Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 70 (2015)

Heft: 4

Artikel: The mystery of the number 1089 : how Fibonacci numbers come into
play

Autor: Behrends, Ehrhard

DOI: https://doi.org/10.5169/seals-630635

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 21.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-630635
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Elem. Math. 70 (2015) 144 — 152 © Swiss Mathematical Society, 2015
0013-6018/15/040144-9
DOI 10.4171/EM/289 | Elemente der Mathematik

The mystery of the number 1089 —
how Fibonacci numbers come into play

Ehrhard Behrends

Ehrhard Behrends ist Professor im Ruhestand. Bis 2014 hat er an der Freien Univer-
sitiit Berlin gearbeitet. Seine Spezialgebiete sind Funktionalanalysis und Wahrschein-
lichkeitstheorie. Seit Jahren ist er auch in der Popularisierung der Mathematik aktiv.
Mehrfach hat er Arbeiten zum mathematischen Hintergrund von Zaubertricks publi-
ziert. Seit 2014 ist er Mitglied des Magischen Zirkels von Deutschland.

Choose any positive number a with three digits where the last digit is smaller than the first
one. Reverse the order of the digits and calculate @ minus the reverse of a. Call the result
b and add to b the reverse of b. The result will always be 1089.

As an example consider @ = 745. First we calculate 745 — 547 to obtain b = 198. And
really one has 198 4+ 891 = 1089 as predicted'. One can prove this fact by using very
elementary arithmetic.

It has often been transformed to a mathematical prediction trick. One finds it in many

books concerned with magical tricks with a mathematical background, and GOOGLE of-
fers more than 1.6 million links when asking for “1089 trick™.

INote that b has to be considered as a three digit number when we reverse it: for example, the reverse of 011
is 110. If one wants to avoid this somehow artificial extra rule one could restrict oneself to numbers a where the
first digit minus the last digit is larger than one.

Wenn man eine dreistellige Zahl xyz (mit x > z) spiegelt und das Ergebnis zyx
von xyz abzieht, erhdlt man eine Zahl def. Uberraschenderweise ist dann immer
def + fed = 1089. Dieses Phiinomen wird oft fiir einen Zaubertrick verwendet. In
der vorliegenden Arbeit wird untersucht, was passiert, wenn man statt mit einer drei-
stelligen Zahl mit einer n-stelligen Zahl beginnt, wobei n ganz beliebig sein kann. Es
ist dann nicht mehr richtig, dass man immer das gleiche Endergebnis erhilt. In der
Regel werden — je nach Startzahl — am Ende verschiedene Zahlen herauskommen, die
Anzahl moglicher Endergebnisse ist aber immer bemerkenswert klein. Zwei Tatsachen
sind iiberraschend. Erstens treten bei der Formulierung des Ergebnisses die Fibonacci-
Zahlen auf. Und zweitens ist der technische Aufwand, den man fiir den Beweis auf-
bieten muss, sehr viel hoher, als man es bei so einem Problem aus der elementaren
Arithmetik vermuten wiirde.
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The aim of the present note is to investigate what happens if one replaces three digit num-
bers by numbers of arbitrary length. More precisely we fix an n > 2, and we will consider
n-digit numbers a = ajay...a, with a; € {0,...,9} and a; > a,. Then we calculate
ay...ay, —ay...ay, and we write this positive number as b ... b,. Finally we calculate
by...by + by ...by, this number will be called ¢, (a).

Suppose, e.g., that we consider in the case n = 6 the numbera = 242141.Then b, ...bs =
242141—141242 = 100899, and ¢ () = 1008994998001 = 1098900. In the case n = 4
and a = 8007 we calculate as follows: 8007 — 7008 = 0999, and 0999 + 9990 = 10989;
note that always (as in the case n = 3) by ... b, has to be considered as an n-digit number,
leading zeros have to be taken into account when passing from by ... b, to b, - - - by.

Our investigations started with the observation that all ¢3(aja2a3) equal 1089 when aaza3
runs through the positive numbers with 3 digits such that a; > as. Itis not true, however,
that also for larger n all ¢,(a; - --a,) coincide. But we will be able to show that there
are always surprisingly few different numbers in the range of ¢, and that — completely
unexpectedly — Fibonacci numbers enter the scene.

