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On Beckner’s inequality for Gaussian measures
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The standard Gaussian measure on euclidean space R",
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has many fascinating properties, among them the Poincaré inequality
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Das Gaufische Mal} auf R” besitzt zahlreiche schéne Eigenschaften. Einige davon
tauchen im Zusammenhang mit verschiedenen Normen bei Ungleichungen auf. Die
Poincaré-Ungleichung und die logarithmische Sobolev-Ungleichung von Gross sind
zwei prominente Beispiele. 1989 bewies Beckner eine L”-Ungleichung fiir 1 < p <
2, welche zwischen den beiden genannten Ungleichungen interpoliert: Die Poincaré-
Ungleichung erhilt man fiir p = 1, die Ungleichung von Gross fiir p — 2. Die Au-
toren der vorliegenden Arbeit benutzen nun die Tatsache, dass das Gaullsche Maf} als
Wiirmeleitungskern auftritt, um mit Hilfe der klassischen Wiirmeleitungshalbgruppe
Beckners Ungleichung neu zu beweisen und sie gleichzeitig auf den Fall p > 2 auszu-
dehnen.
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and Gross’s [6] logarithmic Sobolev inequality

jg flog|fldy =1 fI310g Il fll2 < IV fII3.
Beckner [4] has proved the functional inequality

IFIE = 1F15 < @=pIVelE, 1<p<2 (1)

For p = 1, inequality (1) is equivalent to the Poincaré inequality, as can be seen for
bounded f by adding a sufficiently large constant C so that f + C is nonnegative, and for
a general f by approximation by bounded functions. Furthermore, if we divide both sides
of (1) by 2 — p and let p — 2, the left side tends to the left side of the logarithmic Sobolev
inequality. Thus Beckner’s inequality interpolates between the Poincaré inequality and the
logarithmic Sobolev inequality.

Beckner’s original proof of (1) is based on the explicit spectral decomposition of the
Ornstein—Uhlenbeck operator in terms of Hermite polynomials and Nelson’s [9] hyper-
contractivity inequality for the Ornstein—Uhenbeck semigroup. Apparently unaware of
Beckner’s work at the time, Latatla and Oleszkiewicz [7] proved an extension of Beck-
ner’s inequality for measures ce~¥11"~ " ~Il"gx with 1 < r < 2. However, in the Gaus-
sian case r = 2 the inequality (1) was derived from the logarithmic Sobolev inequality
and the hypercontractivity of the Ornstein—Uhlenbeck semigroup, via an argument sim-
ilar to that in Beckner [4]. Many other authors also studied Beckner’s inequality and its
generalizations in various directions; see, e.g., Arnold, Bartier, and Dolbeault [1]; Arnold,
Markowich, Toscani, and Unterreiter [2]; Barthe and Roberto [3]; Chafai [5]; Ledoux [8];
and Wang [11]. But none of these works includes a proof of (1) which does not rely on
1deas or results comparable in difficulty to the logarithmic Sobolev inequality or its conse-
quence the hypercontractivity. In addition, most of these works prove Beckner’s inequality
in a much broader setting than that in which Beckner originally derived it, which can make
it difficult for a reader without susbstantial background in the field to discern the beauty
and simplicity of the original inequality. This situation makes it desirable and instructive
to search for a more direct proof of Beckner’s inequality. In this note, we shall demon-
strate this possibility by proving the following slight extension of Beckner’s inequality by
an elementary argument based on the classical heat semigroup.

Theorem. Let g > 2and 1 < p < q. Thenif f : R" — R is a smooth function such that
[ and each of its partial derivatives belong to LY (R"), we have

LFIZ = 1£15 < (g — IV FIE. (2)

Remark 1. We state the inequality here for smooth functions for expository purposes, but
an elementary approximation argument shows that it is also valid for functions f in the
Sobolev space W14 (R™).

The basic tool for our proof is the classical heat semigroup { Ps} defined by

1 -
P f(x) = Crs)? /R" F)e 12 gy,
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Note that if f is bounded and continuous, then P, f — fass — 0, and if f € L'(y),
then

P f(0) = - fdy.

Furthermore, it is easy to verify from the definition that the heat semigroup has the follow-
ing properties:
1 1

Ps P = Psyy, as-P;:EAPc:EPsA, VPs = PV.

Here V and A are the usual gradient and Laplace operator on R", respectively. Aside from
these elementary properties, the only other tool we will need for the proof of our main
result (2) is Holder’s inequality for a Borel measure v on R":

. 1/p 1/q
fgdvs(f |f|”dv) (/ |g|"du) 3)
RH n n

for f € LP(R",v), g € LY(R", v), and exponents p, g € [1,cc]suchthat1/p+1/g = 1.

