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Eine alternative Produktdarstellung für
die Kreisteilungspolynome

Wolfgang Schramm

Der Verfasser isi Arzt und Universitatsdozent an der Medizinischen Universität Wien
und beschäftigt sich in seiner Freizeit mit Freude mit Ideen und Problemen aus der
elementaren Zahlentheone.

1 Einleitung und Hauptergebnis

Das /i-te Kreisteilungspolynom ist dasjenige ganzzahlige Polynom größten Grades mit
Leitkoeffizient 1, das x" — 1 teilt, jedoch zu allen x'1 — 1 mit d < n teilerfremd ist. Seine

2mk
Nullstellen über C sind genau die primitiven /(-ten Einheitswurzeln e~»~, wobei demnach
k die zu n teilerfremden Zahlen zwischen 1 und n durchläuft. Die Zerlegung des n-ten
Kreisteilungspolynoms in Linearfaktoren ist also das Produkt

$;((•*) (x-e2str). (1)
1 <k<n

ggT(L/i) l

Da trivialerweise
ggT(&, /i) ggT(& mod n, n) (2)

Für die Kreisteilungspolynome oder zyklotomischen Polynome O,, kennt man neben

der Zerlegung in Linearfaktoren eine Reihe weiterer Darstellungen. Beispielsweise
erhält man mit Hilfe der Möbius-Funktion die Formel 3>„ (x) TW*" - Drüber

die Koeffizienten der <!>„ ist einiges bekannt, so sind sie ganzzahlig und wenn n

Produkt zweier Primzahlen ist, liegen die Koeffizienten in der Menge { — 1, 0, 1).
Andererseits können sie beliebig gross werden, wie Schur bereits bemerkte. Eine besonders
schöne Formel für <b„ wird in der vorliegenden Arbeit präsentiert: Sie folgt aus der

Betrachtung der diskreten Fourier-Transformation und zeigt auf einen Blick, dass die
Koeffizienten reell sind. Als Nebenergebnis erscheint eine bekannte Summendarstellung

der Eulerschen Phi-Funktion.
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wie auch
2nik 2xi(k mod n)

e " e " (3)

gilt, kann k auch ein beliebiges primes Restklassensystem durchlaufen. Es folgt daher aus

(1) ebenso trivialerweise für den Grad des u-ten Kreisteilungspolynoms die Ordnung der

primen Restgruppe, d. h.

Grad 0>„(x) ^ 1 <p(n) (4)
1 <k<n

ggTU,H) l

wobei <p(n) dieEulerschePhi-Funktion ist. Ein Hauptresultat der vorliegenden Publikation
ist das folgende

Theorem 1. ^„(x) (x8gT — 1 f
k=i

Produktdarstellungen für Kreisteilungspolynome in dieser Form wurden (soweit jedenfalls
dem Autor bekannt ist) bislang noch nicht publiziert. Das Produkt in Theorem 1 kann
selbstverständlich aus demselben Grund wie zuvor auch über ein beliebiges, allerdings
diesmal vollständiges Restsystem modulo n notiert werden.

Da für alle rel wegen ggT(k, n) ggT(—k, n) ggT(« — k, n) in Gleichung (1) wie
auch in Theorem 1 statt den n-ten Einheitswurzeln auch die dazu konjugiert komplexen

27t ik 2iTi(—k) 27ri(n—k)
e n e » e •• durchlaufen werden können und naturgemäß die Produktreihenfolge

irrelevant ist, kann in Theorem 1 auf die komplexe Konjugation genauso gut
verzichtet, bzw. Gleichung (1) auch komplex konjugiert werden, woraus folgt, dass alle

<b„(x) e R[x] reelle Polynome sind. Die Koeffizienten von <I>„(x) sind bekanntermaßen

sogar ganzzahlig. Die Tatsache, dass die <f>„ (x) überdies irreduzibel über Q sind, ist nebenbei

bemerkt ein Ergebnis, das für prime n auf C.F. Gauss [ 1 ] und allgemein auf Kronecker
[2] zurückgeht.

