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Eine alternative Produktdarstellung fiir
die Kreisteilungspolynome

Wolfgang Schramm

Der Verfasser ist Arzt und Universititsdozent an der Medizinischen Universitit Wien
und beschiiftigt sich in seiner Freizeit mit Freude mit Ideen und Problemen aus der
elementaren Zahlentheorie.

1 Einleitung und Hauptergebnis

Das n-te Kreisteilungspolynom ist dasjenige ganzzahlige Polynom grofiten Grades mit

Leitkoeffizient 1, das x" — 1 teilt, jedoch zu allen x4 — 1 mitd < n teilerfremd ist. Seine
2aik

Nullstellen iiber C sind genau die primitiven n-ten Einheitswurzeln ¢« , wobei demnach

k die zu n teilerfremden Zahlen zwischen 1 und n durchliuft. Die Zerlegung des n-ten

Kreisteilungspolynoms in Linearfaktoren ist also das Produkt

2mik
O,(0) = [] «=e). (1)
1<k<n
ggT(k,n)=1
Da trivialerweise
ggT(k,n) = ggT(k mod n,n) (2)

Fiir die Kreisteilungspolynome oder zyklotomischen Polynome ®, kennt man neben
der Zerlegung in Linearfaktoren eine Reihe weiterer Darstellungen. Beispielsweise
erhiilt man mit Hilfe der Mobius-Funktion die Formel @, (x) = [y, (x¢ — 1)#(/4,
Uber die Koeffizienten der ®,, ist einiges bekannt, so sind sie ganzzahlig und wenn n
Produkt zweier Primzahlen ist, liegen die Koeffizienten in der Menge {—1, 0, 1}. Ande-
rerseits konnen sie beliebig gross werden, wie Schur bereits bemerkte. Eine besonders
schone Formel fiir @, wird in der vorliegenden Arbeit prisentiert: Sie folgt aus der
Betrachtung der diskreten Fourier-Transformation und zeigt auf einen Blick, dass die
Koeffizienten reell sind. Als Nebenergebnis erscheint eine bekannte Summendarstel-
lung der Eulerschen Phi-Funktion.
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wie auch
2rik 27i(k mod n)

e n :e—”— (3)

gilt, kann k auch ein beliebiges primes Restklassensystem durchlaufen. Es folgt daher aus
(1) ebenso trivialerweise fiir den Grad des n-ten Kreisteilungspolynoms die Ordnung der
primen Restgruppe, d. h.

Grad @, (x) = Z 1 = ¢(n) 4)

1<k<n
ggT(k,n)=1

wobei ¢ (1) die Eulersche Phi-Funktion ist. Ein Hauptresultat der vorliegenden Publikation
ist das folgende

2mik

Theorem 1. O, (x) = 1_[ (x8ETkn) _ pye™m

Produktdarstellungen fiir Kreisteilungspolynome in dieser Form wurden (soweit jedenfalls
dem Autor bekannt ist) bislang noch nicht publiziert. Das Produkt in Theorem 1 kann
selbstverstiindlich aus demselben Grund wie zuvor auch iiber ein beliebiges, allerdings
diesmal vollstindiges Restsystem modulo n notiert werden.

Da fiir alle x € R wegen ggT(k, n) = ggT(—k,n) = ggT(n — k, n) in Gleichung (1) wie

auch in Theorem 1 statt den n-ten Einheitswurzeln auch die dazu konjugiert komplexen
2rik 2ri(—k) 2ri(n—k) . . B A
e n =e¢ n  =e¢ n  durchlaufen werden kénnen und naturgemil} die Produktrei-

henfolge irrelevant ist, kann in Theorem 1 auf die komplexe Konjugation genauso gut
verzichtet, bzw. Gleichung (1) auch komplex konjugiert werden, woraus folgt, dass alle
@, (x) € R[x] reelle Polynome sind. Die Koeffizienten von ®, (x) sind bekanntermafen
sogar ganzzahlig. Die Tatsache, dass die @, (x) tiberdies irreduzibel iiber () sind, ist neben-
bei bemerkt ein Ergebnis, das fiir prime n auf C.F. Gauss [1] und allgemein auf Kronecker
[2] zuriickgeht.