We will also treat another generalization: up to now we worked in the decimal system, but
one could ask the same question if the numbers under consideration are represented other-
wise. What happens, e.g., with dyadic numbers or with numbers represented in the hexa-
decimal system when we apply the same rules? In the sequel the number B € {2,3,...}
will be fixed, and we will expand integers in the B-adic system. Those readers who are not
interested in the general approach should replace B by the number 10 in the sequel to stay
in the well-known decimal system.

Here are the relevant definitions:

e /g, =1{0,..., B— 1}"denotes the set of B-adic expansions of the integers m with
0 <m < B" — 1. The elements of /g, will be written as (a; . ..a,)p. For example,
(20045) 10 is “really” the number 20045, whereas (10011); is the dyadic expansion
of the number 19.

. I;_” stands for the (a; ...a,)p € I, such thata; > a,.

e The map pp., : Ip., — Ip., reverses the order: pp , @ (ay...a,)p +— (a,...a1)p.

e 0p, : 15_” — Ip, maps an (aj ...ay,)p to the B-adic expansion of the difference
(ay...ay)p minus pB‘,,((al .. .a,,)B).

e gg, : Ig.yn — Ip.n+1 maps a (by...b,)p to the B-adic expansion of the sum of
(by...b,)p and pB_,,((bl .. .b,,)B); it can happen that this number has n + 1 B-adic
digits. Example: a5 3((243)5) = (243)5 + (342)s = (1140)s.

e And finally, ¢p ., : I;J, — I 41 is defined by ¢p , := op , 00p 5. (Note that ¢yg
coincides with the map ¢, that was introduced above.)

Admittedly these are rather technical definitions, but they are necessary for a formal gen-
eralization of the rule that we have described above when introducing the 1089 trick.

How many elements are there in the range of ¢p ,? Here is our main result:

Theorem. Depending on whether the integer n > 2 is even or odd we write n as 2r or
2r+1. The sequence Fy, Fa, F3, ... denotes the usual Fibonacci sequence 1,1,2,3,5, ...



146 E. Behrends

Then precisely F», different numbers will occur as ¢p ((a( . a,,)B) when (a;---a,)B
runs through the elements of I;,n: there is | = F> number forn = 2 and n = 3 (this
corresponds to the original trick), the cases n = 4 andn =5 give rise to 3 = Fy different
numbers etc.

As two immediate consequences we note:
e The number of possible candidates for the ¢35, ((a1 o a,,)B) does not depend on B.

e This number is tiny when compared with the elements of I . The proportion for

even n is of order F,,/B" ~ (p/B)" where ¢ = (1 + +/5)/2 = 1.618... is the
golden ratio.

The rest of this note is devoted to the proof of this theorem. It will depend on an elementary
but nevertheless surprisingly involved analysis of the arithmetic that is used to transform
(ay---ay)p € I;,” to Pp.n ((a1 . -a,,)B). At the end of this note one finds proposals how
to use our result for a mathematical magical trick.

Reminder 1: differences. Most readers will be surprised to be reminded of some very
elementary school arithmetic in a scientific mathematical paper, but this will be necessary
to explain a definition that will be important for our investigations.

Carries will play a crucial role here, three variants will be used in the sequel (the 7, the
1y, and the vy).

Lete = (e;---ey)pandd = (dy---dy)p in Ig, with e > d be given. How does one
calculate e — d in B-adic expansion? One works backwards from the last digit to the first
one, sometimes — when calculating the kth digit — it might be necessary to “borrow™ a
1 from the (k — 1)th digit. (It should be noted that school children are taught different
strategies: in Germany, e.g., one adds a “1” to dx—| whereas in the USA one “borrows™ a
1 fromer_1.)

The first family of carries #,, 41, ty, tn—1, . . ., {1 1s defined as follows: #,, 1| :=0and , :=0
if ex > di + ty4+1 and 1y := 1 otherwise. Then the kth digit of ¢ — d in B-adic expansion is
Bty +er — (dp+1t,+1) € {0, 1,...,B—=1} (k=n,n—1, ..., 1). We will use the notation
Cle,d):=1--ty.

Here are two examples for the usual decimal system to illustrate this definition: (5553) 19—

(1223) leads to 11121314 = 0000, i.e., C((5553)1(), (1223)10) = 0000. And (555370) 10 —
(499999) yields C((555370)10, (499999)1()) =0I1111.

