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I Elemente der Mathematik

On Beckner's inequality for Gaussian measures
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The standard Gaussian measure on euchdean space R",

y(dx) l—^e-[x[2/2dx,

has many fascinating properties, among them the Poincare inequality

II./ II2 < II V / 1|2 for / fdy 0
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author was supported in part by the Simons Foundation Collaborative Grant and by the Institute of Applied
Mathematics of the Chinese Academy ot Sciences and the University of Science and Technology of China during
his visits to these institutions

Das Gaußsche Maß auf R" besitzt zahlreiche schöne Eigenschaften. Einige davon
tauchen im Zusammenhang mit verschiedenen Normen bei Ungleichungen auf. Die

Poincare-Ungleichung und die logarithmische Sobolev-Ungleichung von Gross sind

zwei prominente Beispiele. 1989 bewies Beckner eine Lp-Ungleichung für 1 < p <
2, welche zwischen den beiden genannten Ungleichungen interpoliert: Die Poincare-

Ungleichung erhält man für p 1, die Ungleichung von Gross für p —> 2. Die
Autoren der vorliegenden Arbeit benutzen nun die Tatsache, dass das Gaußsche Maß als

Wärmeleitungskern auftritt, um mit Hilfe der klassischen Wärmeleitungshalbgruppe
Beckners Ungleichung neu zu beweisen und sie gleichzeitig auf den Fall p > 2

auszudehnen.
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and Gross's [6] logarithmic Sobolev inequality

[ f2 log l/l dy — II/H2 log II/H2 < II V/H2
JR"

Beckner [4] has proved the functional inequality

ll/lll-ll/llp < (2-p)||V/||2, l<p<2. (1)

For p 1, inequality (1) is equivalent to the Poincare inequality, as can be seen for
bounded / by adding a sufficiently large constant C so that f + C is nonnegative, and for
a general / by approximation by bounded functions. Furthermore, if we divide both sides

of (1) by 2 — p and let p —>• 2, the left side tends to the left side of the logarithmic Sobolev

inequality. Thus Beckner's inequality interpolates between the Poincare inequality and the

logarithmic Sobolev inequality.

Beckner's original proof of (1) is based on the explicit spectral decomposition of the

Ornstein-Uhlenbeck operator in terms of Hermite polynomials and Nelson's [9] hyper-
contractivity inequality for the Ornstein-Uhenbeck semigroup. Apparently unaware of
Beckner's work at the time, Latala and Oleszkiewicz [7] proved an extension of Beckner's

inequality for measures ce-'*1' ~ 11 < r < 2. However, in the Gaussian

case r 2 the inequality (1) was derived from the logarithmic Sobolev inequality
and the hypercontractivity of the Ornstein-Uhlenbeck semigroup, via an argument similar

to that in Beckner [4], Many other authors also studied Beckner's inequality and its

generalizations in various directions; see, e.g., Arnold, Barrier, and Dolbeault [1]; Arnold,
Markowich, Toscani, and Unterreiter [2]; Barthe and Roberto [3]; Chafai [5]; Ledoux [8];
and Wang [11], But none of these works includes a proof of (1) which does not rely on
ideas or results comparable in difficulty to the logarithmic Sobolev inequality or its

consequence the hypercontractivity. In addition, most of these works prove Beckner's inequality
in a much broader setting than that in which Beckner originally derived it, which can make
it difficult for a reader without susbstantial background in the field to discern the beauty
and simplicity of the original inequality. This situation makes it desirable and instructive
to search for a more direct proof of Beckner's inequality. In this note, we shall demonstrate

this possibility by proving the following slight extension of Beckner's inequality by
an elementary argument based on the classical heat semigroup.

Theorem. Let q > 2 and 1 < p < q. Then if f : R" —» R. is a smooth function such that

f and each of its partial derivatives belong to Lq (R"), we have

Remark 1. We state the inequality here for smooth functions for expository purposes, but

an elementary approximation argument shows that it is also valid for functions / in the
Sobolev space W1'</(R").

The basic tool for our proof is the classical heat semigroup {Ps} defined by

\\f\\l-\\f\\2p<(q- pWf\\ 2

<?'
(2)
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Note that if / is bounded and continuous, then Psf^fass^>0, and if / e Lx{y),
then

P\f(0)= f fdy.
J]R"

Furthermore, it is easy to verify from the definition that the heat semigroup has the following

properties:

PsPt Ps+t, dsPs =-APS =-Ps A, VP, PSV.

Here V and A are the usual gradient and Laplace operator on R", respectively. Aside from
these elementary properties, the only other tool we will need for the proof of our main
result (2) is Holder's inequality for a Borel measure v on R":

/ fgdv<([ \f\pdvYP([ \g\c'dvY' (3)
J R" VR» / VR" /

for / e LP(W, v),g e Lq(W, u), and exponents p, q e [1, oo] suchthat \/p + \/q 1.

