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Sinc integrals and tiny numbers
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Von den Borwein-Integralen

oo N 1

Byi= 1 x) dx —
. Hsmc(au) § ok T

.

ist bekannt, dass By = By = --- = By = % aber B, < 5 fiirn > 8. Die Abweichung
vom Wert % ist bei n = 8 enorm klein. Betrachtet man fiir A > 1 die Variante

50 n
)= A[ sinc(4Ax) H sinc(agx) dx,
0 k=1

wobei n so gewiihlt wird, dass ZQ: 1k > A = ZZ; { ak, so folgt aus einem Resultat
von David und Jon Borwein

(al =0 e dy _A)”
27t n! [[i=y a2 ;

Mit wachsendem A werden die Zahlen 7(4) schnell sehr klein. In der vorliegenden
Arbeit wird gezeigt, wie numerische Werte dieser Zahlen, und damit die Integrale 7 (1),
schnell und mit hoher Genauigkeit berechnet werden konnen. Zum Beispiel ist der
Integrand von /(10) das Produkt von 68100152 sinc-Funktionen und

1(&):%(1-:(1)) mit ¢(1) =

1(10) = 9.6492736004286844634795531209398105309232 . . . - 10734381308
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1 Introduction

The sinc function is defined as

) sin(x)/x if x #0,
sinc(x) =
it x=10.
We consider the integral
o0 n X
In(A) = A sinc(4 ' dx, 1
(1) /0 sinc(4x) kl;[lsmc (2k — l) (1)
where 4 is a real number > 1. For abbreviation we put
n 1
s(n) := ; 2
s(n) i= 3 (2)

k=1

From [1, pp. 3-4] it is known that [,,(1) = 7 /2 if s(n) < A, and I,,(1) < /2 if s(n) > .
We will show that, when n becomes large enough that

s(n) > A>s(n—1) (3)

holds, then I, (/) can be less than 7 /2 by a very tiny amount.
From Corollary 1 of [4] (see also Theorem 2 of [3]), we know that, if

2y > a, >0 for k=0,1,...,n—1, 4)
and
n n—1
Zak>aozzak, (&)
k=1 k=1
then

oo M n
sin(qgx) 7w (a1 +az+---+a, —ap)"
/0 [ =3 (H e 211! ' ©
k=0

k=1

Eq. (6) may be written as

00 n n
_ T (ai +ax+ -+ a, — ap)
ap H sinc(agx) dx = o) (1 — T T ”a ) ) (7
O k=0 F Hle=1 %k
We put
|
a():A., (lk:ﬁ for k=l,2,...,n, (8)

so the left-hand side of Eq. (7) is equal to (1) (see Eq. (1)). Since 4 > 1, the a; in Eq.
(8) satisty the inequalities (4): they are all positive with @y > a, fork =0,1,...,n — 1,
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which implies that 2a; > a,. If, in addition, (5) and, equivalently, (3) hold, then the value
of I,(1) is given by the right-hand side of (7).

If inequalities (3) hold, then n is uniquely determined by the value of A. In this case, we
can use the simpler notation 7 (1) instead of 1, (4). We have

n

1—[ 1 1 I 1 2n-2n—-2)---4.2 2"n!
ag = =

-1 21—-3 31 2n-@u—-1)---2-1_ (@)’

k=1

so it easily follows that

50 . n . p B -
1(1):&]0 smc(ix)kljlsmc(zk_l)dx—a(l—t(/l)), (9)

where

(s(n) — )" (2n)! .

1(4) = 92n—1 2

(10)
We now describe the problem to be solved in the present paper: 7(4) can be a very tiny
number. We will show how to calculate these numbers, and therefore the integrals 1(1),
with high precision in short time. Numerical examples will be given for integer values of 4.

2 Calculating t(A) forA=1,...,10

Given the value of 4, the first task is to find the value of n such that the inequalities (3)
are satisfied. For 4 < 10, it is not difficult to find this by simply computing the partial
sums s(n) until one finally exceeds 4. Then, with the help of (10) we compute the decimal
approximations of the 7(4) values for A = 1,2,..., 10, shown in Table 1. These values
are rounded in the last (40th) decimal place. In Mathematica on a standard laptop, only
the last two n values took more than a minute to calculate. One sees that the numbers 7 (4)
quickly become rather tiny.