By replacing f with | | and then approximating | f| by smooth positive functions bounded
away from 0 and oo, it is enough to show the inequality (2) for a smooth function f such
that0 < ¢ < f < C. For0 < s < 1, consider the function

2
a0 =[P (P 0] @

We can write the left side of (2) as

|
12 = 1S 12 = 610) — ol0) = /0 615 (O)ds.

The idea of considering such a function in the context of functional inequalities can be
traced back to Neveu [10].

The technical part of our proof is a straightforward computation of the derivative of (4)
with respect to s, which will lead to a convenient expression for this derivative (see (7)
below). From this, we will repeatedly apply Hdélder’s inequality to get the simple upper
bound

2/q
@ == ([ 1wriar)

from which our desired inequality (2) follows immediately by integrating with respect to
s fromOto 1.

From the definition (4) of ¢; we have

12/ 2
Osps = 0Os [P_,-g?/’] = _asa:(P.\-gs)q/P,
q

where, to simplify the notation hereafter, we have introduced the functions

2/q—1
8s = Pl—xfp and a; = (Psgfl/p) .
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The derivative o (Pygy)? /P can be easily calculated and we obtain

2 2 i
s = a0, PE!" + P (5 o). (5)

Using the relation o3 P; = (1/2) PsA, we may rewrite the first term on the right side as
(1/q)as Py A (gi,’/p), which equals

1 _ 1 _
= (1 - 1) a P, (gif/ p 2\Vgslz) + —a, P, (gi-” P 1Ag_\,) ©6)
P \pP p

by the identity
Ay =1 (g ~ 1) 122\ vh2 + Lhatr=-Lan
p\p P

applied with i = g;. From 6 Py = —(1/2)A P|—s we have d;¢; = —(1/2)Ags, so the
second term in the sum (6) exactly cancels the second term in (5). In the remaining term,
we use the fact that P|_; commutes with V to write Vg, = pPj_; (f”_l V f). This gives

sy = (g — play P, (g‘i’/ PP (f”"Vf)lz) . (7

Note that P;_, is an integral with respect to a (probability) measure, so we can use Holder’s
inequality (3) with the exponents p/(p — 1) and p to get

P (fP'V ) < P (FPV D < (P f7) 0P (P v £11) Y7
Thus, by (7),
s < (q — p)asPy (g.i’ fp=r (Pl—.st'V’)z/”) | (B)

The case ¢ = 2 is covered by trivial modifications to what follows, so in the remainder
of the proof we assume ¢ > 2. A second application of Holder’s inequality with the
exponents ¢ /(g — 2) and g /2 yields

= ) 1-2/4 2/q
P (7 (v i)Y < (Pgt?) T (B (Piv iy

The first factor on the right side is exactly as‘l , which cancels the factor a; in (8). We thus
have

pna/p\ 4
oty < a— p) (P (Plv pinyr) ©
Since 1 < p < g, another application of Hélder’s inequality gives

PLIVFIP < (PO f19)7

This together with the semigroup property P Pi_y = P gives

na/p\4 2/q 2
(P,s' (Plfslva) ) =< (PsPl—S|vf|q) = (/ 'Vflqdy) .

i
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The last equality holds after evaluating at x = 0. It follows from (9) that

. 2/q
055 (0) < (g — p) (/R" |Vf|"dy) .

Integrating from s = 0 to s = 1 yields the desired inequality (2).
We conclude this note with a few more remarks.
Remark 2. The constant ¢ — p on the right side of our new inequality (2) cannot be

improved. This can be seen by taking f(x) = €*! fort > 0, calculating both sides
explicitly, and letting t — 0.

Remark 3. The condition ¢ > 2 in (2) is essential. Indeed, an inequality of the form

LA =115 < Cla— VeI (10)

cannot hold in the parameter range 1 < p < g < 2 with any constant C. Replacing f by
1 4+ €f in (10) and comparing the coefficients of €” in the Taylor expansions of both sides,
we see that (10) would lead to

~

1715 - ( / dﬂ)— < IV/I2.

» Rf!

Taking again f(x) = ¢'*1, this time with a very large 7, we see easily that this inequality
cannot hold if g < 2.

Remark 4. However, the function
LA1G = 1A
I/p—1/q

is increasing in both arguments whenever 1 < p < g (see Latala and Oleszkiewicz [7]).
This fact together with the original Beckner’s inequality (1) implies

O(q, p) =

5 s B .
115 = 1715 < 2@ = pIVSIE for 1<psgs2

Remark 5. In Section 3.1 of [8], Ledoux used a nonlinear partial differential equation to
prove a version of (1) for the invariant probability measures of a Markov semigroup whose
generator satisfies a curvature-dimension inequality. In the Gaussian case, his inequality
reduces to a sharpened form of (1), with the right side multiplied by (n — 1)/n and the
parameter p allowed to increase to 2n/(n — 1).
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