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1 Introduction

The evaluation of finite sums involving binomial coefficients such as

£(;•)=2-
k 0 v '

appears throughout the undergraduate curriculum. At the end of the previous century, the

evaluation of these sums was trivialized by the work of H. Wilf, D. Zeilberger and M.
Petkovsek [9]. The method of creative telescoping, described in the charming book [9],
provides an automatic tool for the verification of this type of identities.

Geschlossene Formeln für endliche Summen gehören zum Werkzeugkasten der
Mathematik. Formeln für Partialsummen von geometrischen und arithmetischen Folgen
oder Summen im Pascalschen Dreieck lernt man bereits in der Schule kennen.

Entsprechende Nachschlagewerke oder CAS-Software bieten heutzutage erste Hilfe, wenn
in einer Berechnung eine Summe in geschlossener Form dargestellt werden soll. Die
Methoden, solche geschlossenen Formen zu finden, sind vielfältig und stammen aus
allen Bereichen der Mathematik. Die Autoren der vorliegenden Arbeit präsentieren eine
Methode aus der Wahrscheinlichkeitstheorie und zeigen einige überraschende Anwendungen:

Klassische Formeln erscheinen dabei in neuem Licht.
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On the other hand, it is often a good pedagogical idea to present a simple identity from

many different points of view. The reader will find in [1] this approach with the example

The current paper presents probabilistic arguments for the evaluation of certain binomial
sums. The background required is minimal. The continuous random variables X considered

here have a probability density function: this is a nonnegative function fx(x), such

that

Pr(X <x)= fx(y)dy. (1.3)
'-00

In particular, fx must have total mass 1. Thus, all computations are reduced to the evaluation

of integrals. For instance, given a measurable function g : R —> R such that the image
random variable g(X) is absolutely integrable, its expectation can be expressed as

/OO g(y)fx(y)dy. (1.4)
-00

In elementary courses, the reader has been exposed to normal random variables, written as

X ~ N(0, 1), with density

fx(x) forx e R, (1.5)
\!2n

and to exponential random variables, with probability density function

[ le~Xx for a > 0;
fx(a;1) | (1.6)

0 otherwise,

with A > 0.

The examples employed in the arguments presented here include random variables with
a gamma distribution of shape parameter a > 0 and scale parameter 0 > 0, written as

X ~ T(a, 0). These are defined by the density function

fx{x; a,0)

Here T(s) is the classical gamma function, defined by

,,„p, ,a~" le for A' > 0;ff'T(a) ' - 7)
0 otherwise.

r oo

T(s) / xs~le~xdx (1.8)
Jo

for Re s > 0. The reader will find in [2] extensive information about this special function.
The exponential distribution is the special case of the gamma distribution with shape
parameter« 1. Recall that for a random variable X, the /;th moment is defined by E(X").
Observe that if X ~ T(a, 0), then X 0Y where Y ~ T(«, 1). Moreover

EX" 0" (a) (1.9)
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where
T (a + n)

(a)„ a (a + 1) • (a + n - 1) (1.10)
r(a)

is the Pochhammer symbol. The main property of this family of Gamma random variables

is that it is closed under addition: assume X, ~ T(a,, 0) are independent, then

Xi +--- + X,,, ~T(ai +---+am,G). (1.11)

This follows from the tact that the density probability function for the sum of two
independent random variables is the convolution of the individual ones.

Another distribution will be useful in the following, namely the beta distribution denoted

as Be (a, b) with density

fx (a; a, b) —
x^O -x)h~l/B(a,b) for 0 < x < 1;

0 otherwise.
(1.12)

Here B(a,b) is the beta function defined by

B(a, b) — I jc"_1(1 -x)b~ldx. (1.13)
Jo

Also the Pearson type II distribution [16] denoted as Pe(c) with density

(1 -x2)'"1 for - 1 < x < 1;

0 otherwise.
(1.14)

The uniform distribution on [0, 1] appears as the special case a b — 1 of the beta

distribution. A random variable Za./, with distribution Be(a,b) can be generated as

Xa
Zab-= —, (1-15)

Xa + Xb

where Xu and X/, are independent gamma distributed with shape parameters a and b,

respectively; and a random variable Zc with Pe(c) distribution can be generated as 1 —

2Ztx, that is,

2XC Xc - X'
Zc := 1 — — c~, (1.16)

Xt + X't Xc + X[

where Xc and X'c are independent gamma distributed with shape parameter c. A well-
known result is that Zaj, and Xa + Xj, are independent in (1.15); similarly, Xc + X'c

and Z( are independent in (1.16). The reader will find information about these random
variables and detailed proofs of the statements employed here in Chapter 2 of [7].