Examples: For 4 = 1 we have
D=1<2 1+1_ =s5(2)
AT & o _I —_
’ 3 3 ’

and therefore, using the inequalities (3), n = 2. Hence Eq. (9) delivers
4 2
3-D% 4 1 1 11
r(1)=(3—)—=— and 1(l)=£ 1 —— :—ﬂ%0.4583337r.
23 21212 2 12 24
Mathematica can calculate this integral directly:
. X\ . (X 117
I{l) = sinc(1 - x) sinc (—) sinc (—) dx = —.
Jo 1 3 24
For /. = 2 we find

88069 91072
s(7)= —— = 1.95513... < 4 <2.02181...= —— = s(8),
45045 45045
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hence n = 8, and, therefore,

_GRE-2% 16 3377940044732998170721
- 215 812 1685792637522146786792098089 15000000

168579263752211300739165075916829279 «

T
IQD)=-0-1Q2)=
2 337158527504429357358419617830000000
~ 0.49999999999998998115 7 .

t(2)

Mathematica is able to calculate

H2)y=2 /000 sinc(2 - x) sinc (XT) sinc (%) - - sinc (lx_S) dx

directly and finds the same result (see also [1, p. 4]).

Look what happens when we take ratios of successive n values:

419/57 =~ 7.35087719

3092/419 ~ 7.37947494
22846/3092 ~ 7.38874515
168804 /22846 ~ 7.38877703
1247298 /168804 ~ 7.38903107
9216354/1247298 ~ 7.38905538
68100151/9216354 ~ 7.38905548

These ratios appear to be approaching e? &~ 7.38905610. That is, the n that corresponds to
A+ 1 is roughly e? times the n that corresponds to 4. Here is the explanation. The sum of N
terms of the harmonic series, Zivzl 1/k, is about In(N). We have In(e - N) = In(N) + 1.
Therefore, if N terms of the harmonic series are required to reach a sum S(= In(N)),
then about e - N terms are needed to make the sum reach § 4+ 1. The terms in our series
s(n) are about 1/2 as large as the corresponding terms in the harmonic series. Therefore,
to increase our sum by 1 requires about as many terms as the harmonic series needs to
increase its sum by 2, which is aboute - e = e2. As a result, we can estimate that, for a
given /, the corresponding n is about 68100151 - e?*~10) 5o that 1 is an exponentially
increasing function of A.

Let r(4) be written in the form 7(4) = P/Q with coprime integers P and Q. As 4 in-
creases, P and Q quickly become very large. For example, with 4 = 6, P and Q have
453130185 and 453237210 digits, respectively. Displaying the first and last 20 digits for
this case, we have

((6) = P 34293043773392420460 (453130145 digits) 34573721229967337961
0 26251415654224851611 (453237170 digits) 00000000000000000000

Standard IEEE double precision (*machine precision™) uses mantissas with 53 bits (about
15 decimal digits). This simply is not enough for most of the calculations we discuss here.
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Eq. (10) requires that we compute the sum s(n), then raise (s(n) — 4) to a very high
power. Many, or even all, of the significant digits in 7 (/) will be lost if we calculate s(n)
to only machine precision. This is caused, in part, by the well-known phenomenon that
significance is lost when we subtract two numbers that are nearly equal. For example, with
/4 =T, we have n = 168804. Computing the sum to only machine precision (in either
C or Mathematica) gives s(168804) ~ 7.00000179178. We then compute (s(168804) —
7)168804 This exponent consumes 6 significant digits, so the mantissa loses about another
6 digits.

Therefore, we did our calculations twice: first, we computed each s(n) to 60 decimals,
then used this value for the calculation of 7(4) (see Eq. (10)). Then, we repeated the cal-
culations, this time, computing each s(n) to 70 decimals. These high-precision results
agree with each other to more decimals than we show in Table 1. On the other hand, for
A = 7, only the first three digits of the machine precision calculation agree with these

high-precision results. Worse, when we do the calculation for 4 = 8 in machine precision,
we get, approximately,

% (1 — 1.03496 - 10—*‘742942) .

