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Wolstenholme again

Christian Aebi and Grant Cairns

Christian Aebi studied mathematics in Geneva, Switzerland at the state university
He has been teaching there ever since, in both junior and senior high schools He

enjoys showing his students how an apparently elementary mathematical exercise,
when slightly distorted, can sometimes lead to a non-trivial mathematical research

problem

Grant Cairns studied engineering and science at the University of Queensland,
Australia, before doing doctoral studies under Pierre Mohno in Montpellier, France. He

benehted from two years in the stimulating environment of the University ot Geneva

Since 1988 he has enjoyed teaching at La Trobe University in Melbourne Australia

Thanks to Wolstenholme [14J, the following three congruences have been known since

1862, for all primes p > 5:

p - /) 1 ^mod p^'

1 + i i + 1

!— 0 (mod p2), (2)
2 3 p — 1

l + ^ + yi+ + (^2=° <3>

Here of course, [ means the (multiplicative) inverse of k in the relevant sense: in Zp, Z 2,

etc, according to the context.

Die Partialsummen s„ 1 + \ + | + • • + ^ der harmonischen Reihe wurden im
Laufe der Zeit immer wieder untersucht. Wohlbekannt ist beispielsweise, dass s„ für
kein n > 1 ganzzahlig ist. Für Primzahlen p > 5 fand Joseph Wolstenholme 1862, dass

der Zähler von sp_i durch p2 teilbar ist. Verschiedene äquivalente Formulierungen und

Folgerungen dieses Satzes sind bekannt. Falls nun sp-1 sogar durch p3 teilbar ist, nennt

man p eine Wolstenholme-Primzahl. Bislang wurden nur zwei derartige Primzahlen

gefunden, aber man kennt von ihnen verschiedene äquivalente Charakterisierungen.
Eine davon hat erstaunlicherweise mit den Bernoulli-Zahlen zu tun. Die Autoren des

vorliegenden Artikels untersuchen diese seltenen Pflanzen im Primzahlgarten.
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More than 125 years later, Gardiner [2] showed the relation between these equivalences
when the degree is pushed one level higher:

Theorem 1. Ifp >7 is prime, the following conditions are equivalent:

d) p | Bp-3 where denotes the kth Bernoulli number.

In 1988 the only known Wolstenholme prime was 16843. It had been identified while
searching for irregular primes, which as Kummer had revealed are intimately connected

to Fermat's last theorem [7]. In the same manner, the next Wolstenholme prime, 2124679,
was discovered five years later by Buhler, Crandall, Ernvall and Metsänkylä [1], The term
Wolstenholme prime was introduced by Mcintosh in his 1995 paper [12]. Ever since, no
other Wolstenholme prime has been identified; see [10] for another equivalent condition.
Nevertheless, Gardiner's result has been extended one degree further.

Theorem 2. Ifp >1 is prime, the following conditions are equivalent:

The above result is implicitly contained in Helou's and Terjanian's 2008 paper [5], but

somewhat scattered amongst a raft of other, often more substantial results. We will say
more on this at the end of this note. Our main goal here is to highlight the result itself, and

to provide an elementary and direct proof. In so doing we hope this may also serve as an

introduction to the more recent articles by experts in the field [12, 5, 9, 11, 13]. One basic

classical result we use throughout this note is a particular case of Leudesdorf's theorem

[8]; see also [4, Chap. VIII.8.7] and [3]. We provide a proof, for completeness.

Lemma. If p > 5 is prime and k e N then

a) p is a Wolstenholme prime, meaning: 1 (mod p4).

b) I + 3 + 3-I F 0 (mod p3),

c) 1 + 37 + 3T + ''' + 7^772 0 (mod p2),

a) (2;_"') 1 (mod p5),

b) I + 3 + 3-I T 0 (moc* f4)'

c) 1 + ± + • • • + 0 (mod E3).

d) p2 I Bp3_p2_2.

i<
(mod p), ifk is even and p — I J( k, (4)

(mod p2), ifk is odd and p — 1 / k + 1. (5)

Proof Consider a generator a e Z*. Then

(mod p)
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since \/ak ^ 1 (mod p). When k is even, \/ik 1 /(p — i) (mod p) and so (4) follows.

When k is odd, notice that in Zp2 we have:

V 1

- V 1 1 - V 1 1

2-i jL
2—1

jk i^k 2-i jk kpjk-1 _ jk
l<t<p-l l<i<(p~l)/2 v/ ' J</<(/'—1)/2 '

kp z kpik - ik+i

-kp ^ Zj- ee 0 (mod p2),
l<'<(p-l)/2'

where the penultimate equivalence is obtained by amplification by the conjugate, kpik +
ik+l, and the last equivalence is by using (4).

