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Geometric median in the plane

Dragana Jankov MaSirevi¢ and Suzana Miodragovic¢

Dragana Jankov MasSirevi¢ and Suzana Miodragovi¢ graduated in mathematics and
information technology from the University J.J. Strossmayer in Osijek in 2008. Since
then they are working as doctoral students in the Department of Mathematics at the
University of Zagreb.

1 Introduction

Let T; = (.xﬁ”, .réi)). i=1,....,m,m > 2, be a given set of the points in the plane, with
their corresponding weights w; > 0. We need to determine the point 7' = (u, v) € R? such
that the weighted sum of Euclidean distances between the points 7; and 7 be minimal, i.e.,
we need to minimize the functional F: R? — R,

m m

F(uy,ur) = Z w; d(T,-(xi”, .\'g)), T(u],ug)) = Z m,-\/(x}f) = ul)2 + (.,\'g) — ”2)2 i

=1 i=1

The point T with the above property is called the weighted geometric median of points
T; = (.\‘i”,.\‘é")), i=1,...,m.

This problem and its generalizations often occur in a variety of applications, such as de-
termining the location of schools, medical emergency centers, fire stations, bus stations or
garages, telecommunication centers, etc. (see [4], [5]).

In the scientific literature (for example, see [11]), it is considered that Pierre de Fermat

(1601-1665) first started to deal with this problem by considering the problem of de-
termining the geometric median of three points in the plane. The Italian mathematician

Ein bekanntes Problem der Elementargeometrie besteht darin, in der Ebene denjenigen
Punkt zu finden, welcher die Abstandssumme zu drei gegebenen Punkten minimiert.
Bereits Pierre de Fermat und Evangelista Torricelli beschiftigten sich mit dieser Fra-
gestellung. Verallgemeinernd kann man den geometrischen Median bei m Punkten im
n-dimensionalen Raum fiir eine gewichtete Abstandssumme untersuchen. Die Autoren
befassen sich in der vorliegenden Arbeit just mit diesem Problem und wenden dabei ih-
re Aufmerksamkeit auch dem Weiszfeld-Algorithmus zur Bestimmung der Losung zu.

(S
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Evangelista Torricelli (1608—1647) also considered this problem, hence the geometric me-
dian is sometimes called Torricelli point. This problem was also addressed by the Italian
mathematician Battista Cavalieri (1598-1647), the English mathematician Thomas Simp-
son (1710-1761), etc. The problem became interesting again in the twentieth century when
it was realized that it lies in the background of many practical problems. The Hungarian
mathematician Endre Vaszonyi Weiszfeld is of particular interest as he also defined the
first numerical iterative algorithm for finding the geometric median for a set of points in
a 3-space in 1936 (see [13]). Amending some of Weiszfeld’s arguments, Kuhn ([9], [10])
proved in 1962 that the optimal solution is at one of the given points, but such a claim was
valid only with some additional hypotheses. Drezner (see [2], [3]) constructed Weiszfeld’s
accelerated algorithm, and in 1974 Katz (see [8]) showed that in general, the convergence
of Weiszfeld’s algorithm is linear.

2 Determining the geometric median of three non-collinear
points in the plane

Let A, B,C € R? be three non-collinear points in the plane which define the triangle
ABC. A term of an oriented angle, which we need for proving the basic theorem for
determining the geometric median of the triangle ABC, is specified below. Specifically,
if the points A, B, C € R? are collinear, the geometric median is any point in the convex
hull of these points.

Definition 1. An oriented angle, which is formed by the lines /; and /> and denoted by
£(l1,12), is an angle for which we need to rotate the line /| in positive orientation so that
it coincides with the line [ or it is parallel to the line /5.

An oriented angle £ (BA, BC) is an angle which is formed by the lines AB and BC, or an
angle for which we need to rotate the line AB around the point B in positive orientation
so that it coincides with the line BC.

Remark 1. The size of an oriented angle £(BA, BC) can be equal to ZABC or to its
supplement.

If the triangle ABC is positively oriented, it is easy to see that the oriented angles
£(BA, BC), £(CB,CA), £(AC, AB) are equal to the corresponding outer angles of the
triangle, while the inner angles are £ (BC, BA), £(CA, CB), £(AB, AC).

Lemma 1. The points P, Q, R, S are concyclic if and only if L(PR, PS) = £(QR, Q5).

The proof of Lemma 1 is contained in [7].