Note that all digits and the exponent are different from the high-precision result in Table 1.

] n 1(2)
1 8.3333333333333333333333333333333333333333- 1072
2 8 | 2.0037696034181553438737278689296078869394 - 1014
3 57 | 4.2814541036242680424608725308114449824436- 10~ 143
4 419 | 2.3710999975681168329914604542463318249729 . 101326
5 3092 | 2.5899544469237193354708111256703110686749 - 1013344
6 22846 | 1.3063312175270580087816919230036297407401 - 10107025
7 168804 | 1.2084753305711806308265054034357601336007 - 10~270071
8 | 1247298 | 6.9312222993226491135738066834549327656340 . 10—8742945
9 | 9216354 | 3.3216970999036058275367686941671199966288 - 1()~67342884
10 | 68100151 | 9.6492736004286844634795531209398105309232 . (34381308

Table 1 Values of 1(4) for the evaluation of the integrals (1)

3 The program for the calculation of # (1) for A > 10
When trying to calculate #(4) for 4 > 10 one is faced with the following problems:

e 1 increases exponentially with A. So, given 4, the time to find the corresponding n
by computing partial sums s(72) also increases exponentially.

e Therefore, the time to compute n! and (2n)! also grows exponentially.
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e The differences s(n) — A become smaller as A increases. High-precision values of
s(n) — 4 are needed because these differences are raised to the power n.

e The calculations involve both very large and very small numbers. This may lead to
overflow and underflow.

So our program to compute high-precision values of 7 (4) for 4 > 10 in short time includes
the following measures:

e We will use logarithms. Taking the natural logarithm of (10), we get

Int(A) = nln(s(n) — ) — 2n — 1) In2 + In((2n)!) — 2 In(n!).. (11)

e We will use the Euler—Maclaurin summation formula to calculate approximate values
for s(n) and the logarithms of the factorials. In order to yield the desired precision
we will compute partial sums exactly to many digits and obtain error bounds.

e Let ¢ denote the value of 1g7(4) = (Int(4))/(In 10) where Int(4) is obtained with
Eq. (11) and Ig is the log base 10. In order to avoid underflow when trying to evaluate
t(2) with (1) = 10¢, we will extract the mantissa m and the exponent p of 7 (1), and
then display ¢ (1) in scientific notation

t(2)=m-107 with m=10" and p=¢].

4 Calculating n

Now, we calculate the value of n that satisfies the inequalities (3) for given value of A.
With the nth harmonic number
n
1

Eqg. (2) may be written as
1
S(") = Hap—1 — E Hy_y.

From the inequalities (see [5, p. 76] and [7, Eq. 15])

1 1 1
SR NP "R [N gL
IE I A “(”+ 2) ! S an2

where y is the Euler—Mascheroni constant, it follows that

I 1 1 I
In{2n— - <Hy  <If2n-= -
“(" 2)+y+24(2n)2< 2”‘<“(" 2)+y+24(2n—1)2’

1 L 1 1
in{n—- < Hyy <Infn-- -
“(" 2)+y+24n2< "1<“(" 2)+y+24(n—1)2’

hence
se(n) < s(n) < s,(n),
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where

1 . 1 1
e Bmuorp: W= e T T e

(12)
1 1 1 y
s*(n) = —=]1-=1 - = =.
s (n) =In (2!1 2) 3 n(n 2) + >

20n® —33n% + 18n — 3
96(4n° — 1213 4 13n% — 613 + n?)

s¢(n) = s*(n) +

with

Note that

su(n) —se(n) = = 0(11*3).

Therefore, if n is large, the bounds in (12) provide very good approximations to s(n).

Now we consider the equation s*(n) = 4 for a fixed value 1 > 2. From this equation we

get
—1/2
2n—l r—l =el—7/2,
2 2

1
n= 3 (2—!—62&*? +e 7 et —4e2)~+3’).