Of particular interest will be the #1 . . .7, when we calculate the difference dg ,(a) = a —
peala)fora=(ay---an)p € ly .

By .5 : IE’” — {0, 1}"" we denote the map that associates to @ = (a;---ay)p € Iy,
the pattern C((al ceean)p, (ay -+ -al)g). (So that, e.g., r10,7((4555552)|0) =0I11111.)
Tp.n C {0, 1}" stands for the range of 75 .

Our strategy to prove the theorem will be as follows: first we will determine in Lemma 2
the cardinality of Tg ,,, and then we will show in Lemma 3 that there is a bijection between
Tp., and the range of ¢p ;.



The mystery of the number 1089 — how Fibonacci numbers come into play 147

The following facts can easily be verified:

Lemma 1. Fixa = (a;---ay)pg € 11’;’” andput ty ...ty .= tp.,(a).
(i) ty =0andt, = 1.
() If ar > ap—p+1 thenty = 0; if ar < ap—k+1 then tp = 1, if ap = ay—+1 then
=ty (k=1,...,n).
(iii) For k = 1,...,n the kth digit of op ,(a) is ty B + ar — (ap—k+1 + tx41) ; here, as
above, we put tyy) = 0.
In order to be able to calculate the cardinality of Tg , by a recursion formula we will need
some further definitions:
l. TS.H (resp. Té.”) denotes the collection of the ¢ - - - #,, € Tp_, such that 1, = 0 (resp.
r = 1). And ¥, (resp. ¥ resp. V) stands for the cardinality of Ty, (resp. Tg’”

resp. T_,_;_”). We note that, by part (ii) of the preceding lemma, 7, does not depend
on B.

N

. Amap ug, : 13” — {0, 1}" (a variant of 73 _,) is defined by a = (a;---a,)p —
Uy Uy = C((al <eay)p, (ay - -(120)3) : before calculating the difference of a
and the reverse of a the last digit of this reverse is changed to zero.

It is clear that always u,, = 0 and u; = 0 hold.

3. Mg, denotes the range of wup,, and Mg , (resp M,'g ) is the collection of the

uy---u, € Mg, such that up = 0 (resp. up = 1). And @, (resp. (Dg resp. (D,l,)

denotes the cardinality of Mp , (resp. Mg_” resp. M}B_”).

Here are some concrete calculations. First we will restrict ourselves to the case of even n,
we will write n = 2r.

1) We start with n = 4. For the calculation of 7g 4(a) for a certain a = (ajazazas) € 1;‘4
one only needs to know whether a» < a3, a2 = a3 or a; > as. And therefore, if one wants
to identify the elements of 7z 4, one only has to treat three examples. We choose (£0£0) g,
(£000)p and (S00)g, where f := B — 1. The following table shows these a together
with the associated 75 4(a):

a (B0B0)p | (O00)5 | (BB00)s
tpa || 0101 0111 0011

It follows that W) = 1, ¥} = 2 and W4 = 3.

And here is the corresponding table for Mg 4:

a (BOLO)R | (SO00)5 | (BBO0)s
| wpa || 0100 0000 0010

We conclude that ®f) =2, ®} = 1 and 4 = 3.
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2) Next we consider the case n = 6. This time 9 different a € I , have to be treated in
order to exhaust all possibilities: a» <, =, > as and a3 <, =, > a4. In the table one sees
our choice of a and the corresponding 75 ¢:

a

(BO0SL0) B

(£00050) p

($04050) B

(£00£00)

(£00000) 5

011001

010001

010101

011011

011111

TB.6

a

($0£000)

($0B00)

(4/0000) 5

(A1/000)

TB.,6

000111

001011

001111

000111

Thus ‘Pg = 3 ‘P(: = 5 and W = 8; note that the pattern 000111 appears twice in this

table, it has to be counted only once.

The range of i g ¢ contains the following elements:

a || (B00SA0)p | (BO00S0)p | (BOSOS0)B | (S00500)p | (SO0000)p

tpe || 011000 010000 010100 011000 000000
a || (0OB000)g | (BpO0O0)E | (BF0000) | (BAFO00)R
{pe || 000100 001010 001110 000110

It follows that dY = 5, @ = 3 and O = 8.

Lemma 2.