Remark 2. There are well-known claims that inscribed angles of the same circular arc are
equal, and that the opposite angles of a convex quadrangle are supplementary if and only
if its angles are concyclic points. These two claims can be consolidated into one theorem.
Namely, if four points P, Q, R, S lie on one circle, then ZRPS and ZRQS are equal or
supplementary, depending on wether the points P and Q are lying on the same side or on
opposite sides with respect to the RS and vice versa.
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Let us note that, if P and Q are in the same half-plane with respect to RS, then
£L(PR,PS) = 4£(0OR, QS5),

and vice versa. However, if P and Q are in different half-planes with respect to RS, then

ZRPS and ZRQS are supplementary, but L(PR, PS) = L(QR, QF), and vice versa.
The equality £(PR, PS) = £(QR, QS) is a necessary and sufficient condition that the
four points lie on the circle.

Theorem 1. If ABC', BCA', CAB' are equilateral triangles on the outer side of a given

triangle ABC, then the lines AA", BB', CC' and the circles circumscribed around the
triangles ABC', BCA', CAB' intersect at one point T € R”. In addition,

d(A, Ay =d(B, By =d(C,C"),
and the lines CC', BB', AA" form angles of 60° (Figure 1).

|
|
|
\
\

A/

Fig. 1

Proof. Assume that the triangle ABC is positively oriented. Then the triangles ABC’,
BCA’, CAB’ are negatively oriented. Rotation around the point A by 60° maps the point
C’ to B, and the point C to B’. This implies

d(C,C"Y=d(B,B') and £(CC’,BB’)=060°.
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Analogously,

d(A,A)=d(C,C") and 4L(AA,CC") =60°,
d(B,B)Y=d(A,A") and A(BB',AA") =060°.

Assume that BB'NCC' =T.As £(TC',TB) = 60° = £(AC’, AB), and according to
Lemma I, T lies on the circle around the triangle ABC’, from which follows

A(TB, TA)=60° = £(C'B, C'A). (1)
As
A(TC,TB") =60°=4£(A'C, A'B),

according to Lemma 1, T lies on the circle BC A’, from which follows

A(TB,TA"Y = £(CB,CA") = 60°. (2)

From (1) and (2) we can see that (T B, TA) = £(T B, TA’"), from which it follows that
the lines T A and T A" are identical, i.e., the points A, A", T are collinear. U

The point T from the previous theorem is called Torricelli point of the triangle ABC, and
the lines AA’, BB" and CC" are called Simpson lines.

Corollary 1. Let A, B, C € R? be three non-collinear points in the plane.
(i) If AABC has no angle greater than 120°, then the Torricelli point S lies within
AABC.

(ii) If AABC has an angle equal to 120°, then the Torricelli point S is the vertex at that
angle.

(iii) If AABC has an angle greater than 120°, then the Torricelli point S lies outside
AABC.

Proof. Let a = ZBAC (Figure 2). Since AABC’, ABCA’, and ACAB’ are equilateral
triangles, we have Z/BAC' = ZCAB' = 60°.

(i) If @ + 60° < 180°, then the lines BB’ and CC’ intersect at the vertex 7 within
AABC (Figure 2a)).

(ii) If @ +60° = 180°, then the lines BB’ and CC’ intersect at the vertex A (Figure 2b)).

(iii) If a 4+ 60° > 180°, then the lines BB’ and CC’ intersect at the point T outside
AABC (Figure 2¢)).

By Theorem 1, the point T = BB’ N CC’ lies on the line AA” which corresponds to the
Torricelli point. (]

Theorem 2. The geometric median of three non-collinear points A, B, C € R? is located
within the triangle ABC.
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B'

Fig. 3

Proof. We will show that for any given point outside AA B C there exists a point G on one
of the edges of that triangle such that the sum of distances from G to vertices of AABC
does not exceed the analogous sum for the given point.

Look at Figure 3. We distinguish two cases:

1. Choose an arbitrary point G outside AABC,inthearea E, andlet G = BCNAG|.
We will prove that

d(G,A)+d(G,B)+d(G,C) =d(G1,A) +d(G1, B) +d(G1,C).  (3)
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From the triangle ABGC we see that
d(G,B)+d(G,C) =d(B,C) =d(Gy, B) +d(G,, C), (4)

and obviously
d(A, G) =d(Gy, A). (5)
Adding (4) and (5) gives (3).
2. Let G be an arbitrary point outside AABC in the area F'. We will prove that
d(A,A)+d(A, B) +d(A,C) =d(G2, A) +d(G2, B) +d(G2,C).  (6)

Depending on the angle y = ZDAG, we have two cases:

) If y+p > (a—y)+pf,then ZBAG, = y + f is the greatest angle in ABAG»,
hence
d(A, B) <d(Gy, B). (7)

On the other hand, from AACG; we see that
d(A,C) =d(A, G2) +d(G2, C). (8)

Adding (7) and (8) gives (6).
i) Ify + f <(a—1yp)+ B, then ZCAG2 = (a — y) + f is the greatest angle in

ACAG», hence
d(A,C) =d(G2, C). 9
From AABG; we have
d(A, B) <d(A, Gy) +d(Ga, B), (10)
and adding (9) and (10) again gives (6). O

Theorem 3. Let A, B, C € R? be three non-collinear points in the plane.

