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I Elemente der Mathematik

On a family of pseudohyperbolic disks
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1 Introduction
Hyperbolic geometiy

1

was created in the first half of the nineteenth century in the midst of
attempts to understand Euclid's axiomatic basis for geometry. The mathematicians at that
time were mainly driven by the question whether the parallel axiom was redundant or not.

It turned out that it was not. Hyperbolic geometry is now one type of non-Euclidean
geometiy that discards the parallel axiom. Einstein and Minkowski found in non-Euclidean

geometry a geometric basis for the understanding ofphysical time and space. These

negatively curved geometries, of which hyperbolic non-Euclidean geometry is the prototype,
are the generic forms of geometiy. They have profound applications to the study of com-

1

The italic text stems trom [3]

In der Funktionentheorie der Einheitskreisscheibe B spielt die hyperbolische Geometrie

eine zentrale Rolle. Bekanntlich sind wegen des Lemmas von Schwarz-Pick die

holomorphen Isometrien bezüglich dieser Geometrie nichts anderes als die konformen

Selbstabbildungen von B. Uber das Konvergenzverhalten einer Potenzreihe am
Rand ihres Konvergenzkreises gibt der Abelsche Grenzwertsatz Auskunft. Dabei spielt
der sogenannte Stolz-Winkel eine zentrale Rolle. In der vorliegenden Arbeit untersuchen

die Autoren, ob die Schar der Kreisscheiben Dp(x, r) mit festem Radius r und
— 1 < x < 1 bezüglich der pseudohyperbolischen Metrik p in B einen solchen Stolz-
Winkel bilden. Dazu bestimmen sie mit Hilfe funktionentheoretischer Mittel explizit
die Einhüllende der besagten Kreisschar.
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Fig. 1 Tilings of the Poincare disk [6]

plex variables, to the topology of two- and three-dimensional manifolds, to group theory,
to physics, and to other disparate fields ofmathematics. Outside mathematics, hyperbolic
tesselations of the unit disk have been rendered very popular by the artist M.C. Escher.

A nice introduction into hyperbolic geometry is, for example, given in the monograph [1]
and in [3].
In our note we are interested in the Poincare disk model. So let D {z C : |z| < 1} be

the unit disk in the (complex) plane which we identify with R2. The lines/geodesies with
respect to the hyperbolic geometry in this model are arcs of Euclidean circles in D that are

orthogonal to the unit circle T := {z e C : |z| 1) of D (see Figure 2). Given a line C in
the hyperbolic geometry and a point a e D not belonging to C, there are infinitely many
hyperbolic lines parallel to C (in other words disjoint from C) and passing through a (see

Figure 2). The hyperbolic distance P(a, b) of two points a and b is the hyperbolic length
of the associated geodesic and is therefore given by the integral L(y) := JJ, over
the unique circular arc y passing through a and b and orthogonal to T. Note that L(y
inf L(T), where T is any smooth curve joining a with b. Or if one prefers a nice formula:

\a-b\2 1 /ep("-b) +e-p("-h) \
H 2 7(1 - |a|2)(l - |£|2)

Let

p(a, b) tanh ^-P(a,

Then p(a,b) is called the pseudohyperbolic distance of the two points a, b and is given by

p(a, b) \-
1 - ab



On a family ot pseudohyperbolic disks 155

In other words.

P(a,b) log- ——.
1 — p(a, b)

It is this pseudohyperbolic distance that we will work with, because this seems to be the

most suitable for function theoretic aspects.

2 Function theoretic tools

Given a e D and 0 < r < 1. let

Dp(a, r) — {z e D : p(z,a) < r)

be the pseudohyperbolic disk centered at a and with radius r. It is a simple computational
exercise in complex analysis, that Dp(a, r) coincides with the Euclidean disk D(p, R)
where

1-r2 1 - M2
p s—^ « und R ~—^ r.

1 — r2\a\2 1 — r2\a\2

An important feature of the hyperbolic metric within function theory comes from the

Schwarz-Pick lemma which tells us that the holomorphic isometries with respect to p
(or P are exactly the conformal self-mappings of the disk:

Theorem 2.1 (Schwarz-Pick Lemma). Let f : B1 ^ D be holomorphic. Then, for every
z, w e D,

p(f(z), f(w)) < p(z, w),

with equality at a pair (z, w), z u>, ifand only if

/(z) eiB ° ~ Z

— az

for some a e D and 0 e (0> 2n [.
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Proof. This is an immediate corollary to the Schwarz lemma (see, e.g., [5]) by considering
the function

F := Sf(UI) o f o Sm,

where for a e B,

1 — az
is the conformal automorphism of D interchanging a with the origin.

Consider now the set of all pseudohyperbolic disks Dp(x,r), x e ] — 1, 1[, with fixed
radius r e ]0, 1[. In studying the boundary behaviour of holomorphic functions in the

disk, it is of interest to know whether the set IJxel-i i[ Dp(x> r) belongs to a cone

with cusp at z 1 and angle 2ß such that 0 < ß < n/2. A positive answer is known

among specialists in hyperbolic geometry. We never encountered a proof, though, available

for function theorists. It is the aim of this note to provide such a proof. For a nice
introduction into the function theoretic aspects of the hyperbolic geometry, see [2],

3 A union of hyperbolic disks

- /

Fig. 3 The boundary of a union of hyperbolic disks with fixed radius

Here is the assertion we are going to prove.

Theorem 3.1.

