Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 70 (2015)

Heft: 4

Artikel: On a family of pseudohyperbolic disks
Autor: Mortini, Raymond / Rupp, Rudolf
DOl: https://doi.org/10.5169/seals-630636

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-630636
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Elem. Math. 70 (2015) 153 - 160 (© Swiss Mathematical Society, 2015
0013-6018/15/040153-8
DOI 10.4171/EM/290 I Elemente der Mathematik

On a family of pseudohyperbolic disks

Raymond Mortini and Rudolf Rupp

Raymond Mortini, geboren in Luxemburg, promovierte 1984 im Fach Mathematik an
der Universitit Karlsruhe, vier Jahre spiter folgte die Habilitation. Nach einer aus-
serplanmissigen Professur in Karlsruhe wurde er im Jahr 1995 auf eine ordentliche
Professur an der Université de Metz berufen. Seine Arbeitsgebiete umfassen Funk-
tionentheorie, Funktionalanalysis und Operatorentheorie.

Rudolf Rupp promovierte 1988 im Fach Mathematik an der Universitiit (TH) Karls-
ruhe. Wihrend der Assistentenzeit erfolgte die Habilitation 1992. Nach einer Be-
rufstitigkeit ausserhalb der Hochschule erfolgte im Jahr 2003 die Berufung auf eine
Professur fiir Mathematik an die Technische Hochschule Niirnberg. Die Forschungsin-
teressen liegen in den Bereichen Funktionentheorie, Banach-Algebren und Topologie.

1 Introduction

Hyperbolic geometry ' was created in the first half of the nineteenth century in the midst of
attempts to understand Euclid’s axiomatic basis for geometry. The mathematicians at that
time were mainly driven by the question whether the parallel axiom was redundant or not.
It turned out that it was not. Hyperbolic geometry is now one type of non-Euclidean ge-
ometry that discards the parallel axiom. Einstein and Minkowski found in non-Euclidean
geomeltry a geometric basis for the understanding of physical time and space. These neg-
atively curved geometries, of which hyperbolic non-Euclidean geometry is the prototype,
are the generic forms of geometry. They have profound applications to the study of com-

I'The italic text stems from [3]

In der Funktionentheorie der Einheitskreisscheibe D spielt die hyperbolische Geome-
trie eine zentrale Rolle. Bekanntlich sind wegen des Lemmas von Schwarz—Pick die
holomorphen Isometrien beziiglich dieser Geometrie nichts anderes als die konfor-
men Selbstabbildungen von . Uber das Konvergenzverhalten einer Potenzreihe am
Rand ihres Konvergenzkreises gibt der Abelsche Grenzwertsatz Auskunft. Dabei spielt
der sogenannte Stolz-Winkel eine zentrale Rolle. In der vorliegenden Arbeit untersu-
chen die Autoren, ob die Schar der Kreisscheiben D, (x, r) mit festem Radius r und
—1 < x < 1 beziiglich der pseudohyperbolischen Metrik p in ) einen solchen Stolz-
Winkel bilden. Dazu bestimmen sie mit Hilfe funktionentheoretischer Mittel explizit
die Einhiillende der besagten Kreisschar.
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Fig. 1 Tilings of the Poincaré disk [6]

plex variables, to the topology of two- and three-dimensional manifolds, to group theory,
to physics, and to other disparate fields of mathematics. Outside mathematics, hyperbolic
tesselations of the unit disk have been rendered very popular by the artist M.C. Escher.
A nice introduction into hyperbolic geometry is, for example, given in the monograph [1]
and in [3].

In our note we are interested in the Poincaré disk model. Solet D = {z € C: |z] < 1} be
the unit disk in the (complex) plane which we identify with R%. The lines/geodesics with
respect to the hyperbolic geometry in this model are arcs of Euclidean circles in D that are
orthogonal to the unit circle T := {z € C : |z| = 1} of D (see Figure 2). Given a line C in
the hyperbolic geometry and a point @ € D not belonging to C, there are infinitely many
hyperbolic lines parallel to C (in other words disjoint from C) and passing through a (see
Figure 2). The hyperbolic distance P (a, b) of two points a and b is the hyperbolic length
of the associated geodesic and is therefore given by the integral L(y) := f} 12_'[(1#
the unique circular arc y passing through a and b and orthogonal to T. Note that L(y) =
inf L(I"), where I is any smooth curve joining @ with b. Or if one prefers a nice formula:

,a o b|2 1 eP(aJ)) + efP(a,l))
= - — 1.
(1 —la®a-— e 2 2

1
pla, b) = tanh (EP(a, b)) :
Then p(a, b) is called the pseudohyperbolic distance of the two points a, b and is given by

a—>b
l—ab|”

over

Let

pla,b) =
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V)
=

Fig. 2 Infinitely many lines parallel to line C and passing through point a.

