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Aufgaben

Neue Aufgaben
Losungen sind bis zum 10. Februar 2016 erbeten und kénnen auf postalischem Weg an
Dr. Stefan Grieder, Grebelackerstrasse 4, CH-8057 Ziirich (neue Adresse)

gesandt werden. Losungen, die in einem gingigen Format abgefasst sind, konnen als
Attachment auch iiber die E-Mail-Adresse stefan.grieder@hispeed.ch einge-
reicht werden.

Aufgabe 1341: Fiir |¢g| < 1 zeige man die Identitit
o0

o0
H(l _an)(l _I_qn) = Z q2n(4n+l) +q(2n+l)(4n+i)‘

n=1 n=—oo

Gleb Glebov, Burnaby, CAN

Aufgabe 1342: Im Tiefbau werden fiir Kanalisationsschiichte konische, starkwandige Be-
tonrohre verwendet. Es sind (hohle) schiefe Kreiskegelstiimpfe, deren kiirzeste Mantelli-
nie senkrecht zu den beiden Kreisebenen steht. Das Zementwerk bringt am oberen Teil der
lingsten Mantellinie eine Ose so an, dass das am Kranseil aufgehiingte Werkstiick prizise
mit horizontalem Leitkreis schwebend auf das vorbereitete, nasse (horizontale) Zement-
fundament aufgesetzt werden kann.
Man berechne fiir einen solch beschriebenen Hohl-Kreiskegelstumpf mit den Grundkreis-
radien R, R 4+ d und Schachtdeckelradienr,r +d (0 < d < r < R) sowie der Hohe H
(Linge der kiirzesten Mantellinie) den Ort fiir die Ose mit der beschriebenen Eigenschaft
auf der lingsten Mantellinie des Kegelstumpfes. Man formuliere auch die Bedingung fiir
die Grossen R, r, d und H, sodass der Haken wirklich auf dem Kegelstumpf angebracht
werden kann.

Roland Wyss, Flumenthal, CH

Aufgabe 1343 (Die einfache dritte Aufgabe): Ein (dreidimensionaler) Wiirfel ist ge-
schmiickt, wenn auf jeder Seitenfliche eine Diagonale eingezeichnet ist. Wie viele ver-
schiedene geschmiickte Wiirfel gibt es?

Christian Blatter, Greifensee, CH
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Losungen zu den Aufgaben in Heft 3, 2014

Aufgabe 1329. Man bestimme die kleinste positive Zahl K so, dass die Ungleichung

1 1 1
—be)(b—¢ —ab) < Kab
((a A + b1o? + (C+a)2) (a — bc)(b —ca)(c —ab) < Kabc
fiir alle positiven Zahlen a, b, ¢ mita + b + ¢ = 1 giiltig ist.
Orif Ibrogimov, Bern, CH

Auswertung der eingesandten Losungen. Es sind Beitriige von 7 Lesern eingetroffen:
Hans Brandstetter (Wien, A), Walter Burgherr (Rothenburg, CH), Henri Carnal (Bern,
CH), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A), Hansruedi Widmer
(Baden, CH) und Lienhard Wimmer (Isny, D).

Wiihrend das in Frage kommende K = 2 schnell ersichtlich ist, ist es recht aufwiindig,
die entsprechende Ungleichung zu zeigen. Wir folgen der originellen Losung von Walther
Janous, der die Ungleichung geometrisch deutet und dann bekannte geometrische Unglei-
chungen im Dreieck benutzt.

Wir bemerken zuerst, dass die Ungleichung in der vorliegenden Form insofern ,unfreund-
lich®™ ist, als sie zwar symmetrisch aber nicht homogen ist. Deshalb homogenisieren wir
sie um den ,,Preis”, dass wir die Nebenbedingung verlieren.

Damit erhalten wir (mit der Umbenennung der Variablen a, b, ¢ in x, v, z)

| 1 1

((x ) - sy + T z)z) Zl;[xu' +y+2)—yz < Kxyz(x +y+2).
Mit x = y = z ergibt sich 6x* < 3Kx*. Folglich muss K > 2 sein. Wir werden zeigen,
dass K = 2 gilt.

Dazu transformieren wir die in Frage stehende algebraische Ungleichung mittels x = s—a,
y = s — b,z = s — ¢ in eine geometrische Ungleichung, wobei a, b, ¢ die Seiten eines
beliebigen Dreiecks und s dessen halber Umfang ist. Dies fiihrt zu

1 1 1

(; + %) + C—z) H(s —a)s — (s —b)(s —c) <2(s —a)(s — b)(s — ¢)s.
zyk.

Mit Hilfe des Cosinussatzes ergibt sich

_ 42 b2 2
(s —a)s — (s —b)(s —c) = a +2 re = bccos(a),

und unter Beriicksichtigung der Heronschen Formel erhilt man

1 | 1\ 52,22 2
a_2+52-+c—2 a“b=c” cos(a) cos(ff)cos(y) < 2F-.