(1) The upper boundary e£+of [J Dp(x, r) is an arc of the circle

-l<Kl

:= w C :
l-r2 1 +r2

w + i — —
2r 2 r

the lower boundary is its reflection with respect to the real axis (see Figure 3).
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(2) The tangens of the angle ß under which cuts the real axis is 2r/(l — r2).

<P(Z)
ip(u)

Fig. 4 Hyperbolic disks

Before we give our proof, we observe that the largest distance dmaK, respectively, if \a\ > r,
the smallest distance dmm, of a point in Dp(a, r) to 0 are given by

j \a\~r H + >'

"min — Una Umax —
1 -rial 1 +r\a\

This can be seen by considering the conformal automorphism of the disk given by tp(z)

by noticing that the image of the disk D(0, r) Dp(0, r) is the disk D(p, R) and by

calculating the images of the boundary points ±re,arga which lie on the half-line passing

through 0 and a (see Figure 4).

Proof. (1) The proof is best done via a conformal mapping of D onto the right half-plane
(see Figure 5).

Fig. 5 The boundary of a union of hyperbolic disks with fixed radius in the right half-plane

Recall that if —1 < x < 1, then the function Sx, given by Sx(z) — (x — z)/( 1 — xz),
maps the disk D{0, r) onto Dp(x, r) with xm '= Sx(—r) (x + r)/( 1 + xr) and xm :=
Sx(r) (x — r)/(l — xr). Since Sx maps [—1, 1 ] onto [—1, 1], and since the circle D(0, r)
cuts [—1, 1] at a right angle, the angle invariance property of conformal maps implies that
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Dp(x,r) is the disk passing through the points xm andx^ and orthogonal to [—1, l].Now
we switch to the right half-plane H by using the map T(z) := (1 + z)/( 1 — z) of B onto
H. Then, by a similar reasoning, K := T(Dp(x, r)) is the disk orthogonal to the real axis
and passing through the points

1 — r 1 + x 1 + / 1 + .v
wm := TU,,,) —— and wM •- T(xM) •

1 + r 1 — x 1 — r 1 — x

Hence the center Cx of K is the arithmetic mean (u>m + wm)/2 of wm and wm, and the

radius Rx is (wm — wm)/2. Thus

1 + r2 1 + x 2r 1 + x
C, — ^ and Rx — r-

1 - r2 1 - x 1 - r2 1 - x

Note that if the center x of the pseudohyperbolic disk Dfl (x, r) runs through ] — 1, 1 [, then

the center Cx of the Euclidean disk T(D/3(x, r)) runs through ]0, oo[. Due to conformal
invariance, the boundary of (J—i<v<l r) coincides with the preimage ¥"'(<6)
of the boundary ^ of

5:= (J f(Dp(x,r))= |J K{CX,RX).
— 1 <A < I — 1 <.Y < 1

We show that ^ is the union of the half-line {e'h : t > 0} and its reflection{: t > ()},
where ß is the angle with sin ß 2/-/(1 + r2) (for a first glimpse, see Figure 5).

For a fixed x e ] — 1, 1[, consider in the first quadrant the tangent T to K(CX, Rx) that

passes through the origin. Let ßx be its angle with respect to the real axis. Then

• «
2r

sin/?,
Cx l+r2

This is independent of x. Hence T is a joint tangent to all the Euclidean disks K (Cx, Rx).
In other words, S is contained in the infinite triangle A formed by T and its reflection. To
show that A S, we need to prove that every point on T is the tangent point of some of
the disks K(Ca, Ru) with —1 < a < 1. To this end, let P be the point on T whose distance

to 0 is t and let Tr be the line orthogonal to T and passing through P. Then T, cuts the real

line at a point x,. The unique disk K centered at x, and having P as its tangent point to T
has center C(t) and radius R(t), which are given by

C(t) x, and R(t) x, sin ß x, 2r/(l + r2)

(see Figure 6). Now

t I l+r2
X'

cos ß f 2 R
'

1 - r2f '1 — sin ß
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But t (1 + c/)(l — a) for a unique a e ] — 1, 1[. Thus

1+al+r2 _ nX< ~ 1 1 2 — "
1 — a 1 — rz

and

j 1 + a 2r
R(t) x, 2r/(I + r2) 5 Ra.

1 — a 1 — rz

We conclude that

K V(Dp(a,r)) K{Ca,Ra).

By moving back from the right half-plane to the unit disk, we see that ctj + — is

an arc of a circle which passes through —1 and 1 and cuts twice the axis [—1, 1] under
the angle ß with sin ß — 2r/(l + r2). Using Figure 7, we then deduce that the radius R of
£ coincides with the hypotenuse of the displayed triangle and so

1 1 11 +r2
^

cos a sin(y — a) sin ß 2r

Fig 7 The angle ß
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This implies that the center C of £ is given by

1 + r2 / — 1 + r2 1 — r2
C —i R sin a — —i V 1 — cos2 a — —i y —i

1 - r2

2r
v ' '

2r 1 + r2 ~ ' 2r

(2) tan ß sin(7r/2 — a)/ cos(7t/2 — a) cos a/sin a with

1 - r2 1 2r
and cos a1+r2 1 -)- r2 1+r2 1 _)_ |-2

2 r 2 r

Hence tan ß 2r/(l — r2) (see Figure 7).

A purely computational proof can be found in [4, Appendix]. There it is also shown

that the Euclidean length of '6'+ is 2~— arctan r, and that the surface enclosed by

U_i<J(;<i Dp(x,r) has Euclidean measure arctanr — ^~2—-
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