By replacing / with |/| and then approximating |/| by smooth positive functions bounded

away from 0 and oo, it is enough to show the inequality (2) for a smooth function / such

that 0 < c < / < C. For 0 < s < 1, consider the function

Mx) [p> {P\-sfp)qlP w]2/</ • (4)

We can write the left side of (2) as

II/II J - Wftp ^i(O) - /o(0) yf 5,^,(0)^.

The idea of considering such a function in the context of functional inequalities can be

traced back to Neveu [10].

The technical part of our proof is a straightforward computation of the derivative of (4)
with respect to J-, which will lead to a convenient expression for this derivative (see (7)
below). From this, we will repeatedly apply Holder's inequality to get the simple upper
bound

ds<Ps(0)<(q~ P)(lRn\Vf\«dy^

from which our desired inequality (2) follows immediately by integrating with respect to

s from 0 to 1.

From the definition (4) of we have

d^s 8S [Psgl'^''1 -aidi(Psg>Yl/p,
l2/<7 2

—i
q

where, to simplify the notation hereafter, we have introduced the functions

gs Pi-s.fp and as ^PsgqPp\ 2/q-l



36 E. Gwynne and E.P. Hsu

The derivative 8S (PsgsY^p can be easily calculated and we obtain

ds</>, -as(dsPs)gl/p + -asPs (g!/p~ldsgs) (5)
q p \ /

Using the relation dsPs — (1/2)PSA, we may rewrite the first term on the right side as

(l/q)a, Ps A (gl^p^, which equals

- (J - 1 ^asPs (gf~2|Vgs|2) + ~p<isPs (gl""''Agl) (6)

by the identity

A (hqlp) - (- - A hqlp~2\Vh\2 + -hq/p~x Mi
P \P / P

applied with h — gs. From dsPi-s — (l/2)APi_s we have dsgs — (1/2) Agj5 so the

second term in the sum (6) exactly cancels the second term in (5). In the remaining term,
we use the fact that P\-s commutes with V to write Vgs pP{-s(fp~lVf). This gives

ös4>s {q~ P)asPs (g!/P~2\Pl-s(fp-{Vf)\2) (7)

Note that P[^s is an integral with respect to a (probability) measure, so we can use Holder's
inequality (3) with the exponents p/(p — 1) and p to get

\Pi-Afp~lvf)\ < Pi-i(fp~l\vf\) < (Pi-sfp)ip~1)/p (Pi-s\v.f\p)l/p

Thus, by (7),

ös<Ps <(.q~ P)csPs (g'!"'~2/P {P\s\Vf\")2/p} (8)

The case q — 2 is covered by trivial modifications to what follows, so in the remainder
of the proof we assume q > 2. A second application of Holder's inequality with the

exponents q/(q — 2) and q/2 yields

Ps (gilp~2lp {p{-s\vf\p)2'p) < (Psgc!,p)^Vq (ps (Pi-.\vf\pyi/p)2/q.

The first factor on the right side is exactly which cancels the factor as in (8). We thus
have

8s<Ps S(q-P) (Ps (Pis \Vf\p)"'P)Vq (9)

Since 1
— P — q, another application of Holder's inequality gives

A-viv/r < {pv-av f\")p/q.

This together with the semigroup property Ps Pi-S P\ gives

(p, {Pi-s\Vf\p)qlP)2lq < (P,Pi-JV/r02/" (J IV.f\qdy^j
h
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The last equality holds after evaluating at jr 0. It follows from (9) that

2/<l

dsMo) <

Integrating from .s 0 to .s 1 yields the desired inequality (2).

We conclude this note with a few more remarks.

Remark 2. The constant q — p on the right side of our new inequality (2) cannot be

improved. This can be seen by taking f(x) eIXi for t > 0, calculating both sides

explicitly, and letting / — 0.

Remark 3. The condition q > 2 in (2) is essential. Indeed, an inequality of the form

II/II2 - II/II;, < C{q-p)\\v tw] (10)

cannot hold in the parameter range 1 < p < q < 2 with any constant C. Replacing / by
1 + ef in (10) and comparing the coefficients of e2 in the Taylor expansions of both sides,

we see that (10) would lead to

11/1122~{Lfdft)5i,v/i1''-

Taking again / (x) e'Xl, this time with a very large /, we see easily that this inequality
cannot hold if q < 2.

Remark 4. However, the function

'1/112-11/Hp
0(q, p) "g "J

\/p-\/q
is increasing in both arguments whenever 1 < p < q (see Latata and Oleszkiewicz [7]).
This fact together with the original Beckner's inequality (1) implies

II f\\I - II /"II2, < -Ui - p)Wf\\l for I < P<q <2.
1 ' 'I

Remark 5. In Section 3.1 of [8], Ledoux used a nonlinear partial differential equation to

prove a version of (1) for the invariant probability measures of a Markov semigroup whose

generator satisfies a curvature-dimension inequality. In the Gaussian case, his inequality
reduces to a sharpened form of (1), with the right side multiplied by (n — l)/n and the

parameter p allowed to increase to 2n/(n — 1).
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