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On the convergence of thinned harmonic series

Wolfgang Stadje

Wolfgang Stadje received his doctoral degree and his habilitation in mathematics at the
University of Gottingen in 1978 and 1981, respectively. He is a professor at the Uni-
versity of Osnabriick. His main areas of research are applied probability and stochastic
processes in operations research.

In 1914 Kempner [5] showed that the series of all reciprocals of natural numbers without
the digit 9 in their decimal expansion converges. This series turned out to be extremely
slowly convergent to 22.92067... (the first 100 digits of the limit were computed in [3]);
for example the sum of its first 1028 terms is still less than 22 [2]. In 1916 Irwin [4] proved
that any harmonic series restricted to integers which contain some digits exactly certain
prescribed numbers of times converges, too. Techniques for the numerical calculation of
these “Kempner—Irwin series” were presented in [2]. More results on series of this type
can be found in [1], [7], [8] and the references therein.

In this note we study Kempner—Irwin series with the reciprocals n ! replaced by the pow-
ersn~ %, a > 0. Itis shown that there is an ag € [0, 1) such that the series diverges if and
only if @ < ag. If we consider d-ary expansions (4 being an integer larger than one) and
0 < k < d digits are restricted, then

ag = log,(d — k).

Die Divergenz der harmonischen Reihe ist eine der Grundtatsachen der Analysis. Ge-
nauer gilt bekanntlich, dass die Reihe > n~“* nur fiir @ > 1 konvergiert. Vor etwa hun-
dert Jahren hat Kempner gezeigt, dass aus der harmonischen Reihe durch Weglassen
aller Kehrwerte von Zahlen mit einer Neun in der Dezimaldarstellung eine konvergen-
te Reihe entsteht, und kurz danach hat Irwin dieses Ergebnis auf die Reihen erweitert,
die sich ergeben, wenn man nur iiber solche natiirlichen Zahlen summiert, in deren
Dezimaldarstellung einige der Ziffern jeweils in vorgegebener Anzahl (oder gar nicht)
auftreten. In diesem Artikel wird unter anderem gezeigt, dass es fiir diese Kempner—
Irwin-Reihen einen Schwellenwert ag € [0, 1) gibt, so dass die entsprechende Reihe
> n~% genau fiira > ag konvergiert: Es gilt ag = log,(d — k), wenn man d-adische
Entwicklungen betrachtet und iiber das Auftreten von k Ziffern Vorschriften macht.
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Here log,; denotes the logarithm with respect to the base d. Note that in terms of natural
logarithms the threshold value can be expressed as ap = In(d — k)/Ind. It is interesting
that o only depends on the base d and the number k of digits involved in the constraints.

Fixk e l{l,...,d — 1}, digits ay, ...,ax € {1,...,d — 1} and integers ny, ..., n; > 0.

Setting a = (ay,...,ax) and n = (ny,...,ng), let A(a,n) be the set of all positive
integers that contain the digit @; exactly n; times in their d-ary expansion fori =1, ..., k.
Finally let, fora > 0,
S(a,a,n) = z n “.
neA(a,n)

The series S(a, a, n) obviously converges for & > 1 and, by Irwin’s result, also for & = 1.
What happens for a € (0, 1)? We prove

Theorem 1 S(a, a, n) is divergent if and only if a < log,(d — k).

In the case of convergence we also derive an upper bound. For this we need the sum of the
one-digit terms of S(a, a, n):

s(a,a,n) = Z n—“.
neA(a,mnil,....d—1)

This sum is zero if some n; is larger than 1. If exactly one n; is equal to one, say n;, = 1,
and the other n’s are zero, then s(a, a,n) = ai;“. If all n's are zero, then
k

d—1
s(a,a,n) = Z n* = ZH_“ Za;a.
=1

ie(l,....d—1}\(ay,....ax} n=1 p

Theorem 2 If o > log,(d — k), then we have, setting N = Z';:l np,

d(l
(k+d*—d)Vny!- - ng!

NI d—1 k k
(2 = X ) (=Y mpa)
n=1

p=1 p=1

S(a,a,n) < s(a,a,n) +

(1)

1 Examples

1. For k = d — 1 the frequency of all digits 1, ...,d — 1 is prescribed, so that only the
number of zeros and the ordering of the constrained digits are free. In this case Theorem 1
states that the resulting series is convergent for all a > 0.

2. For k = d — 2 the frequency of all but one of the digits 1,...,d — 1 is prescribed,
so that only the number of zeros and that of one other digit are free. Then Theorem 1
states that any resulting series of this kind is divergent for all & < log;2 = In2/Ind.
For example, for d = 10 (decimal expansions) and any series in which the numbers of the
digits 2, 3, ..., 9 are prescribed, convergence takes place if and only if & > In2/In 10 =
0.3010...
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3. The series »_n~“* over all natural numbers without odd digits in their decimal expansion
converges only fora > In5/1In 10 = 0.69807 . ..