Solving for n yields

The equation

1 >
n:,'g (2+ez’]'_y+e_y \/64’1—4e7-‘+y)‘|, (13)

where [ ] denotes the ceiling function, gives an integer value of n. This n satisfies inequal-
ities (3) if it satisfies the inequalities

su(n —1) < A < s¢(n). (14)

Example: We will calculate n for 2 = 10. This allows us to check our result against Table
1. Eq. (13) gives

n = [68100150.0149] = 68100151.

We find

5.(68100150) ~ 10 — 1.09045 - 1019
5¢(68100151) ~ 10 + 7.23308 - 107,

and know that we have found the correct value of n.
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S Estimating s(n)

We use the Euler—Maclaurin summation formula to calculate the sum of the a; for any
large n. This method applies to general ax, and gives us an estimate of the error.

One version of the Euler—Maclaurin summation formula is (see, e.g., [6, pp. 542-543])

S st= [ peyaey L0EL0)

2
k=m ) B (15)
+Z o/ )' (j“("ZJ Dy — f@- l)(m)) + Ry (m,n)
with the remainder term
" B'Z,u+l(x - LXJ) -(2

R,(m,n) = #+D(x) d

2 (m, n) [ LS e ) d
n—1 (16)

Qﬂ+£ﬂ2:/mBM+Lﬂf”W”&+xﬁu

By (x) denotes the kth Bernoulli polynomial, and B; = By (0) the kth Bernoulli number.
In our case we have

1
P an a = f(k) 1

fx)=

Now we will derive an estimate of R, (m, n). For the kth derivative of f, one finds

(—1)f 25 k!

f(k)( )_(__—I)I\-H

Since all the functions |f(k)(x)|, k=20,1,2,..., are strictly decreasing, for the terms in
the sum of (16) we find

A

The absolute value of each integral on the right-hand side of Eq. (16) is at most

ol
Boui1(x) fH Dk + x) dx|.

JO

1
/ Bz;:+1(x)f(2'“+l)(m+X)dxl
0

and there are n — m of these integrals. Therefore
lR,,(m,n). < ‘ﬁ,,(m,n” (17

where

|
~ n—m (24
Ry(m,n) = /Bzﬂ+1(x)‘f(2’+”(m+x)dx.

CQu+D!Jo
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Eq. (17) is the desired estimate for R, (m, n). Furthermore, all

1
/ B3, 41(x) FHHD K+ x)dx, k=m,...,n—1,
0

have the same sign which is equal to the sign of R, (m, n), and to the sign of ﬁﬂ (m, n).
Using the integral

n

/”f(x)dx: 2xd)_c1 :%[]n(Zn—l)—]n(Zm—l)],

we get the explicit summation formula

n
1
Z T =@u(m,n)+ R, (m,n) (18)

k=m

with the approximation

1 ! :
@u(m,n) = 2 (ln(Zn — D =In@m=1)+ 2m — 1 + 2n — 1)

. 19
H 221_1321' 1 1 ( )
= 2 Cn—0D%  @2m—1)%
and the remainder term
2+1 = : BZ;H—[(X)
R, (m, n) = —2% ] .
s 2 ), Baro -1
The explicit formula for the error bound is
— 1 B X
R,(m,n) = —2%#+ (n —m) 2u+1(%) (20)

Jo [20m +x) — 11P#+2
Using Eq. (18), we have
s(n) =s(m — 1) + ¢, (m,n)+ R, (m,n).
Hence an approximation for s(n) is
Smop =8(m—1)+¢@,(m,n).

As an example we estimate s(68100151) for 4 = 10, which is used in Eq. (10) to compute
the value of 7(4). We have

s(68100151) = 5100001, 3(68100151) = s(100000) + ¢3(100001, 68100151)
= 10.000000007233082813117. ...
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A n

10 68100151
11 503195829
12 3718142208
13 27473561358
14 203003686106
15 1500005624924
16 11083625711271
17 81897532160125
18 605145459495141
19 4471453748222757
20 33039822589391676
21 244133102611731231
22 1803913190804074904
23 13329215764452299411
24 98490323038288832267
25 | 727750522131718025058

Table 2 Values of n

Eq. (10) requires that we raise the difference s(n) — 4 to the high power n. (Note the loss
of precision that occurs when we perform this subtraction.) So, we may need to compute
more accurate approximations ¢, (n, n) using values of x > 3. Table 2 above and Table 3
below display n and the approximate values of s(n) for A = 10,11, ..., 25. To obtain
these values, we use m = 100001 and compute s(m — 1) to 100 decimal places, then use
# = 10 to compute each n and ¢, (m, n).