(1) The following recursion formulas hold for r > 1:
0 1 | 0 a0 | .
‘{12(,+]) = q"z,.‘ \PZ(r—H) = ‘}’2’4 + q)zr, (DZ(I+1) - q)zr ‘I‘ \le'v q—)z(’.+l) = (I)zr

(i) W2, = Fa, where Fy, denotes the 2rth element of the Fibonacci sequence Fj,
F,---=1,1,2,3,5,8,...
(ii1)) Write n = 2r ifn is even andn = 2r + 1 if n is odd. Then Tg , has F>, elements.

Proof. (i) It will be convenient to write an a € IE,Z(H-I) in the form

a= (ayaay - ay—1a'axy)p

with a,a’ € {0,..., B — 1} (so that, e.g., a> denotes the third digit in a). Put a :=
(aj ---az)p € IE,Z’,, t1 -ty = tgo(a)and uy---uz = ppor(a). Then it follows
from elementary arithmetic that:
o If a < a' then TB’Z(r+1)([~I) =0lus---uz,—101 and
1B.2(+1)(@) = 0luaus - - - uz,—100;
o Ifa = a’then tp 5,4 1y(@) = Onnat3-- 12—y 11 and
1. 2(r+1)(@) = OQuaugus - - - uz,—100;
o Ifa > a' then g 2(41y(@) = 00r2--- 12,111 and
1 20+n1(a) = 00013 - - - 12,1 105
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The recursion formulas can now be deduced easily:

a) How many elements are there in Tg >+ 1) They are generated only when a > o'

or when a = a’. In the second case only the a@ with r; = 0 contribute, but these are
already part of the collection generated by & > a’. This proves ‘P(Z)(I_H) = Y.

I
2(r+1)
these patterns are different: the last but one digit in the first family (from a < &') is

0 whereas it is 1 in the second. This shows that \PZI(H-I) — ‘le,. + Oy,

b) Only the @ with & < o’ and the a with @ = &' and 1, = 1 count for ¥ and all

c¢) and d) The recursion formulas for (D(Z)(r+l) and (Dé( are justified in a similar way.

r+1)
(i) By the above calculations we know that ‘PQ = <DL'1 = F>, ‘PJ = (I)g = F3and ¥4 =
®4 = Fy. It follows easily from the relation Fy + Fy41 = Fj42 and the recursion formulas
from (i) that always ‘}‘g,_ = (D%r = Fy_2, ‘le,_ = (D(z)r = Fr_; and Y, = Oy, = F,.
This proves the claim for r > 2; for r = 1 it is trivially true.

(iii) The case of even n = 2r is covered by (ii) since ¥, counts the elements of 7 »,.
Now let n = 2r + 1 be odd. By Lemma 1 (i1) we know that any ¢, ---t, € Tp_, satis-
fies 1,41 = t,42 since ax = ay—j+) fork = r 4+ 1. Therefore | - - -t ty 1 1ty42 - 1y >
f] -« tyly42 -+ -1, 1s a bijection between Tp 2,41 and Tg 2. ]

Reminder 2: sums. Summation in B-adic expansion is easier than subtraction. Let d =
(dy...dy)pand e = (e ...e,)p in I, be given. Denote by vy the carry that occurs when
calculating the kth digit of d 4 e. This means that we define vy, ..., v,, v,4 recursively
by v,4+1 :=0,and vy = 1 (resp. vk 1= 0) if dx +ex +vr4+1 = B (resp. dy +ex +vi+1 < B);
k =n,n —1,...,1. Then the B-adic expansion of d + e is given by vjcy ... c,, where
Ck ‘= 0ky1 +dy +ex —vgBfork=1,...,n.

It will be convenient for us to have an intermediate step in our calculation: first we cal-
culate the numbers Ry :==dy + ¢, € {0,...,2B —2} (k =1, ..., n), and from these we
determine the B-adic expansion of d+e. For example, (34201)5+(44033)5 is calculated as

(34204)s + (44033)s — (7,8,2,3,7) — (133242)s;

here the carries are vjvov3v405 = 11001.

