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Asymptotisches Verhalten der Lisungen
inhomogener linearer Differenzengleichungen
zweiter Ordnung mit konstanten Koeffizienten

Ralf Guckel

Ralf Guckel promovierte im Jahr 2001 an der Universitit Leipzig im Fach Mathema-
tik. Danach war er mehrere Jahre im Management eines mittelstindischen Unterneh-
mens tatig. Im Jahr 2010 wechselte er als Dozent fiir Mathematik und Statistik an die
Berufsakademie Sachsen.

1 Problemstellung

Gegeben seien cine reelle Zahlenfolge (o, ), > sowie reelle Zahlen £, y, 5o und 5. Wir
betrachten diejenige Folge ( f;). 0. die den folgenden Gleichungen geniigt:

fo=s0. fi=s1, fa=tn+Pfa1+yfao firallen =2, (L.1)

Mit (1.1) steht das Anfangswertproblem fiir die allgemeine lineare Differenzengleichung
zweiter Ordnung (bzw. im Fall y = 0 erster Ordnung) mit konstanten Koeffizienten im
Mittelpunkt dieser Arbeit. Wir nehmen dabei im Folgenden stets an, dass die Vorausset-
zung

B#£0 (1.2)

erfiillt ist. Im Fall # = 0 (und y # 0) lassen sich die Ergebnisse dieser Arbeit separat auf
die beiden vollstindig entkoppelten Teilfolgen ( f2};30 und ( f2,11)n 30 anwenden.

Die Fibonacci-Folge 0, 1, 1, 2, 3, 5, 8, 13, . .. zdhlt neben den Primzahlen zu den am
intensivsten studierten Zahlenfolgen iberhaupt. Ihre Anziehungskraft verdankt sie un-
ter anderem der berihmten ,Regel vom Goldenen Schnitt®: Danach konvergiert der
Quotient zweier aufeinander folgender Fibonacci-Zahlen F,, {/F, fiirn — 00 gegen
den Grenzwert (1 + +/5)/2. Eine Ubertragung dieser Regel auf beliebige lineare (ho-
mogene) Rekursionen bereitet nur wenig Schwierigkeiten. In der Arbeit steht jedoch
vor allem die folgende Frage im Vordergrund: Unter welchen Voraussetzungen und
in welcher konkreten Gestalt lédsst sich die ,.Regel vom Goldenen Schnitt® auch auf
inhomogene Rekursionen ibertragen?
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Neben (f:)n>0 betrachten wir auch die Losungen (g,)n>0 und (1;),>0 der folgenden
Rekursionsbeziehungen:

80=1250, 81 =51, & = fBgn-1+yg,—2 firalle

=2, (1.3)
ho=1, hiy=p, hy =Php_1 + yh,_o firalle n 22

n
nz2. (1.4)
Die Zahlenfolge (g, }» 30 ist also die Losung der zu {1.1) gehdrenden homogenen Rekursi-
on. Die Zahlenfolge (%1, )n >0 lasst sich dagegen in einem gewissen Sinn als Fundamental-
oder Grundlésung von (1.1) verstehen, wie wir spiter noch sehen werden.
Rekursionsgleichungen vom Typ (1.1) (und weitreichende Verallgemeinerungen davon)
sind in sehr vielen Gebieten der reinen und angewandten Mathematik anzutreffen. Einen
guten Uberblick iiber Theorie und Anwendungen von Differenzengleichungen im Allge-
meinen vermitteln z.B. die Lehrbticher [9] und [14]. Das mathematische Interesse im Um-
feld solcher Modelle konzentriert sich i. d. R. auf die folgenden drei Probleme:

(P.1) Herleitung einer expliziten Darstellungs- bzw. Losungsformel, moglichst in ,ge-
schlossener* Form.

(P.2) Nachweis der Stabilitat oder Instabilitit der Losung.

(P.3) Untersuchung asymptotischer Eigenschaften der Lésung.

Fiir den iltesten und prominentesten Vertreter linearer Rekursionen, die klassische Fibo-
nacci-Rekursion
Fo=0, Fi=1, F=F.a+F (15)

ist eine explizite L.osungsdarstellung seit langem in Gestalt der Formel von Moivre—Binet

bekannt: . ;
1 14++/5 1—+/5
3 () -(59) ) o

Mit Hilfe der Darstellungsformel (1.6) lassen sich zahlreiche interessante Aussagen iber
die Fibonacci-Folge (F;, ), >0 beweisen. Beispielsweise bestehen die folgenden Grenzwert-
beziehungen:

F 145
T . V5 ; (1.7)
n—=o0 [, 2

, Fy
lim ———— =1
n—> 00 (1+ﬁ)
2

(1.8)

Die Zahl # =~ 1,618 heilit ,Goldener Schnitt* und gemil der ,Regel vom Goldenen
Schnitt”* (1.7) besitzt die Folge (F, )0 eine asymptotisch konstante Wachstumsrate. Man
beachte, dass fiirbeliebige (positive) Folgen (F, ), >0 aus (1.8) stets (1.7) folgt.

