + It)

As an example we estimate s(68100151) for X — 10, which is used in Eq. (10) to compute
the value of t(X). We have

,v(68100151) % siooooi, 3(68100151) .s'(lOOOOO) + ^(100001, 68100151)

10.000000007233082813117....
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X n

10 68100151
11 503195829
12 3718142208
13 27473561358
14 203003686106
15 1500005624924
16 11083625711271
17 81897532160125
18 605145459495141
19 4471453748222757
20 33039822589391676
21 244133102611731231
22 1803913190804074904
23 13329215764452299411
24 98490323038288832267
25 727750522131718025058

Table 2 Values of n

Eq. (10) requires that we raise the difference s{n) — X to the high power n. (Note the loss

of precision that occurs when we perform this subtraction.) So, we may need to compute
more accurate approximations (pfl {in, n) using values of pi > 3. Table 2 above and Table 3

below display n and the approximate values of s(n) for 2 10, 11,, 25. To obtain
these values, we use m 100001 and compute s{m — 1) to 100 decimal places, then use

pi 10 to compute each n and ipfl {m, n).

Note that if we compute the initial sum s{m — 1) to only D decimal places, then we can

never compute s(j) to more than D correct decimal places for any j > in — 1, even if the

error estimate |/?/(| is less than 10_D.

For a given X, we first compute n and the approximate value of s(n). The next task is to

compute the value of I (X) using Eq. (9). The value of (s(n) — X)" can easily be obtained
from the approximate value of s (n) in Table 3, although for large n, we must use logarithms
to prevent underflow.

6 Estimating the logarithm of the factorials

We can write
In t (2) n In(i(/)) — X) — (2n — 1) In 2 + a(n)

with
O v 2" "

<r(/i) := In —= ln((2/i)!) — 2 ln(/t!) In A: — 2 In k
n' jt=i d=i
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hii.fi(n)

10 + 7 23308281311740815495440938881892875629793229610802275303838659
11 + 1 93429694721571938243592220609208607459386666993511996115170447
12 + 2 81704757017003986061562163359221047582420212335754506062428273
13 + 1 51784528343340657974855459172890208869659078869207257172632024
14 + 1 20004359101609629122080445652372955218041261117217502496026183
15 + 2 19180272149887470909606761989402891098093034885435056479463010
16 + 4 03776701092542650935062088404145888641302878626731173386452500
17 + 3 96811610610919880012621568968292119992007054389850812439945895
18 + 6 44184629552359167120616511513071089671769035954843683552410240
19 + 4 40658835470283585071853820223887285629968834008507731684755191

20 + 2 90258683104894913499203070153167600669577064916856020926287204
21 +7 34280669057054306832818424563959102068261955548079016234613646

22 + 1 30683560567708459204537388912129731492458474471888171662329379

23 + 3 40633844408955109014083203224199839911999656758748815953125439
24 + 3 79499658486046318316555581259771062170888781423675014763472623

25 + 1 14325480646582051223669818246654129326458197624224895807362049

10

10

10

10

10

10

10

10

10

10

10

10

10"19

,0-20
10"21

10 -22

IF17«
10-101

,0-102
10-102

10-101

,0-100
10-"
10-98

io-97
10-96

10-'«
10-95
10-14

,0-'«
IO"92

10-91

2 10

1 56
1 15

8 50

6 28

4 64

3 43

2 54
1 87
1 38
1 02

7 56

5 58

4 13

3 05

2 25

Table 3 Approximations for s(n) with error bound for m 100001 and /( 10

To get a good estimate for a (n), we will use the exact sum of m — 1 initial terms. Therefore,
we split the sums:

rr(n)
'm — 1 2n /m — 1 n \~|x+zFx+x)
,k=\ k=m \k= 1 k=m/ J

m — 1 n 2n

ln^ -(Z + Z- Z )ln*- <21>

k [ k=m k=n+1 i

It remains to estimate anc7 XZ+iTherefore, we apply the Euler-Mac-
laurtn summation formula (15) with

/ (x) lnx

The derivatives are given by

/<%)
(— l)i-1 (k — 1)!