In other words,
1+ p(a,b)

l_p(avb)

It is this pseudohyperbolic distance that we will work with, because this seems to be the
most suitable for function theoretic aspects.

P(a, b) = log

2 Function theoretic tools

Givena e Dand 0 <r < 1, let
Dy(a,r)={zeD:p(z,a) <r)

be the pseudohyperbolic disk centered at @ and with radius r. It is a simple computational
exercise in complex analysis, that D, (a, r) coincides with the Euclidean disk D(p, R)

where
1—r2 1 —|al?

p=———aandR= ————r.
P 1 —r2|al? «an l—rzjalzl

An important feature of the hyperbolic metric within function theory comes from the
Schwarz—Pick lemma which tells us that the holomorphic isometries with respect to p
(or P) are exactly the conformal self-mappings of the disk:

Theorem 2.1 (Schwarz—Pick Lemma). Let f : D — D be holomorphic. Then, for every
z,w €D,
p(f(2), f(w)) = p(z, w),

with equality at a pair (z, w), z # w, if and only if

0 d—2Z
f(2) zt’lﬁ'—_
| —az

for some a € D and 0 € [0, 2x|.
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Proof. This is an immediate corollary to the Schwarz lemma (see, e.g., [5]) by considering

the function
F = S_f(w) o f o Sw,

where fora € D,

a—Z
Sa(z) = =
l1—-az
is the conformal automorphism of [D interchanging a with the origin. O

Consider now the set of all pseudohyperbolic disks D,(x,r), x € ] — 1, 1[, with fixed
radius r € ]0, 1[. In studying the boundary behaviour of holomorphic functions in the
disk, it is of interest to know whether the set Uxe]—l,l[ D, (x, r) belongs to a cone

[Im z|

A(f) := {zeD: <tanﬂ}

with cusp at z = 1 and angle 2/ such that 0 < f < 7w /2. A positive answer is known
among specialists in hyperbolic geometry. We never encountered a proof, though, avail-
able for function theorists. It is the aim of this note to provide such a proof. For a nice
introduction into the function theoretic aspects of the hyperbolic geometry, see [2].

1 —Rez

3 A union of hyperbolic disks

Fig. 3 The boundary of a union of hyperbolic disks with fixed radius

Here is the assertion we are going to prove.

Theorem 3.1.
(1) The upper boundary €™ of U D,(x,r) is an arc of the circle

—l<x<l
B 1 + r?
- 2r ’

the lower boundary is its reflection with respect to the real axis (see Figure 3).

1—r2

w—+i
r

Q::lwe@:
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(2) The tangens of the angle f under which €T cuts the real axis is 2r /(1 — r?).

Fig. 4 Hyperbolic disks

Before we give our proof, we observe that the largest distance dp,x, respectively, if |a] > r,
the smallest distance dpyn, of a pointin D, (a, r) to 0 are given by
la| —r lal +r

il o = .
g T RS

dmin =

This can be seen by considering the conformal automorphism of the disk given by ¢ (z) =
la—;i by noticing that the image of the disk D (0, r)‘= D, (0, r) is the disk D(p, R) and by
calculating the images of the boundary points +re’ €“ which lie on the half-line passing
through O and a (see Figure 4).

Proof. (1) The proof is best done via a conformal mapping of ID onto the right half-plane
(see Figure 5).