Der Beweis von Theorem 1 ist mit einem Ergebnis aus [3], welches zuvor erläutert werden

soll, erstaunlich einfach und kurz: Sei

Z27rmiA x—' 2;rWik
e » ^<5(ggT(k,/t)) e » (5)

*= l *=t
ggT(k,n)=\

für alle in e Z und n e N die Ramanujan-Summe aus [4], wobei

1 für n 1

<H") := i n1 0 sonst

die Kronecker Deltafunktion ist. Mit nahezu analoger Argumentation wie zuvor folgt, dass
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die c„(m) reell sein müssen

n n

Z2nimk x—^ 2mmn 2nimk
S(ggT(k,n))e « ^S{ggT(k,n))e » e «

i.=l *.=1

n n

Z2iTimjn k) x—^ 2mmk
d(ggT(n - k,n))e « } /)(ggT(A, n))e »

k=i k=l

weshalb (5) auch komplex konjugiert werden durfte Sei weiter mit * die Dinchlet Faltung

(h*g)(n) ^h(n/d)g(d) (6)
a |n

zweier beliebiger zahlentheoretischer Funktionen/i, g N —> C notiert Fur eine beliebige
zahlentheoretische Funktion f N —»• C wurde in [3] gezeigt, dass wiederum fur alle

m e Z und u e N

/I

^ f(ggT(k,n)) e^ ^f(n/d)cd(m) (f *c.(m))(n) (7)
£ 1 d\n

gilt Mit • wurde die Faltungssummationsvariable, d h alle positiven (echten und unechten)

Teiler d von n bzw Koteiler n/d (was in der Summe letztlich auf dasselbe hinauslauft)
angedeutet

Bereits Ramanujan hat mit den nach ihm benannten Summen interessante Darstellungen

fur zahlentheoretische Funktionen gefunden und Nicol [5] hat sogar gezeigt, dass die

Kreisteilungspolynome <t>„ (x) mittels der Ramanujan-Summen c„ (m) darstellbar sind, eine

sicherlich interessante Tatsache, die aber im Folgenden nicht benotigt wird

Zunächst soll also Gleichung (7) erläutert und auch kurz motiviert werden Die Ramanujan

Summe (5) erinnert zweifelsohne an die diskrete Fourier-Transformation (DFT) ä

(öl, ,ä„) £ C" eines komplexen Vektors a — (a\, ,a„) £ C" mit den Founer-

- x—,
2Kimk

koefhzienten am 2^ ak e " fur l < m < n Die Koeffizienten der mversen DFT
k=l

| 2k ^ 1jritnk A „
— — 2^ am e " von a sind bekanntlich genauso wie die Fourierkoefhzienten am

m=l
selbst wegen (3) periodisch mit der Penode n Auch die Koeffizienten (5(ggT(k, «)) in (5)
haben wegen (2) dieselbe Perioden-Eigenschaft und selbstverständlich auch auf dem Wer
tebereich des ggT(A, n) definierte Funktionen des größten gemeinsamen Teilers wie etwa
die Koeffizienten in (7) Es bieten sich dafür zahlentheoretische Funktionen / N —» C

geradewegs an, wenn nicht gerade beide Argumente des ggT den Wert 0 annehmen, was
aber in (7) ausgeschlossen werden kann, da n eine natürliche Zahl ist Demnach kann

(7) in gewissem Sinn als eine Verallgemeinerung der Ramanujan-Summen (5) betrachtet
werden, indem in (5) die Kronecker Deltafunktion <5(n) durch eine beliebige zahlentheoretische

Funktion f(n) ersetzt wird Der Beweis von (7) ist übrigens ebenso einfach und
konnte sogar in drei Zeilen gefuhrt werden [3, short proof], wenngleich der auch nur etwas
mehr als eine halbe Seite umfassende "Standard" Beweis in [3] vielleicht etwas einsichtiger

ist
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Beweis von Theorem 1. Sei das <7-te Kreisteilungspolynom (1), dann gilt bekanntlich

(x"-n n^)
d\n

da (x" — 1) FI {x-e^)=W C* ~ FI ®n/d(x) - II (M-0
1<k<n d\n 1 <k<n d\n d\n

ggl(k,n)=d
mit (1) ist.