Der Beweis von Theorem 1 ist mit einem Ergebnis aus [3], welches zuvor erliutert werden
soll, erstaunlich einfach und kurz: Sei

n

Eim) = Z eIt = Zé(ggT(k n)) - W (5)

k=1
ggT(k,n)=1

fiir alle m € Z und n € N die Ramanujan-Summe aus [4], wobei

1 fir n=1
o(n) = { 0 sonst

die Kronecker Deltafunktion ist. Mit nahezu analoger Argumentation wie zuvor folgt, dass
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die ¢, (m) reell sein miissen:

Z ()(ggT (k, nj) € =0 = Z J(ggT(k n)) e ”,’r"”' ;’7:’:'»”,(
k=1
= Zd(ggT(n B B Z(S(ggT(k, i
k=1 Py

weshalb (5) auch komplex konjugiert werden durfte. Sei weiter mit * die Dirichlet-Faltung
(h*g)(n) := D h(n/d)g(d) (6)
dln

zweier beliebiger zahlentheoretischer Funktionen h, g : N — C notiert. Fiir eine beliebige
zahlentheoretische Funktion f : N — C wurde in [3] gezeigt, dass wiederum fiir alle
me Zundn € N

> flegTkom) -0 =" fn/d)ca(m) = (f * calm))(n) 7)

k=1 d|n

gilt. Mit e wurde die Faltungssummationsvariable, d.h. alle positiven (echten und unech-
ten) Teiler d von n bzw. Koteiler n/d (was in der Summe letztlich auf dasselbe hinausliuft)
angedeutet.

Bereits Ramanujan hat mit den nach ithm benannten Summen interessante Darstellun-
gen fiir zahlentheoretische Funktionen gefunden und Nicol [5] hat sogar gezeigt, dass die
Kreisteilungspolynome @, (x) mittels der Ramanujan-Summen ¢, (m) darstellbar sind, ei-
ne sicherlich interessante Tatsache, die aber im Folgenden nicht benétigt wird.

Zunichst soll also Gleichung (7) erlidutert und auch kurz motiviert werden. Die Ramanu-
jan-Summe (5) erinnert zweifelsohne an die diskrete Fourier-Transformation (DFT) a =

(ai,...,a,) € C" eines komplexen Vektors ¢ = (ay,...,a,) € C" mit den Fourier-
. R n 2aimk F ~ . .
koeffizienten a,, = > ay-e n fiir | < m < n. Die Koeffizienten der inversen DFT
k=1
i e & 2mimk & . S . . X
arp = o > apy-e n vona sind bekanntlich genauso wie die Fourierkoeffizienten a,,

m=1

selbst wegen (3) periodisch mit der Periode n. Auch die Koeffizienten o(ggT(k, n)) in (5)
haben wegen (2) dieselbe Perioden-Eigenschaft und selbstverstindlich auch auf dem Wer-
tebereich des ggT(k, n) definierte Funktionen des groBten gemeinsamen Teilers wie etwa
die Koeffizienten in (7). Es bieten sich dafiir zahlentheoretische Funktionen f : N — C
geradewegs an, wenn nicht gerade beide Argumente des ggT den Wert 0 annehmen, was
aber in (7) ausgeschlossen werden kann, da n eine natiirliche Zahl ist. Demnach kann
(7) in gewissem Sinn als eine Verallgemeinerung der Ramanujan-Summen (5) betrachtet
werden, indem in (5) die Kronecker Deltafunktion d(n) durch eine beliebige zahlentheo-
retische Funktion f(n) ersetzt wird. Der Beweis von (7) ist iibrigens ebenso einfach und
konnte sogar in drei Zeilen gefiihrt werden [3, short proof], wenngleich der auch nur etwas
mehr als eine halbe Seite umfassende “Standard”-Beweis in [3] vielleicht etwas einsichti-
ger ist.
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Beweis von Theorem 1. Sei ®4(x) das d-te Kreisteilungspolynom (1), dann gilt bekannt-
lich
(" =1 =[] @atx)
dln