* 1,2,.... (22)

Furthermore, we have

/ f (x) dx / In a cLx x(\nx — 1) | n(\r\n — 1) — m(\nm — 1)
Jm

This yields

^ In* in) + R*t(m, n)
k=m
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with the approximation

lnm + Inn
n) n(lnn — 1) — m(\nm — 1)4

(23)

7 1

and the remainder term

+ y (-1 L.)
2j(2j ~ 1) V»2-' 1 m2j '/

n) —— y /" ß2>'+fl dx
2// + 1 ^Jo (k+x)2f+l

Since the absolute values of all derivatives in Equation (22) are strictly decreasing, we find
the error estimate

\R*(m,n)\ < \R*(m,n)\

with

(24)f,K 2//+ 1 ./o (m+x)2t'+l
It follows that the approximation for (21) is given by

m-1

<Tm.ft(n) - y ln£ - i//fl(m,n) + y/fl(n + 1, 2«) (25)
k=1

with the error bound

M (n) - a (n) \ < \ R* (m, n) \ + \ R*t (n + 1, 2n) |. (26)

7 Results for A. > 10

We can now put all of this together to compute the values of t(X) for many X values.
For example, Table 4 shows the value t(A) for X 10 .25. All digits shown below are

correct, rounded in the last decimal place.

The original draft of this paper [2] contains all of the Mathematica code that gives these

results. Although only results for integer values of X are shown here, this code computes
t(X) for real X > 1.

To obtain the values in Table 4, we used m 100001 and fi 10 in Eq. (19). We

summed the first m — 1 100000 terms with Eq. (2), and then used Eq. (23) with // 5

and m — 100001 to compute logs of factorials. We computed the sum of the logs of
the first m — 1 integers to 100 decimal places. The integral in Eq. (24) was computed in
Mathematica with the option WorkingPrecision 40.

On a 2010-vintage laptop, it took about 9 seconds for the code in [2] to generate Table 4.

This includes about 3.7 seconds to compute the sums of 100000 terms in Eq. (2), and about
2.4 seconds to compute the sum of the logarithms of the integers < 100000.
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tV)

10 9 649273600428684463479553120939810530923242208735398 • lO"554381308

11 7 57929806494947536128349934756162195412431861759227 ur4887781043

12 5 30200436015724605246826614752108917188558325098544 i(r39227165565

13 1 52739916984845667363367296109645541442392755493153 lO"297230209953

14 6 617345077783595182168242992545965700461478406777 KT2419966945909

15 5 26019597269976433379615815051550875066124252042 ur18988869014266

16 4 06751521421327233190115950829638686972451899823 10"148452517153987

17 2 8703074957720537216132995767534053015103162770 |(r1261337931785960

18 1 46932966274512803735093876340436661798499994 ur919275«406970262

19 7 36887339695623805028019042180415757921528157 Id"73134639260589997

20 5 8024461422390775663611817270349845938468954 ur579426465025122292

21 1 3869021709986676325063938918439160007102035 1 ()-4427141349945912840

22 4 10151245193385022941804060193305405447094 JO"34064698104956009918

23 1 71715972357092319138607947022428968556534 k)-219489336406929T!88()5

24 1 4982758030623762036996263232893870122517 io-20l 1250066953860707590

25 2 723848647528233561685563127899349771647 io~15968197862152240928105

Table 4 Values ol / (J.) tor the evaluation of the integrals 1(A)

These calculations can also be extended beyond I 25. For example, running the code
with the above parameters gives, for I 40,

7(40) % 1 8758610- io~2661340-53348172015148849587491648267

As X increases, more and more of the significant digits in the calculation are consumed in
the exponent.

8 Conclusion

We show how to evaluate highly-oscillatory integrals involving the sine function. Our
procedure has two main ingredients: a result of David and Jon Borwein, and the Euler-
Maclaurtn summation formula. We show how to evaluate these integrals to high precision,
and avoid overflow and underflow, even though intermediate results are well beyond the

range of ordinary floating-point arithmetic.
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