Note that if we compute the initial sum s(m — 1) to only D decimal places, then we can
never compute s(j) to more than D correct decimal places forany j > m — 1, even if the
error estimate IR,,J is less than 1077,

For a given 4, we first compute n and the approximate value of s(n). The next task is to
compute the value of (1) using Eq. (9). The value of (s(n) — 2)" can easily be obtained
from the approximate value of s(n) in Table 3, although for large 17, we must use logarithms
to prevent underflow.

6 Estimating the logarithm of the factorials

We can write
Int(A) =nin(s(n) —4A) — 2n—1)In2 + o (n)

with
(2’1) ! 2n n
|

o (n) :=In =7 =In(@n)Y) = 2In(n) = > Ink =2 3 Ink.

k=1 k=1
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A S, (n) Ry (m,n)

10/10 + 7.2330828131174081549544093888 1892875629793229610802275303838659 - 10~ [2.10- 10104
11|11 4 1.93429694721571938243592220609208607459386666993511996115170447 - 10~ 10| 1.56 . 107103
12|12 + 2.81704757017003986061562 16335922 1047582420212335754506062428273 - 10~ 11(1.15 . 10102
13[13 + 1.51784528343340657974855459172890208869659078869207257172632024 - 10~ 11{8.50 . 10102
14|14 + 1.20004359101609629122080445652372955218041261117217502496026183 - 10~12|6.28 - 107101
15[15 + 2.1918027214988747090960676198940289 1098093034885435056479463010 - 10~ 13|4.64 . 107100
16(16 + 4.03776701092542650935062088404 14588864 1302878626731173386452500 - 10~ '4{3.43 . 10~
17[17 + 3.96811610610919880012621568968292119992007054389850812439945895 - 10~10{2.54 . 108
18/18 + 6.44184629552359167120616511513071089671769035954843683552410240 - 10~ 10{1.87 - 10797
19]19 + 4.40658835470283585071853820223887285629968834008507731684755191 - 10~ 17[1.38 . 1079
20 + 2.90258683104894913499203070153167600669577064916856020926287204 - 10~ 181.02. 109
21 + 7.34280669057054306832818424563959102068261955548079016234613646 - 10~19|7.56 - 10-9
22 + 1.30683560567708459204537388912129731492458474471888171662329379 - 10~ 19[5.58 . 1094
23 + 3.40633844408955109014083203224199839911999656758748815953125439 - 10-20(4.13 - 1093
24|24 + 3.79499658486046318316555581259771062170888781423675014763472623 - 10~21|3.05 . 10792
25 + 1.14325480646582051223669818246654129326458197624224895807362049 - 10-22(2.25 . 10~ 9!

| ST S T S T S )
W N - O

(%)
n

Table 3 Approximations for s(n) with error bound for m = 100001 and gz = 10

To get a good estimate for o (n), we will use the exact sum of m — 1 initial terms. Therefore,
we split the sums:

m—1 2n m—1 m—1 2n

o(n) = §+z >+ z Ink = — z Z > k. @b

k=m k=1 k=m k=m  k=n+l1

Ink and 32" Ink. Therefore, we apply the Euler—Mac-

It remains to estimate > ;_,. ki

laurin summation formula (15) with

fix) =Inx.
The derivatives are given by
, — D=k — 1)
F0 ) = D f Eok=1a.. (22)
X

Furthermore, we have
n n n
/ f(x)dx:/ Inxdx =x(Inx —1)| =n(lnn—-1)—m(nm —1).
m m m

This yields
n

z Ink =y, (m,n) + RZ(m, n)

k=m
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with the approximation

| |
wu(m,n) =n(nn — 1) —m(nm — 1) + nmfw
+i = : ! (23)
j=l1 2j@2j—1) \n¥-1  m2i-]

and the remainder term

n—l1

* BZ,u-H(x)
R/,(m,n) 2![ | Z /) (k4 )2t dx .