2rik

[

ik

da(x" —)= ] G—er)=[1 [ @=e7)=]]Puux)=]] Pualx)
I1<k<n d|n I1<k<n d|n d|n
ggT(k,nm)=d
mit (1) ist.
Daraus folgt fiir ein beliebiges | # x € C durch Logarithmieren beider Seiten
In(x" = 1) =In [ [ @4(x)) = D In®y(x) = (1 % In Dy (x))(n) (8)
d|n dln

wobei auf der rechten Seite in der Dirichlet-Faltungsnotation (6) fiir 4(n) die fiir al-
le natiirlichen Zahlen konstante zahlentheoretische Funktion /(n) := 1 und fiir g(n) =
In @, (x) gewiihlt wurde, sowie wiederum mit e die Summationsvariable angedeutet ist.

Fiir eine beliebige zahlentheoretische Funktion g(n) gilt bekanntermalien

fn) = *g)(n) < gn)=(ux* f)n) 9)

worin z(n) die Mobius-Funktion mit der Definitionsgleichung (I * p)(n) = d(n) als
Dirichlet-Inverser der Funktion /(n) ist, womit letztlich (9) auch bewiesen wird. Die Rich-
tung = in (9) wird auch hiufig als Mdbius-Inversion bezeichnet.

Diese Mobius-Inversion auf (8), d. h. speziell fiir g(n) = In ®, (x) und f(n) = In(x" — 1)
angewendet ergibt sodann:

In®,(x) = (u*In(x®* —1))(n) (10)

wobei abermals mit e die Summationsvariable angedeutet wurde.

Wird nun in der eingangs angesprochenen Fourier-Transformationsidentitiit von Funktio-
nen des groften gemeinsamen Teilers (7) speziell fiir m = 1 gewiihlt, dann folgt zunichst
einmal aus (7) wegen der seit langem bekannten und bemerkenswerten Beziehung der
Ramanujan-Summen zu der Mobius-Funktion ¢, (1) = u(n), welche tiberdies ebenso in
wenigen Zeilen aus (7) [3; Eq. (5)] abgeleitet werden kann, die Gleichung

Z f(geT(k,n)) - eb:r“L = Zf(n/d);z (d) = (f % pu)(n). (1D
k=1

dln

Sei nun darin speziell wieder f(n) = In(x" — 1) fiir ein beliebiges x € C mit x #* 1
gewiihlt, also

Zln(xggT(k‘”) —-1)- o (In(x® — 1) * p)(n),
k=1

dann steht hier rechterhand (da die Dirichlet-Faltung kommutativ ist) die rechte Seite der
Gleichung (10). Es folgt also

n

5 2rik
> In(xEETEM — 1) . o5 = In @, (x).
k=1
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Triviale Umformungen ergeben weiter:

n ik
Z ln(xggT(k'”) = l)e'_r =In q)n (X)
k=1
n ﬁ
& In H (x8TEm e ™ — In @, (x)
k=1
n 2wik
& [Tas™ — 1 = @, (0). (12)
k=1
Damit ist Theorem 1 bewiesen. U]

Die Richtung = im letzten Schritt (12) ist nebenbei bemerkt wegen der strengen Mo-
notonie und damit Injektivitit des Logarithmus im Reellen mit Sicherheit richtig und im
komplexen (z.B. aus Stetigkeitsgriinden) demnach auch. In der Einleitung wurde aber
bereits gezeigt, daly das Argument des Logarithmus auf der linken Seite von (12) ein re-
elles Polynom ist, was auch unmittelbar zu sehen ist: Da zu jedem Faktor (x&&T(.n) _