Daraus folgt für ein beliebiges 1 ^ x e C durch Logarithmieren beider Seiten

ln(x" - 1) In Y\ <t>d(x)) Xln<I)''W (y * ln <M*))(") W
d\n d\n

wobei auf der rechten Seite in der Dirichlet-Faltungsnotation (6) für h(n) die für alle

natürlichen Zahlen konstante zahlentheoretische Funktion l(n) := 1 und fürg(/j)
ln dhifx) gewählt wurde, sowie wiederum mit • die Summationsvariable angedeutet ist.

Für eine beliebige zahlentheoretische Funktion g(n) gilt bekanntermaßen

/(«) U *£)(") O g(») (d * /)(«) (9)

worin //(«) die Möbius-Funktion mit der Definitionsgleichung (7 * /<)(") ö(n) als

Dirichlet-lnverser der Funktion l(n) ist, womit letztlich (9) auch bewiesen wird. Die Richtung

=> in (9) wird auch häufig als Möbius-Inversion bezeichnet.

Diese Möbius-Inversion auf (8), d. h. speziell für g(n) ln <t>„ (x) und f(n) — ln(x" — 1)

angewendet ergibt sodann:

ln <F„(x) (fi * ln(x* — l))(/i) (10)

wobei abermals mit • die Summationsvariable angedeutet wurde.

Wird nun in der eingangs angesprochenen Fourier-Transformationsidentität von Funktionen

des größten gemeinsamen Teilers (7) speziell für m 1 gewählt, dann folgt zunächst
einmal aus (7) wegen der seit langem bekannten und bemerkenswerten Beziehung der

Ramanujan-Summen zu der Möbius-Funktion c„(l) /(("). welche überdies ebenso in

wenigen Zeilen aus (7) [3; Eq. (5)] abgeleitet werden kann, die Gleichung

n

y, /(ggT(k, >Q) • =^f(n/d)ii(d) (f*/i)(n). (11)
k= 1 d\n

Sei nun darin speziell wieder f(n) ln(x" — 1) für ein beliebiges x e C mit x ^ 1

gewählt, also
n

^ lnfr887"""' - 1) e~ — (ln(x* — 1) * //)(»),
*=t

dann steht hier rechterhand (da die Dirichlet-Faltung kommutativ ist) die rechte Seite der

Gleichung (10). Es folgt also

n

ln(xggT^'"' — 1) • e^r In <t>„(x).

A-l
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Triviale Umformungen ergeben weiter:
" txik

2jn(.vggT(°" - 1)<**~ lndUO
k=l

" "1Hl
o In Y\ (x^Ta-n) - 1Y " In 0>„ (.v)

k=l

O [I - 1)' " ®n(JC). (12)
k=1

Damit ist Theorem 1 bewiesen.

Die Richtung => im letzten Schritt (12) ist nebenbei bemerkt wegen der strengen
Monotonie und damit Injektivität des Logarithmus im Reellen mit Sicherheit richtig und im
komplexen (z.B. aus Stetigkeitsgriinden) demnach auch. In der Einleitung wurde aber

bereits gezeigt, daß das Argument des Logarithmus auf der linken Seite von (12) ein
reelles Polynom ist, was auch unmittelbar zu sehen ist: Da zu jedem Faktor (jtggT'A'"l —

2nik

1)'' " in Theorem 1 mit nicht verschwindendem Imaginärteil im Exponenten wegen
ggT(k,n) ggT(—k,n) — ggT(n — k,n) auch der dazu komplex konjugierte Faktor