4. If the frequency of exactly one digit is fixed, we have ag = log,;(d—1) = In(d—1)/Ind,
which ford = 101s 0.9542. ..

5.1f all n’s are zero, then inequality (1) simplifies and becomes

a d—1

S(a,a,(0,...,0) < (1+Hjﬁ)(211_a—ia;“). (2)

n=1 p=1

6. If wesetd =10,k =1,a; =9,n; = 0in (2) we are back to Kempner’s original series
(all reciprocals without 9’s), but for general a. In this case we get from (2) fora = 1

1 1
S(1,a,0) < 11 x (1+5+---+§) —29.8964 .. .

and for a = 0.96 (closer to the threshold ag = 0.9542 .. .) the upper bound increases to

10().96 8 (0%

7. Finally,leta = 1,k = 1,a; € {1,...,d — 1}. Then we get the series of the reciprocals
having the digit a; exactly nj times in their d-ary expansion. Inequality (1) becomes

d—1

S, ay,0) < (1 —f—d)(Zn_l —al_l)

n=1
d—1 d—1
S(l,a;, 1) < al_1 +(1(Zn_l — al_l) +al_ld = al_l + a’Zn_l

n=1 n=1
d—1
S(l,ay,ny) <d 2 n_', ifn; > 1.

n=1

2 Proof of divergence
Fix o < log,(d —k)/logd,aandn.Let A; = {n € A(a,n) |0 <n < d/}, j > 1. Then

S(a,a,n) = lim E n“
j— o0 ‘
l<n<d/*! neA(a,n)

i=1 di<n<d+! ,neA(a,n)

o0
> > d~ " DlcardA;y) — cardA;]. (3)
i=1
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We have to determine cardA ;. Any n € {0, ..., d’ — 1} can be represented by its d-ary
expansion

j—1
B = E m;d'
i=0

with digits m; € {0,...,d — 1}.If N = Z’;,Zl n, > j,there are not enough digits for an
n < d’/ tobein A(a, n). Thus,

cardA; =0 if N > j.

Now let N < j. The d-ary expansion of any number in A; can be created in two steps:

1. First, choose N indices, say iy, ...,iy, from{0, ..., j—1} and then digits m; , ..., m;,
of which exactly n; are equal to a@; fori = 1, ..., k. This can be done in

j (N)(N—m N —nj — oo — Rji_j Jj!
N J \n n ny —(j—N).'lllfv--Il/\-!

2. Second, choose the remaining j — N digits not equal to any of the a;. For any choice in
the first step this can be done in (d — k)’ ways.

ways.

Combining the two steps it follows that

i'd — k) =N
cardA; = 'J( ) ; HN 2 . )
(j—N).'Ill.’---nk!

Inserting (4) in (3) we can continue the calculation in (3) as follows:

i+ Did -k ind — k)N
G+I—N)ng!m! (= N)ngl---ng!

~
S(a,a,n) > Z d—ei+)

i=N

) J r . 1 I — k i+1 . AN
. s N! Z pr (l + ) (( ) YL
j—ood®(d —kK)Nnp!---ng! - L N d” N d”

=N

. N! S [ fi+1 b i
l ——
T joood®(d —K)Nny! - ong! ~| d” N
43 d—k itk
N d” d”

= 00. (5)

~.

. N! (J
= lim
joood®(d —kK)Nny!---ng!

In the third step of (5) we omitted the factor d; thereafter we used a telescoping sum. For
the last equality note that (d — k)/d“ > 1 follows from the assumption a < log,(d — k).
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3 Derivation of the upper bound

Now let a > log,(d — k). To prove inequality (1), we define

n'? = (niy...onp_1t,np—Linpyr,....,m), p=1,...,k
D={l,....d—1\{di,....d).

We split the series into subseries according to the first significant digit of n:

S(a,a,n) = s(a,a,n) + i Z w8

i=l (:”.En <dit!,
neA(a,n)

~ k
=s(a,a,n) + Z Z (dd" +m)~* + Z Z (a,,(/" +m)™*

i=1 1 1eD,0<m<d, r=l 0<m<d’,
meA(a.n) meA(a,n(P)
00 k o0
< s(a,a,n) + Z [~ z d~*cardA; + Z a;“ Z g cardAf.”), (6)
leD i=1 p=1 =1
where

A" ={neA@nP)|0<n<d)

Note that CaTdASP) = 0if n, = 0, because in this case A(a, n'”)) is empty.

Using (4) we obtain

Zd""cardA,' = zd"“ : il )
i=1 =N (= N)ng!e-nyg!

_N!(d—k)‘Ni i\ [d—k\'
Combeen! =N\ ae
_ NN (d—k\Y (0 d k)T
oyl eng! d* d®

N'd“

= ) 7
!k +d* — d)yNt+! 2t

Similarly,

(N —1Dldn,

. 8
ny!---ngl(k + d* — d) (8)

(e o]
Zd—”‘cardAE”) =
i=1

Inserting (7) and (8) in (6) we obtain the upper bound (1).
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