Of particular interest will be the case d = (by ---b,)p = 0 4(a) and e = (b, - - - by) g for
a=(ay---ay)p € I;”. Let such an a be given. We already know (Lemma 1 (iii)) that the
kth digitof b = (by ---by)p := 0p.nla) is tx B + ay — (ay—k+1 + tk+1). Therefore by plus
the kth digit of pg ,(b) is

Ry := by + bp_g41
=B +a; — (an—k+l + Il\'—}-l) + li—k+1 B + p—k+1 — (ﬂk + rn—k-l-Z)
= (Ik + th—k+1)B — (k41 + In—k+2).

(This is a crucial observation: the Ry, ..., R, only depend on the # and not on the ay.) In
order to calculate ¢pp ,(a) as a B-adic number it remains to work from the right to the left:
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we define the vy as the carries when determining (by ---b,)p + (b, ---b1)p as aboveZ.
Then with ¢ := Ry + vgy1 — vg B one has ¢p p(a) = (v1cy...cn)B.

Here is an example, we consider @ = (5677321)¢. Then d10.7(a) = (4439556)0 and
(Ry,...,R7) = (10,9,8,18,8,9,10). Consequently ¢197(a) = (10998900);¢ with
v;---v7 = 1001011.

Lemma 3.
(i) Rk = Ry _yy1,and Ry € {0,B—2,B — 1, B,2B — 2} for all k.
(i) Themap t;---t, — (R, ..., Ry) (fromTp, t0 {0,B —2,B —1,B,2B —2}") is
one to one.

(iii) The map (Ry, ..., Ry) — vjcy---c, (from the (Ry, ..., Ry) that are generated by

the (ay---ay)p € I;;m to Ig 1) is one to one.

Proof. (i) The symmetry is a consequence of the definition: Ry = by + by_j+1 for k
I,...,n. That Ry liesin {0, B — 2, B — 1, B,2B — 2} follows from the formula R; =
(tx + th—k+1)B — (tx+1 + th—k+2) and the fact that Ry is the sum of two elements in
{0,1,..., B —1}.

(i) We have to show that it is possible to reconstruct ¢ - - - f,, from (Ry, ..., R,). Always
t1 =0 =1t,41 and 1, = 1 hold so that

Ri=(+6)B—-(t2+t41)=B—n.

In this way we have identified 1y, 12, 1,. The remaining 7, will be found by working re-
cursively “inwards”; from ¢y, 12,1, to t1, 2, 13, ty_1, 1y, then to 1y, 12, 13, 14, ty—2, ty—1, In
etc.

Suppose that we know for some k& > 2 the r{, ..., 1, ty—k42,...,1,. What can be said
about #;4| and #,_;4+1? We consider four cases separately.

Case 1: ty = ty—k4+2 = 0. Inthiscase Ry = (tx +ty—k+1)B — (tg+1 +Hty—k42) = th—k+1 B —
tx+1 holds, where Ry is known. 741 and 7,4+ can now be identified with the help of (i):
the number Ry is one of the numbers B, B — 1,0, and this yields t, 441 = 1,41 =0or
th—k+1 = L, kg1 = lort,_gy1 = tk+1 = 0, respectively.

Case2:ty = 1, ty—g42 =0.Then Ry = (1 +t,—4+1)B — tx+1. Ri equals B, B —1,2B or
2B — 1, and in each case one can reconstruct #x 4+ and t,_44. (For example, if Ry = 2B,
then necessarily t, 441 = l and 141 = 0.)

Case 3 (tx = 0,142 = 1) and case 4 (tx = t,—x+2 = 1) are treated in a similar way.
This proves (ii).

(ii1)) How can one find Ry, ..., Ry if vjcy - - - ¢, are known? We have R, = B — 1 so that
R, = Bor R, = B — 1. Thus it follows in the case ¢, = O that R, = B and v, = 1
whereas ¢, = B — 1 yields R, = B — 1 and v, = 0. The number v is also known
by assumption so that we can start our recursion with the known numbers Ry = R,, and

Zle., vyl = 0,and vg = 1 (resp. vy = 0) if Ry +vi4y = B (resp. < B).
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U1, Uy. As in the proof of (ii) we work from the extreme left and right indices to the inner
ones: from1l,ntol,2,n — 1, n etc.

Supposethat Ri (= R,), Ro(= Ry—1), ..., Rik(= Ry—k+1)and oy, ..., 0k, On—k41s- .-, Up
are already found. We will determine Ry (= R,—x) as well as vy and v, ;. Write the
B-adic expansion of Ry as (aa')g;herea € {0, 1}anda’ € {0,B—1,B —2}.