Nun verwenden wir bekannte Dreiecksungleichungen, nimlich zuerst

cos(a) cos(f) cos(y) < r?/(2R?),
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wobei r und R Inkreis- bzw. Umkreisradius des Dreiecks sind (sieche Ungleichung (6.11),
p. 182, in D.S. Mitrinovi¢ et al., Recent Advances in Geometrical Inequalities, Kluwer
Academic Publishers, 1989). Mit abc = 4 F R ist dann die verschiirfte Ungleichung

1_+_1+1< 1
a’ b2 2~ 4r2

zu zeigen. Dies ist aber Ungleichung (5.9), p. 173, aus dem oben angegebenen Werk.

Aufgabe 1330. Sei ABC ein Dreieck mit b # ¢ und D, E auf der Seite BC so, dass AD
die Winkelhalbierende von a und % = i—’ ist. Weiter seien P und Q zwei verschiedene
Punkte mit PD = AD, QF = AE und BP # AB # B(. Schliesslich seien BP = p,
CP =¢qg,BQ =rund CQ = s. Man zeige dass

a) c(r2+¢>) + b2+ pH) =B +c)b*+¢*) und
b) QE > PD.

Indika Shameera Amarasinghe, Nawal, CLL

Auswertung der eingesandten Losungen. Folgende 8 Leser haben Beitriige zugesandt:
Hans Brandstetter (Wien, A), Walter Burgherr (Rothenburg, CH), Henri Carnal (Bern,
CH), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A), Joachim Klose
(Bonn, D), Peter Niiesch (Lausanne, CH) und Hansruedi Widmer (Baden, CH).

Die Losungen unterscheiden sich einerseits in der gewihlten Methode (Koordinatensy-
stem, Vektoren) aber auch in der Ausfiihrlichkeit. Arbeitet man mit dem Satz von Stewart,
kann man die Lésung verkiirzen. Wir folgen der Losung von Walter Burgherr, der nur den
Cosinussatz bendotigt.

Seieno = <CDP,7r =<CEQ,w;, = AD = PDundd = AE = QF (siehe Figur). Es

gilt CD = BE =L und BD = CE = %

b+c

C . P

A

¢ B

Wendet man zuerst den Cosinussatz auf die Dreiecke ABD, ABE und ABC mit Winkel
S an, so erhiilt man nach Elimination von cos(f) und Einsetzen von B D resp. BE

5 be(b? 4+ 2bc+ % —a?) a’be
w, = > =0C — ———
(b +c)? (b+c)?
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ine 2 2 2 4 4 2
=bc(b + - —a‘)+b* +¢ e a“bc

(b +ey (b+c)?

Dies entspricht im Wesentlichen dem Satz von Stewart. Nun wendet man den Cosinussatz
auf die Dreiecke CDP, BDP, CEQ, B E Q an und erhiilt nacheinander

2
’ 2 ac ac
= ;' +2
pr= (b + ) g

d2

cos(o),

c C

2 2+ ab 2 ) ab ()
= w — 2wy, cos(o),
* b+ c ey "

2
2 ) ab ab
=d 2d s
r +(b+c) + b e cos(7),

2
§2 =d® 4 (ba—[: ) — 2dbcj:c cos(7).

c

Im gefragten Ausdruck kompensieren sich die Terme mit den Winkelfunktionen

a’b*c + a*bc?
(b + c)?

2a’be 2a*be

b+c + b+c

b(p*+ 51 +clg? + %) = (b + o) (wg” +d*) +2

= (b+c)b* +P) - = (b+c)b* + D,

was Teil a) beweist.

Fiir Teil b) berechnet man wegen QE =d und PD = w,
d> — w2 =b>—2bc+c? = b —c)? > 0.

Aufgabe 1331 (Die einfache dritte Aufgabe). Seien F und G komplexe Matrizen mit
F = FGF. Zeige, dass dann rg(F) = rg(G FG) gilt, wobei rg(.) den Rang einer Matrix
bezeichnet.

Oskar Maria Baksalary, Poznan, PL und G6tz Trenkler, Dortmund, D

Auswertung der eingesandten Losungen. Von folgenden 3 Lesern sind Losungen ein-
getroffen: Hans Brandstetter (Wien, A), Henri Carnal (Bern, CH) und Frieder Grupp
(Schweinfurt, D).

Am einfachsten geht es, wenn man die mittels der Matrizen F und G definierten Abbil-
dungen betrachtet. Wir folgen der Losung von Henri Carnal.

Sei f: x — Fx eine lineare Abbildung C" — C"” mit f(C") = U und dim(U) = rg(F).
Sei analog g: y — Gy eine lineare Abbildung C" — C" mit g(U) = W C g(C™) = V.
Aus f = fogo ffolgt(fo g)lU = Idy. Daher sind g|,, und flw inverse Bijektionen
U — W und insbesondere ist wegen f(W) = U auch f(V) = U. Damitistauch go f o
g(C"y=go f(V)=gW)=Wundes folgt rg(GFG) = dim(W) = dim(U) = rg(F).
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