The central idea of the paper is simple. Suppose a sequence of interest jr^} is identified

as the moments of a random variable X, so that E(X*) ai. Suppose also that if
Zj, X2, •, X,„ are independent random variables, identically distributed like X, then
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the moments of the sum Y X\ + X2 H 1- Xm can also be computed, say E(y*) bk.
Then the multinomial theorem and the linearity of the expected value operator give

bn E(Xj + • • + Xm)"

X L X' *
k]+-+km=n yKU K2> >«'»/

In terms of probability density functions, this could be rephrased as saying that if one

can compute the integral / xkf(x) dx as well as the integral / xkf*'"{x) dx of the rath
JR J R

convolution /*"' of / with itself, then the multinomial theorem gives interesting identities.
This formulation hides the probability setting of the method.

2 A sum involving central binomial coefficients

Many finite sums may be evaluated via the generating function of terms appearing in them.
For instance, a sum of the form

Sl(n) a,cij (2.1)

l+J =71

is recognized as the coefficient of x" in the expansion of h (x)2, where

00

h(x)-^ajXJ (2.2)

j=0

is the generating function of the sequence {a,}. Similarly,

Sm(n) ^ akr--akm (2.3)
k\ H 1-*m="

is given by the coefficient of x" in h(x)"'. The classical example

^ j=0
(2.4)

gives the sums

and

^ /2*,\ Y2km\ 2^ T(f + n)

,7
V ^1 / \^«/ "*,+ +^ ^

(2.5)

(2.6)
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The powers of 1 — 4x are obtained from the binomial expansion

CO

(1 -Ax)-" =Y ^L(4x)j, (2.7)
/

j=o J

where (a); is the Pochhammer symbol.

The identity (2.5) is elementary and there are many proofs in the literature. A nice
combinatorial proof of (2.5) appeared in 2006 in [6], In a more recent contribution, G. Chang and

C. Xu [5] present a probabilistic proof of these identities. Their approach is elementary:
take m independent Gamma random variables X, ~ T(j, 1) and write

KIT*, Y " WY--EX^. (2.8)

\/ — 1 / k\-\ —n

If X ~ T(<7, 0), then the moments are given by (1.9). Thus, for each random variable X,-,
the moments are given by

k r(ki + \) (2fc,-)! k,\ (2k,\EX ' ' 2 2~n' 1—1 (2.9)
T(i) kjl 22*'U./

iterating the functional equation T(# +1) aT(a) to obtain the second form. The expression

"
V^t - • kin j ki\k2\---km\

for the multinomial coefficients shows that the right-hand side of (2.8) is

(2.10)

i,.5 .C) (t)
A i H \-km =n

22n
(2.1D

The evaluation of the left-hand side of (2.8) employs basic probabilistic results about the

pdf of the sum of independent, gamma distributed random variables. From (1.11), the sum

of m independent random variables T 1^ has a distribution T(y, 1). Therefore, the

left-hand side of (2.8) is

m + ,0

T(f)
•

This gives (2.6). The special case m — 2 produces (2.5).

3 More sums involving central binomial coefficients

The next example deals with the identity

(2.12)

(3.1)
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that appears as entry 4.2.5.74 in volume 1 of [10]. The proof presented here employs the
famous multisection technique, first introduced by Simpson [11] in the simplification of

^ (e(Xj + X2)2" + E(Xi - X2f") (3.2)

where X], X2 are independent random variables distributed as T (^, l).
The left-hand side is evaluated by expanding the binomials to obtain

^ (E(X, + X2f" + E(X, - X2)2")

=\z (2:U Ex2^k+\ CH ex22"^-
k=o ^ ' '

A=O ^ '
This gives

1 " /\- (e(X[ + X2)2" + E(Xj - X2)2") X " )E*i* Exi"~U-
it=o

Using (2.9), this reduces to

1 (El*, + +E(*, - X2f") ± Qg «). (3.3)

The random variable X[ + X2 is T(l, 1) distributed, so

E(Xj + X2)2" (2n)!, (3.4)

and the random variable Xj — X2 is distributed as (Xi + X2)Zi/2, where Z\j2 is independent

of Xj + X2 and has a Pearson type II distribution1 Pe(\/2) with density fzl/2(z) —

\/(n V1 — z2). In particular, the even moments of Zi/2 are proportional to the central
binomial coefficients:

1 /'' z2" dz 1 (2n\

Therefore,

E(X, - X2)2" E(X, + X2)2" EZ2;2 ^^. (3.6)

It follows that2

E(X[ + X2)2" +E(Xi - X2)2" (2«)! + (3-7)

The evaluations (3.3) and (3.7) imply (3.1).

lThe Pearson type II distribution with parameter c ^ is also called the arcsine distribution
^This moment could be equally easily computed using the generating function (2.7)
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4 An extension related to Legendre polynomials

A key point in the evaluation given in the previous section is the elementary identity

+ (-!)*
2 if k is even;

(4.1)
0 otherwise.