(i) If AABC has no angle greater than 120°, then the geometric median of points A, B,
and C agrees with the Torricelli point.

(ii) If AABC has an angle greater than 120°, then the geometric median of points A, B,
and C is located at the vertex corresponding to that angle.

Proof. (i) Assume that AA BC has no angle greater than 120°. Let P be an arbitrary point
within AABC (Figure 4a). We will show that the following holds:

d(P,A)+d(P,B)+d(P,C)>d(T,A)+d(T,B)+d(T,C).

Let P’ € R? be a point such that AC P P’ is an equilateral triangle. Rotation around C by
—60° transforms AAPC onto AB'P'C,s0 AAPC = AB'P'C. Therefore

d(P,A)+d(P,C)+d(P,B)=d(B',P)+d(P,P)+d(P,B)>d(B,B), (1)
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a)

b)
Fig. 4

From AA'CA = ABCB and AABA’ = ACBC’ it is easy to see that
d(A, T)+d(B,T)+d(C,T) = d(B, B).
(11) and (12) gives

(12)
d(P,A)+d(P,B)+d(P,C)>d(A,T)+d(B,T)+d(C,T).

(ii) Assume now that one of the angles of AABC, say the one at A, is greater than 120°
(Figure 4b)),

120° < ZBAC < 180°.
following

(13)
Simpson lines intersect in the point T which does not belong to AABC. We show the
d(A,A)+d(A,B)+d(A,C) <d(T,A)+d(T,B)+d(T,C),
and forall 7y € AABC

(14)
d(A,A)+d(A,B)+d(A,C) =d(T\, A) +d(Ti, B) +d(Ty, C).

(15)
Firstly, let us prove (14). From ZBAC' = ZCAB' = 60° and (13) it follows that 60° <
Z/C'"AB’" < 120°. Two cases are possible:
a) ZTAC' > 30°

In this case, ZBAT > 90° is the greatest angle in ABAT, so we have
d(B,T) > d(A, B).

(16)
Using the triangle inequality d(A, C) < d(A,T)+d(T, C) and (16) we get (14).

27
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by /TAB' > 30°
In this case, ZCAT > 90° is the greatest angle in ACAT, so

d(C,T) > d(A, C). (17)

Using d(A, B) <d(A,T)+d(T, B) and (17) we obtain (14).
All that remains is to prove (15). Let 77 be an arbitrary point in AABC and let 7> € R2
be such that ABT)T; is an equilateral triangle (Figure 5).

BI

Fig. 5

Rotating ABAT; by —60° around B, we get ABC'T. Therefore ABAT, = ABC'T»,
hence

d(Ti, A) +d(T\, B) +d(T\,C) = d(T\, C) + d(T, T2) + d(T>, C').
It is easy to see that
d(A,CY+d(A,C) <d(C', T2) + d(Tr, T1) + d(T1, C),

i.e.,
d(A,B)+d(A,C) <d(T1,A)+d(T\, B)+d(T),C). ]

3 Geometric median of m points in the plane

In the previous chapters we considered the problem of finding the geometric median of
three non-collinear points in the plane. Next, we will consider the problem of determining
the geometric median of finitely many points in a finite-dimensional space.
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3.1 Weiszfeld’s algorithm

Let T; = (x ('), xSy i =1, ..m.om>2bea given set of points in R", with their
corresponding Welght.s w; > 0. We have to find a point T* = (u7, ..., u,) € R" such that
the sum of weighted Euclidean distances from these points to 7* is minimal. This problem
reduces to the problem of minimization for the functional F: R" — R given by

m

Flup,...,u,) = Z wipi(iy, ..., uy),

i=l

- (18)
piluy, ..., i) = Z(xﬁi)—uj)z, i=1,...,m.

j=l
The following lemma lists some properties of the functional F (see, e.g., [1]).

Lemma 2. Let T; = (,rfl), cees x,(,')) e R i=1,...,m m > 2, bea given set of points,
with their corresponding weights w; > 0, and let F: R" — R be as in (18). Then

(1) F is continuous.
(i1) F is convex.

(iii) There exists apoint T* = (u7, ..., u;) € R" at which F attains its global minimum.

As one of the methods for finding the geometric median, we are going to briefly describe
Weiszfeld’s iterative procedure for determining the global minimum of the functional F,
which is highly regarded in applications (see [5]). To simplify the notations, we consider
the case n = 2. So, we are given the points 7] = (x (1), xél)), oy = (x l"'), ('”))
and their respective non-negative weights wy, ..., wy,, and we have to find a point 7* =
(uy,u3) € R? at which the functional F attains its global minimum. Equating the gradient
of F to zero, we get the following system of equations

oF(uy,uz) Z w;i(uy — (.)) _6 OF (ur,uz) L M 0
oy N = pi(uy, ua) ’ Our = piluy,un)
(19)

(Obviously, the partial derivatives do not existat 77, ..., 7;,.)