(vggT(n-k,n) _ | y " _ (xggT(t,«) _ jy » vorkommt, folgt, dass sich in Theorem

1 die Imaginarteile (,\ggT'A'"' _ j)cos( —)+' ,an( —)(_vggT(Ln) _ j^cos( —)-i smt—) _
vggTW.") _ | )2cos( —) wechselseitig wegkürzen und demnach nur noch die Realteile übrig

bleiben. Mit anderen Worten, nur der Realteil der Exponenten in Theorem 1 trägt zum
Produkt bei. Daraus folgt das

Korollar 1. fl>„(jc) f] (.vggT<A'"> - l)cos<¥>.
k=\

In dieser Darstellung ist schließlich auf den ersten Blick ersichtlich, dass die
Kreisteilungspolynome reelle Koeffizienten haben müssen. Anzumerken ist aber auch, dass man
in Korollar 1 unter Umständen (etwa für n prirn) sehr viel mehr Faktoren zu betrachten
hat, da über alle 1 < k < n das Produkt zu nehmen ist, in der Produktdarstellung (1) aber

nur über jene Ä mit ggT (k, n) 1.

2 Beispiele

Die folgenden Beispiele sollen nun Theorem 1 bzw. Korollar 1 illustrieren:

d),(A) Y\ (x^U) - 1)'°^ — x — 1

k \

2 ^lk
(p2(.r) J] (,vggT(A-2) - 1)£ (x - l)_1(x2 - 1) x + 1

k=1
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d»3(jc) J1] (xggT(i"3) - =(x - l)~2+'^(x - 1 )"H"t(x3 - 1)

k= 1

(x — 1)~2 (x — l)-2 (x3 — 1) X2 + X + 1

4 2xik

<D4(x) J~[ (xggT(M) - 1)''
4 =(x- l)'(x2 - 1)-'(jc - l)~'(x4 - 1)

L=1

_
(x4 - 1)

_
(x2 + l)(x2 - 1)

_ 2

(x2 — 1) (x2 — 1)

Die 5. Einheitswurzeln sind: 4 — 1 + a/5 + / V2%/5 + \/5), 4 (— 1 — y/5 + i\Pl\l5 — \/5),
4( — 1 — V5 — ;'\/2\/5 — V5), 5 — 1 + */5 — i 5 + VI) und 1. Es gilt daher sogleich
mit Korollar 1:

5

®5(x) Y[ (xggT(A,5) - 1)cos()
k=1

-1+^5 -I-Vs -I-V5 -l + %/5 c(x- 1)^»~~ (x - 1)^~" (x - 1)—4— (je - 1)—t— (x5 - 1)

^_l)=x4+x3+x2+xl + i
(X - 1)

3 Als Nebenergebnis, ein alternativer Beweis für eine bekannte
Gleichung der Eulerschen Phi-Funktion

Der Grad der Kreisteilungspolynome in Korollar 1 muss natürlich wiederum die Eulersche
°0

Phi-Funktion (4) ergeben: Aus der binomischen Reihe (x + y)h ^ il)xb~kyk bzw.
k=o

00

speziell aus (xa — l)ft ^ (h)x"<'b~kH— 1)A zusammen mit (0) 1 folgt jedenfalls für
k=0

alle reellen b, x > 1 und a > 1:

(x°-l )>'=xah + 0(xa{h-l)), (13)

worin 0(xai-h~das Groß O Landau-Symbol fürx"'''-1' bezeichnet. Wird nun für«
ggT(£, n) und b cos(^-) gewählt und jeder Faktor in Korollar 1 durch die rechte Seite

von (13) ersetzt, dann folgt mit der bekannten Identität [3; Beispiel 3] zur Eulerschen
Phi-Funktion

^ (2nk\
<p(n) 2_^ggT(k,n) cos (14)

für den Grad des n-ten Kreisteilungspolynoms ^„(x) erwartungsgemäß wiederum (4)
bzw. umgekehrt ein weiterer Beweis für (14).
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