Fig. 5 The boundary of a union of hyperbolic disks with fixed radius in the right half-plane

Recall that if —1 < x < 1, then the function Sy, given by S,(z) = (x — 2)/(1 — x2),
maps the disk D(0, r) onto D, (x, r) with xy 1= 8y (—r) = (x +r)/(1 4+ xr) and x,, :=
Sy(r) = (x—r)/(1 —=xr).Since Sy maps [—1, 1]onto [—1, 1], and since the circle D(0, r)
cuts [—1, 1] at a right angle, the angle invariance property of conformal maps implies that
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D, (x, r) is the disk passing through the points x,, and x s and orthogonal to [—1, 1]. Now
we switch to the right half-plane A by using the map ¥ (z) := (1 + z)/(1 — z) of D onto
H . Then, by a similar reasoning, K := W (D, (x, r)) is the disk orthogonal to the real axis
and passing through the points

l—r 1+x l+r 14+x

and =Yy = ;
I 4+r 1 —x - (o) l—r 1 —x

Wy = Y(x,) =

Hence the center C, of K is the arithmetic mean (wy + wy,)/2 of w,, and wys, and the
radius R, is (wp — w,,)/2. Thus

Note that if the center x of the pseudohyperbolic disk D, (x, r) runs through | — 1, 1[, then
the center Cy of the Euclidean disk ¥ (D, (x, r)) runs through ]0, oo[. Due to conformal

invariance, the boundary ¢ of |J_,_,_, D,(x,r) coincides with the preimage ¥-1(%)
of the boundary % of

S = U W(D,(x,r)) = U K(Cy, Ry).

—1l<x<l —l<x<l

We show that % is the union of the half-line {¢?7 : ¢ > 0} and its reflection {e /¢ : t > 0),
where £ is the angle with sin # = 2r/(1 + r?) (for a first glimpse, see Figure 5).

For a fixed x € ] — 1, 1[, consider in the first quadrant the tangent 7 to K (C,, R,) that
passes through the origin. Let £, be its angle with respect to the real axis. Then

. R, 2r
sinfiy = C_\ = o

This is independent of x. Hence T is a joint tangent to all the Euclidean disks K (Cy, R,).
In other words, S is contained in the infinite triangle A formed by T and its reflection. To
show that A = §, we need to prove that every point on 7 is the tangent point of some of
the disks K(Cy, R,) with —1 < a < 1.Tothisend, let P be the pointon 7" whose distance
to 0 1s t and let 7; be the line orthogonal to T and passing through P. Then 7, cuts the real
line at a point x,. The unique disk K centered at x; and having P as its tangent point to T
has center C(r) and radius R(¢), which are given by

Cty=x; and R(r) =x;sinf =x; 2r/(1 +r%)

(see Figure 6). Now

o 1 142
"Tcosp 1—r2

x
1 —sin*
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Fig. 6 The tangent T

But7 = (1 +a)(1 — a) forauniquea € | — 1, 1. Thus

l+al+r?
. —_:C(
e 1—al—#2 !
and
5 l4+a 2r
R(t)=x;2r/(14+r°) = > = Ryq.
l—al—r-

We conclude that
K = lP(Dp((l,r)) = K(Cm Ru)-

By moving back from the right half-plane to the unit disk, we see that '+ = W~1(T) is
an arc of a circle € which passes through —1 and 1 and cuts twice the axis [—1, 1] under
the angle # with sin # = 2r/(1 +r?). Using Figure 7, we then deduce that the radius R of
¢ coincides with the hypotenuse of the displayed triangle and so

1 | | 14 r?

R —s —_ —_— =
cosa  sin(5 —a) sinf 2r

Fig. 7 The angle /
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This implies that the center C of € is given by

14 r? 14r2 1—r2 i—
C = —iRsina = —i nr V1—cos?a=—i T r d
2r 2r 142 2r

(2) tan f = sin(x /2 — a)/cos(7 /2 — a) = cosa/ sina with

1—"2 1 2
) 5y —r 1 2r
sino = = and cosa = = ’
1+f‘2 l -|_ rz l-H/'z 1 + rz
2r 2r

Hence tan # = 2r/(1 — r?) (see Figure 7).

a

A purely computational proof can be found in [4, Appendix]. There it is also shown
that the Euclidean length of €7 is Zl—t'—2 arctanr, and that the surface enclosed by

2 5
: 1+r° 1-r2
U—1<.\'<l D, (x, r) has Euclidean measure (T) arctanr — <——
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