In general, system (19) cannot be solved explicitly for an m > 3. If we write it in the form

uy =@, uz), ur = y(uy, uz), (20)
1 m 113!-\’f’) I m " rxéf)
K= m 2 Bz = m ’
wi i1 Pi(“l, u?z) Wwj o1 p,-(ul, u3z)
=1 pi(uy,uz) i=1 pi(ur, u2)

then, according to the method of simple iterations (see [6]), we can define Weiszfeld’s
iterative process

" (Hl = ga(ul ué‘ ), uﬁ”l) — y/(u“‘) U, )) k=0,1,... (21)
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As an initial approximation, we can take, for instance, the centroid of the given points
Tla LRG| T;}l

m l m m

o _ 1 (D) ) _ (D) _ .
U, = W;w,xl ; U, = WZU),)CQ ; W—Z:‘w,. (22)
i= i=

=1

4 Examples

We will present three examples illustrating the properties and applications of the geometric
median in the plane. Examples 1 and 2 illustrate the difference between the geometric
median and the centroid for three non-collinear points A, B, and C, depending on the
distances between these points. In Example 3, we give a problem of location, in which, by
applying Weiszfeld’s algorithm, we find the optimal solution.

Example 1. Take the points A(5.00,4.21), B(2.96, 1.90), C(7.04, 1.90) in the plane. The
mutual distances between them are not significantly different (see Figure 6a)), and thus

the Torricelli point 7 is inside AA BC and it coincides with the geometric median of these
points. The centroid of these points is D(5.00,2.67) and d(T, D) = 0.41.

b)

A=GC
/\
B C

Fig. 6

Example 2. For the next example take the points A(2.80, 3.17), B(1.19, 1.88), C(10.74,
1.88) which are such that AABC has one of the angles greater than 120° (see Figure 6b)).
The Torricelli point 7' is now located outside AA BC and it does not coincide with the ge-
ometric median G of the given points A, B, C. The centroid of these points D(4.91, 2.31)
is quite distant from the geometric median: d(G, D) = 2.26.

Example 3. (See [12].) A fire station needs to be built in one region of the State of Mas-
sachusetts so that a fire-fighting vehicle, arrives in a maximum of six minutes from the
time it receives a call to the place of fire. It is presumed that the call requires one minute,
and the same amount of time is required until fire-fighters are ready to go.

Let us observe 15 settlements, whose position in the coordinate system is determined by
the points 7; = (x;, y;), with corresponding weights w; = 1,i =1, ..., 15 (see Table 1).
If we assume that the average speed of a fire-fighting vehicle is 100 km/h, meaning that for
the remaining 4 minutes the vehicle can travel 6.7 km.

We want to determine a point G which will represent a fire station so that the sum of
distances from that point to points T; = (x;,v;), i = 1,..., 15, is minimal. The pro-
cess is performed by using Weiszfeld’s algorithm. As an initial approximation, we take
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i 1 2 3 45 6 7 8 9 10 11 12 13 14 15
xi| 1324 9 14 2 4 1156 8 17 1 6 9 13 6 5 14
vi|—413 —6 -5 6 1 —=286 =1 —4 =4 =3 1 115 =2 435 -3

Table 1

the centroid of the provided data which are calculated by using formula (22), which is
D(8.85333, —1.43267). We follow an iterative process described by formulas (19)-(21).
We observe the required number of iterations for which the norm of differences between
every two successive approximations of the solution G would be less than some prede-
fined precision €. We can see that, with the increasing precision, the number of iterations
increases linearly (see Table 2), which confirms the theoretical result mentioned in the
introduction, which states that the convergence of Weiszfeld’s algorithm is linear.

Precision (¢) | 10~ ' 10~2 ' 103 | 104 ) 103 \ 10° l 107 ( 10-8 \
Numberof iteration | 3 | 9 | 16 | 23 | 30 | 38 | 45 | 52 |

Table 2

Fig. 7

In Figure 7, settlements are represented by black points.

The grey point G = (8.56372, —1.40877) (which the arrow points to) is the geometric
median, which determines the position of the fire station and which was determined by
Weiszfeld’s algorithm after 52 iterations. If we plot a circle of radius 6.7 km centered at
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the geometric median, we can see that some of the settlements are not within the circle;
hence, they cannot be well covered by the fire station. We conclude that for the purpose of
fire protection of good quality in all 15 settlements, more than one fire station needs to be
built. The problem of area coverage with an optimal number of fire stations is a completely
different problem (for example, see [12]).
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