Since the absolute values of all derivatives in Equation (22) are strictly decreasing, we find
the error estimate

|R (m, n)‘ ‘ﬁ;(m,u)|

with

1
~ n—m Ba,41(x)
R*(m,n) = : dx . 24

i (m H) 2# ry 1 A (I?T T .¥)2/‘+l ( )

It follows that the approximation for (21) is given by

m—1

Om, u(n) = — Z Ink — w,(m,n)~+ w,(n+1,2n) (25)
k=1

with the error bound

[&m.u (n) — a(n)| |R (m, n)‘ + ‘R (n+1 211)[ (26)

7 Results for A > 10

We can now put all of this together to compute the values of #(Z) for many /4 values.
For example, Table 4 shows the value ¢(4) for 2 = 10...25. All digits shown below are
correct, rounded in the last decimal place.

The original draft of this paper [2] contains all of the Mathematica code that gives these
results. Although only results for integer values of 1 are shown here, this code computes
t(4) forreal 4 > 1.

To obtain the values in Table 4, we used m = 100001 and ¢ = 10 in Eq. (19). We
summed the first m — 1 = 100000 terms with Eq. (2), and then used Eq. (23) with ¢ = 5
and m = 100001 to compute logs of factorials. We computed the sum of the logs of
the first m — 1 integers to 100 decimal places. The integral in Eq. (24) was computed in
Mathematica with the option WorkingPrecision = 40.

On a 2010-vintage laptop, it took about 9 seconds for the code in [2] to generate Table 4.
This includes about 3.7 seconds to compute the sums of 100000 terms in Eq. (2), and about
2.4 seconds to compute the sum of the logarithms of the integers < 100000.
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J. 1(4)

10 | 9.649273600428684463479553120939810530923242208735398 - 1024381308
L1 | 7.57929806494947536128349934756162195412431861759227 . 10~ 4887781043
12 | 5.30200436015724605246826614752108917188558325098544 - 1039227165565
13 | 1.52739916984845667363367296109645541442392755493153 . 1029723020953
14 | 6.617345077783595182168242992545965700461478406777 - 10~ 2419966945909
15 | 5.26019597269976433379615815051550875066124252042 . 10— 8988869014266
16 | 4.06751521421327233190115950829638686972451899823 . 1~ 148452517153987
17 | 2.8703074957720537216132995767534053015103162770 - 10~ 1261337931785960
18 | 1.46932966274512803735093876340436661798499994 . |~ 192758406970262
19 | 7.36887339695623805028019042180415757921528157 - 10~ 73134639260589997
20 | 5.8024461422390775663611817270349845938468954 - 1(~379426465025122292
21 | 1.3869021709986676325063938918439160007102035 - 10~4427143349945912840
22 | 4.10151245193385022941804060193305405447094 . 1~ 34064698104956009918
23 | 1.71715972357092319138607947022428968556534 . 10~279489336406929338805
24 | 1.4982758030623762036996263232893870122517 - 10~2011250066933860707590
25 | 2.723848647528233561685563127899349771647 . 10~ 13968197862152240928105

Table 4 Values of 1 (4) for the evaluation of the integrals 7 (1)

These calculations can also be extended beyond 4 = 25. For example, running the code
with the above parameters gives, for 1 = 40,

I(40) ~ 1.8758610 - I07266134053348172015148849587491648267

As / increases, more and more of the significant digits in the calculation are consumed in
the exponent.

8 Conclusion

We show how to evaluate highly-oscillatory integrals involving the sinc function. Our
procedure has two main ingredients: a result of David and Jon Borwein, and the Euler—
Maclaurin summation formula. We show how to evaluate these integrals to high precision,
and avoid overflow and underflow, even though intermediate results are well beyond the
range of ordinary floating-point arithmetic.
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