With that in hand we are set to provide the following:

Proofof Theorem 2. (a) <=> (c). We first develop the binomial coefficient
"downwards":

c;::) (2p — l)(2p — 2) • • • (2p — (p — 1))

1 2-- - (p — 1)

- (-1)""1
/

Expanding the last line in Zps gives us:

l-2p^-+4p2^i:-8p3 ^ 4T+16/ £ ~ (6)
1 fZ'J >^lJk ,<U<iljkl

where here and below, unless otherwise stated, the summations are over variables in the

range 1,p — 1.

Next we work "upwards":

(1 + p)(2 + /?)•• {(p - 1) + p)
1 • 2 •(/? — 1)

to obtain in Zpi:

\<j i<j<k i<j <L<1

(7)
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Multiply equation (7) by 2 and add the product to equation (6) in order to eliminate the p
term. Then divide both members by 3 to get:

s w <*>

W ' 1<J
J Kj<k J Kj<k<l J

Concerning the last summand, notice that multiplying all the indices i, j, k, I by 2 leaves

the sum Xi <,/<*</ JJE dxed ln ^p- Therefore, since 24 ^ 1 (mod p), this sum is equivalent

to 0 (mod p).

The second summand may be transformed by using 2X jj (X — X j2- After

substitution and application of (2) to the square term we get:

(2P ~I) 1 - p2 £ ^ - 2p3 X 4- (mod p5). (9)\p- \) ^,2 ^ljk
Finally, concerning the last summand, notice that we have:

which is equivalent to 0 (mod p2) by using the equivalences (2), (3) and (5). Therefore

we have proved

(2J_ /) 1 -P2Hj2 (modF5)' (n)

which figures in [12, p. 385].

(b) O (c). By using elementary identities we obtain:

-rZ^r2Z^ + r!Z^.
I I I

from which we easily conclude by using (5) on the middle summand and (4) on the last

summand as X, 7T (mod p).
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Equation (11) o (d). This last equivalence requires basic knowledge of Bernoulli numbers

we recall from [6]. If
p-1

W):=^<"', (12>

1=1

then from [6, p. 230, Theorem 1],

'»+1
y / m \

Importantly for us, the B, are 0 for odd integers / > 1. Our general method is to transform
the summand in (11) into an equation of the form (12) by applying Euler's theorem,

i~2 i<P(n")~2 (mod p3),

where <p is Euler's totient function. Working in and letting m p3 — p1 — 2 we get

p-1 p-1 »1 + 1
I / s

X'-2 X/'" S'"^ X T( m_ Je'^w+i-'- (14)
I=i 1=1 1=1

' 2

Since odd indexed Bernoulli numbers greater than one vanish, we apply a consequence of
the von Staudt-Clausen theorem [6, p. 233, Theorem 3], which says that for/; even

denom(ß„) j~| p.
p 11»

p prime

In particular, the denominator of Bn is square free; so it is at most divisible by p, and never
by p~. Furthermore, the denominators of B„-3 and Bp-5 are not divisible by p, and since

p — 1 is not a divisor of p3 — p2 — 2 or p~ — p2 — 4, so p does not divide Bjp_[>i_2 or
Bp^-p2_2- As a consequence, all terms of the sum (14) vanish, except the first one, giving

pBp\_p2_2 (mod p3), which replaced in (11) leads us to what is wanted:

j1^) 1 - p'iB^_p2_2 (mod p5).

An amusing aspect of the preceding theorem is that Mcintosh commented that there is

probably only a finite number of primes verifying criterion (a) of Theorem 2 and conjectured

that there are none [12, bottom p. 387J. One natural question is: Can Theorem 2 be

extended to the next degree? According to [5] it seems the answer is no, at least not just
involving the divisibility of a single Bernoulli number. Indeed, Helou and Terjanian obtain
the following results (see [5, Lemma 3 and Cor. 5(1))):

(2;f_ /) - 1 ~ P3ßp^-p2-2 + \p5ßi'~3 ~ \pißi'-5 (mod /7&)'
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1 p2 P4 P4 5X 7 ~yBP"-P2-2 + ~ ~5Bp~5 p
1=1

1
3 4

X 72 Pb,P-p1-2 - yV3 +
g

/'3ßp-5 (mod p4),
1=1

'

and so the last term in ßp_5 does not coincide in any pair of expressions. Notice that

reducing these three equivalences modulo p5, p4, p^ respectively establishes Theorem 2.

It is in this sense that Theorem 2 is contained in [5]. A formula for modulo p7 is

given in [11].
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