This reduces the number of terms in the sum (3.3) from 2n to n. A similar cancellation

occurs for any p e N. Indeed, let to e2n'lp be a complex pth root of unity. Then a

natural extension of (4.1) is given by

p-1

5>r
1=0

p if r 0 (mod p);
0 otherwise.

Observe that (4.2) reduces to (4.1) when p 2.

The goal of this section is to discuss the extension of (3.1). The main result is given in the

next theorem. The Legendre polynomials appearing in the next theorem are defined by the

Rodrigues formula

Pn{x) (4.3)
2" iv. ax"

The Legendre polynomials are examples of orthogonal polynomials and their properties

may be found in a variety of texts. The authors' favorite ones include [2], [8], [13] and

[ 14] as well as Chapter 4 in the recent book [3].

In a classical subject, like the one treated in this paper, it is hard to state that a result is

new. The authors have not been able to find the next theorem in the literature.

Theorem 4.1. Let n, p be positive integers. Then

Proof. Replace the random variable X\ — X2 considered in the previous section, by X\ +
WX2, where W is a complex random variable with uniform distribution among the pth
roots of unity. That is,

Pr J VT 0/ J —, for 0 < f < p — 1. (4.5)

The identity (4.2) gives

1 if r 0 (mod p);EWr (4.6)
0 otherwise.

This is the cancellation alluded to above.
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Now proceed as in the previous section to obtain the moments

E(X! + WX2)"P ^ EXk2p

k —n
s^P'

(4.7)

_
(npY- /2kp\ (2 (n - £)/A- 22nP f^\kp)\{n-k)p)'

A second expression for E(Xi + WX2)"p employs an alternative form of the Legendre
polynomial P,,(x) defined in (4.3). The next result appears in [12].

Proposition 4.2. The Legendre polynomial is given by

P„(x) [(x + x/x2 - l)Xi + (x - x/x2 - 1)X2]" (4.8)

where X i and X2 are independent T 11, 1) random variables.

Proof. The proof is based on moment generating functions. Compute the sum

^el(x+~Jx2-\)X\ C-l) *2

00 " n (4 9)
Y. E [(•* + x/x2 — 1) Xi + (x - x/x2 - 1) X2J
n=0 "

The moment generating function for a T 1^ random variable is

Ee'x (1 -r)-'/2. (4.10)

This reduces (4.9) to

^1 — r(x + x/x2 — 1)^ — t(x — sjx1 — 1)^ (1 — 2rx + r2)-1^2

which is the generating function of the Legendre polynomials. See page 146 of [3].

Corollary 4.3. Let x be a variable and X\, X2 as before. Then

E(X| +x2A2)" n\x"P„ (|(x +x"')) (4.11)

Proof. This result follows from Proposition 4.2 by the change of variables u

and the identity u2 — 1 (i(x — x-1))2.
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Equation (4.11) is a polynomial identity in the variable x. Hence we can replace x by the

random variable W'/2 and average over the values of W. This yields

p-1

E(Xi + WX2)"P {np)\-
1 x ' '2eL (\ ,sL -,il\\'-X" «'.'(ir" +«'-))

(4.12)

p i=o

The proof of Theorem 4.1 is complete.

5 Chu-Vandermonde and other classical identities

This section contains a selection of identities from the area of Special Functions that can
be derived by the method described in this paper. For example, the arguments presented

here to prove (2.5) can be generalized by replacing the random variables T (^, l) by two

random variables T(a,, 1) with shape parameters a\ and a2, respectively. The resulting
identity is the Chu-Vandermonde theorem.

Theorem 5.1. Let ci\ and a2 be positive real numbers. Then

Z(ai)t (a2)n~k
_

(a\ +«2)/;
k\ (n - k)\

~ id '

L=o '

This is a well-known result and the reader will find in [2] a more traditional proof. The

paper [15] describes how to find and prove this identity in automatic form.

Exactly the same argument as for (2.6) provides a multivariable generalization of the Chu-
Vandermonde identity.