2rik
1) " in Theorem 1 mit nicht verschwindendem Imaginirteil im Exponenten wegen
geT(k,n) = ggT(—k,n) = ggT(n — k,n) auch der dazu komplex konjugierte Faktor
2ri-(n—k) 2mik
(xB8Tle—kn) _ 1y ™ = (xeeThm _ e " yorkommt, folgt, dass sich in Theo-

2k
n

rem | die Imuginiirteile ('\_ggT(k.n) _ l)cns(%ﬁ)+i-.\in(¥)(xggT(k.n) _ l)cm(“)—i-sin(

(xeeTk.m) _ 1y2cos(55) wwechselseitig wegkiirzen und demnach nur noch die Realteile tibrig

bleiben. Mit anderen Worten, nur der Realteil der Exponenten in Theorem 1 trigt zum Pro-
dukt bei. Daraus folgt das

2rk
=5 )

L 2k
Korollar 1. O,(x) =[] (x2eTkn) _ J)C"*(T)_
k=1

In dieser Darstellung ist schlieBlich auf den ersten Blick ersichtlich, dass die Kreistei-
lungspolynome reelle Koeffizienten haben miissen. Anzumerken ist aber auch, dass man
in Korollar 1 unter Umstinden (etwa fiir n prim) sehr viel mehr Faktoren zu betrachten
hat, da tiber alle | < k < n das Produkt zu nehmen ist, in der Produktdarstellung (1) aber
nur tiber jene k mit ggT(k,n) = 1.

2 Beispiele

Die folgenden Beispiele sollen nun Theorem 1 bzw. Korollar 1 illustrieren:

2rik

1
O (x) = [J ™D -1 T =x—1
k=1

2mik

2
O2(x) = [[ TP - T =x =D =D =x+1
k=1
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2mik

3 2mik 1,:43 1 _:43
O3x) = [J ™) — 1) 7 = - DTG -DTTTTET )
k=1

=D =D D) =24 x + 1

4 ik
O40x0) = [ =Y - =@ - D' =D - DT =D
k=1
e VI S ) [ S VP
ISR ) R ¢ = =

Die 5. Einheitswurzeln sind: }‘(— 1+/54+iv2V5 + \/5) 41(— 1—/5+iV2V5 - \/5)
7(=1=5-iv2V5-5), (= 1++/5-iv2V5+ V/5) und 1. Es gilt daher sogleich

mit Korollar 1:

3
Os(x) = H (xggT(k~5) _ I)LOL\,(LS‘)

k=1
W e 5 _143
-1 )T =) T =) G =)
5
1
:u:.r4+x3+x2+xl+l.
(x—1)

3 Als Nebenergebnis, ein alternativer Beweis fiir eine bekannte
Gleichung der Eulerschen Phi-Funktion

Der Grad der Kreisteilungspolynome in Korollar 1 muss natiirlich wiederum die Eulersche

o 0]
Phi-Funktion (4) ergeben: Aus der binomischen Reihe (x + y)? = 3 (?)x"~*y* bzw.
k=0

o0
speziell aus (x4 — 1)? = > (z)x"(”_")(—l)k zusammen mit (J)) = 1 folgt jedenfalls fiir

alle reellen b, x > 1 und a_z 1:
(xa _ l)b — Xab e O()C"(b_l)), (13)

worin O(x?®=1) das GroB O Landau-Symbol fiir x**~1 bezeichnet. Wird nun fiir a =
ggT(k,n)und b = cos(%) gewihlt und jeder Faktor in Korollar 1 durch die rechte Seite
von (13) ersetzt, dann folgt mit der bekannten Identitiit [3; Beispiel 3] zur Eulerschen
Phi-Funktion

n

p(n) = ZggT(k, n) cos (#) (14)

k=1

fiir den Grad des n-ten Kreisteilungspolynoms @, (x) erwartungsgemil wiederum (4)
bzw. umgekehrt ein weiterer Bewesis fiir (14).
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