Step 1: First we identify vgy1. As an example consider a case where Ry = ¢y = B — 1.
Then vy 4| necessarily is 0 since vg4+) = 1 would imply ¢x = 0. Similarly vg+; = 0 must
hold whenever Ry = ¢ or — in situations where Ry = (10)p or Ry = (1, B — 2)g — when
c equals the second (counted from left to right) B-adic digit of Ry. In all other cases one
knows that vg4| = 1.

Step 2: We determine o’. By assumption we know v,_g4. If this number is zero then
a' = ¢, . In the case v, ;1| = 1 we consider two cases. If ¢, = 0 we recall that ¢,
equals the second digit of &’ + 1 so thata’ = B — 1 and v, = 1 (a carry is necessary).
In the case ¢,—; > 0, however, we can conclude that e’ = ¢,,—x — 1.

Step 3: What about a? Suppose that ¢;y; = «a’. This implies that @ = vg41. And what
happens if a” # cgy1? If cg+1 = O this is possible only if @' = B — 1 and then necessarily
o = 0 (since Ry4+1 < 2B — 1). In the case ¢441 > 0 we can conclude that the carry, if
there is one, was generated by a, 1.e., & = vg4+1.

Step 4: v,_x again. For certain cases v,_; was calculated already in Step 2. But now
we know more: v,_4 can be determined easily from @, @” and v, _441:if @ = 1 ora’ +
Up—k+1 = B thenv,_; = 1, and otherwise it follows that v, = 0. O

The proof of the theorem is now easy: Write n = 2r orn = 2r + 1. By Lemma 2 there
are >, elements in Tg ,, and by Lemma 3 there is a bijection between Ty, and the
range of ¢p ;.

We conclude this note with some examples and remarks:

1. The numbers Ry lie in {2B — 2, B, B — 1, B — 2,0}, and the kth digit of the final
result is the last digit of Ry + vx41. This explains why all digits of the ¢p ,(a) lie in
0,1,B—1,B —2}.

2. If one deals with 4 digits there will be F4 = 3 different numbers in the range of ¢ 4. In
the following table they are depicted for the case B = 10, and the associated 7721314 are
also shown. For example, all @ = (ajaz2azaq) o € 11*0,4 for which the associated t;12t314
equals 0101 (i.e., all @ with a2 < a3) give rise to ¢4, 10(a) = 9999.

1121314

0101 (or: ax < a3)

0011 (or: a2 > as)

0111 (or: a; = asz)

9999

10890

10989

3. And here are the three numbers for n = 5:

r 12131415

00111 (or:a> < ay)

01001 (or: az > aq)

01111 (or: a» = ay)

99099

109890

109989
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4. The preceding tables can easily be transformed for the case of B-expansions: 1,0, 8,9
have to be replaced by 1,0, B — 2, B — 1, respectively.

5. Here are two proposals how to use the results of this paper for a mathematical magical

trick:

a)

b)

Let a spectator choose a number a = ajaxazas with 4 digits. (Unless one works
with mathematicians one should use the decimal system.) Two conditions should be
satisfied: a; > a4 and a» > as.

Then let him or her calculate ¢ 4(a). You, the magician, have prepared an envelope
with the prediction ¢ 4(a) = 10890 and you can be sure that it will be true. If you
prefer to impose the condition ay < a3 then the result of the spectator’s calculation
will be 9999.

The same idea can be used for integers of arbitrary length. We illustrate this idea for
numbers with 10 digits in the decimal system:

Your spectator chooses 5 pairs of digits: (x1, y1), ..., (x5, ¥5) (with x;, v; in the set
{0,1,...,9}). The only condition is that x; > y; for all k. From these pairs we glue
together the numbera = xjx2...x,y, ...y with 10 digits, i.e., we put together first
all x; and then the y; in reverse order. Then we are sure that ;.. .tjo = 0000011111,
and thus we can predict the result by calculating ¢ ¢, 10(«) for any a of this type: one
can guarantee that we will arrive at 10999890000.

6. Readers who are interested in another connection between Fibonacci numbers and math-
ematical magic should consult the paper “Fibonacci goes magic’ by the author of this note
(Elemente der Mathematik 68, 2013, pp. 1-9).
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