Theorem 5.2. Let {0, (1 <i<m be a collection ofm positive real numbers. Then

al)ki (am)k„, 1

k^T ~ Ü!Z(ai)kt (am)k„, 1, N c— — -(«,+•+«„,)„ (5.2)

Proof. Consider m independent Gamma random variables X, ~ F (at, 1). Then (1.9)
gives

k T (a, + k,)EX* —^ V (a (5.3)' T (a,)
K ,k'

and with X X\ + + X„,

E[X"] Z '

t (5.4)
/CI.... Km.

k[+ +km=n
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To obtain the result recall (1.11) the sum X X i + + X„ is a Gamma random variable
with X ~ T («i + + a„, 1) Therefore

E[X"] (fli+ • +am)„ (5 5)

The final stated result presents a generalization of Theorem 4 1 This statement involves

the Gegenbauer polynomial C,"'(x) of degree n and parameter a > 0, defined by the

Rodngues formula [2, 6 4 14]

cjSfl)(0 —(f°" \ - x2^~ajfrSl - v2)"+""2 (5 6)
2",, >(« + dx

The reader will find m [2] and [3] information about these polynomials and in Section 18 3

ot [8] a collection of formulas for them

The authors have been unable to find the next result and the note following it in the literature

Theorem 5.3. Let n, p e N, a e R+ and a> e'n!p Then

V (a)*p 72tP I V(-l/"z",'C(") (±(zco{ +^o(kpy ((n-k)Pyz pU L»p\^za+z ]) (5 7)

Proof Start with the moment representation for the Gegenbauer polynomials

C<a)(x) -^E (u(x + x/a2 - 1) + V(x - x/x2 - 1))" (5 8)

with U and V independent T(a, 1) random variables This representation is proved in
the same way as the proof for the Legendre polynomial, replacing the exponent — j by
the exponent —a Note that the Legendre polynomials aie Gegenbauer polynomials with

parameter a j. This result can also be found in Theorem 3 of [12]

Note 5.4. The value z — 1 in (5 7) gives

^ (a)kp (a){n-k)p 1 '' '

Y (a^»-t)p ]_ y(_n^c(«) /cos^ (kPy ((/i - k)Py Pf^ ""V \pj) (5 9)

This is a generalization of Chu-Vandermonde

The techniques presented here may be extended to a variety of situations Two examples
illustrate the type of identities that may be proven. They involve the Hermite polynomials
defined by

Hn(x) (-[)"e"2 (J^j e~*2. (5 10)

The textbook [3] provides extensive information about this classical family of orthogonal
polynomials
The next theorem appears as entry 4 5 2 9 in volume 2 of [10]
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Theorem 5.5. Let m e N. The Hermite polynomials satisfy

Hki(x i) Hkm(xm)

»! V / ^4r k\! km\
k1 + +km —it

(5.11)

Proof. Let A' be a normal random variable with mean 0 and variance The proof starts
with the moment representation for the Hermite polynomials

Hn(x) 2"E(x + i N)", (5.12)

that appears as Exercise 6.8 on page 167 of [13]. The details are left to the reader.

The moment representation for the Gegenbauer polynomials (5.8) and the same
probabilistic technique as before yield the final result presented here. The reader will find the

following statement as entry 5.18.2.7 in [4].

Theorem 5.6. Let in N. The Gegenbauer polynomials C(„"\x) satisfy

c(«i+ ^ C(^](x)---C["f{x). (5.13)
+km=n

Remark 5.7. A relation between Gegenbauer and Hermite polynomials is given by

lim (5-14)
«->00 fl"/z \v°/ "•

This relation allows us to recover easily identity (5.11) from identity (5.13).

The examples presented here show that many of the classical identities for special functions

may be established by probabilistic methods. The reader is encouraged to try these

methods in his/her favorite identity. For example, he/she may want to prove the Pfaff-
Kummer transformation formula

2P\ (a, b\ c; z) — (1 — z) " 2F\ a, c - b\ c; (5.15)

where
+30

-< Fi (a. b\ r: rl S —
(c)t

2Fi(fl,b;c;z) ^^d^y (5.16)
k=0

is the hypergeometric function, by remarking that

2Fi (a, b\ c; z) := E (exp (zXaZh,c-h)) E (l - zZb,c_ftp (5.17)

where Xa ~ T (a, 1) and Zb,c-b ~ B (b,c — b) and by using the symmetry 1 — Zb,c-b ~
Zc-b,h- The reader will find in [2] a proof of (5.15).
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manuscript.
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