Die Problemstellungen (P.1) und (F.2) konnen fiir Rekursionen vom Typ (1.1) in einem

gewissen Sinn als abschlieBend geklirt betrachtet werden. Mit Hilfe der Methode der er-
zeugenden Funktionen ldsst sich die Losung f von (1.1) als Faltungsprodukt {f = k% a
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darstellen mit & = (sg, s1 — fsg, 62, a3, ...). Die Losung /& von (1.4) kann explizit und
in geschlossener Form angegeben werden. Gleiches gilt fiir die Losung g der homogenen
Rekursion (1.3). Aus Griinden der Vollstandigkeit haben wir diese Verallgemeinerungen
der Darstellungsformel von Moivre—Binet (1.6) in die Arbeit aufgenommen (Abschnitt 2).
Daraus lassen sich dann auch die bekannten Aussagen zur Stabilitit von /2, g und f rekon-
struieren.

Die Arbeiten [2—4,8,10,13,15,16,21-23] befassen sich mit einigen Spezialfillen, in denen
eine Losungsdarstellung in geschlossener Form méglich ist. Die Inhomogenitét wird dar-
in beschrieben durch eine exponentielle, polynomielle oder faktoriell-polynomielle Folge.
(In den Asbeiten [21,22] werden allgemeinere Sitze zur Losungsdarstellung bewiesen,
konkrete Anwendungen bleiben dann jedoch wieder auf die bereits genannten Félle be-
schrinkt.)

Asymptotische Eigenschaften der Losungen homogener Rekursionen mit (asymptotisch)

konstanten Koeffizienten bilden den Gegenstand einer ganzen Reihe von Arbeiten von
&)

Poincaré [20], Perron [17, 18] und Birkhoff [7]. Darin werden die Grenzwerte lim ”J)l
n—o00 h;

eines Systems von Fundamentallssungen 2® in Beziehung gesetzt zu den Nullstellen A
des zugrundeliegenden charakteristischen Polynoms. Vgl. dazu auch [9, Kap. 8].

Direkte Verallgemeinerungen der Arbeiten von Poincaré und Perron auf nicht-homogene
Rekursionen finden sich z.B. in[1,5,12]und [19]. Allerdings schlieBen die darin formulier-
ten Voraussetzungen an die (nichtlineare) Storung den vorliegenden Fall einer einfachen
linearen Storung aus.

Asymptotische Eigenschaften der Losungen der inhomogenen Rekursion werden indirekt
auch in den Arbeiten [6] und [11] untersucht. Darin wird u. a. gezeigt, dass fiir das Fal-
tungsprodukt von Lésungen homogener Rekursionen unter bestimmten Voraussetzungen
wieder eine Regel der Gestalt (1.7) erfiillt ist. In unserem Fall wird jedoch lediglich einer
der beiden Faktoren durch eine Rekursion erzeugt.

Im Mittelpunkt der vorliegenden Arbeit steht nun die Frage, unter welchen Bedingun-
gen und in welcher konkreten Gestalt sich die Beziehungen (1.7), (1.8) auf die Losung
(fu)nzo0 der allgemeinen linearen Rekursion (1.1) dbertragen lassen. Die zur (teilweisen)
Beantwortung dieser Frage verwendeten Methoden in Abschnitt 3 stammen im Wesentli-
chen aus der reellen Analysis. Sie sind keineswegs neu oder tiefliegend. Allerdings finden
sich einige der hier bewiesenen Resultate in dieser Form bislang nicht in der Literatur. Das
betrifft vor allem die Ergebnisse fiir inhomogene Rekursionen.

2 Verallgemeinerung der Formel von Moivre-Binet

Ausgangspunkt unserer Uberlegungen ist die folgende quadratische Gleichung, die wir
charakteristische Gleichung der Rekursionsbeziehung (1.1) nennen:

Z2—pz—y=0. 2.1

Die beiden LLosungen s, g2 der charakteristischen Gleichung (2.1) heiffen charakteristi-
sche Zahlen der Rekursionsbeziehung (1.1). Es gilt fiir alle z € C die folgende Beziehung:

1= pr—y2®=(1—pz) (1 — paz) . 2.2)
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Fall | Bedingungen an /3, y Bedingungen an g1, pa
I p*+4y >0 tis pe € R, py # po
II pP+4y =0 ur, u2 € R, p1 = 2
I Br+4y <0 t1, 12 € CAR, u1 =1y
Tabelle 1

Insbesondere gelten die Identititen

pitur=p, 2.3)
B s = 2.4

Die Nummerierung der beiden charakteristischen Zahlen soll o. B. d. A. so gewihlt sein,
dass w1 die betragsmiBig kleinere der beiden Zahlen darstellt:

[u1] < |uz2l . (2.5)

Die qualitativen und asymptotischen Eigenschaften der Lésungen (7, )n>0 und (g,)230
der Rekursionen (1.4) bzw. (1.3) hingen in erster Linie von den Koeffizienten £ und y
ab, die ihrerseits mit den charakteristischen Zahlen g1 und g2 im Zusammenhang ste-
hen. Wir unterscheiden im Folgenden die drei Falle I, IT und III, vgl. Tabelle 1. In den
Féllen Tund IT werden durch die Folgen (%1, )}, 0 und (g,)»30 im Wesentlichen exponenti-
elle Wachstums- und Abklingprozesse beschrieben, wihrend der Fall III zu oszillierenden
Folgen mit entweder konstanter oder exponentiell wachsender oder exponentiell fallen-
der Amplitude fithrt. Die Einzelheiten sind in den beiden nachfolgenden Sétzen 1 und 2
zusammengefasst.

Satz 1. Fiir die durch die Rekursion (1.4) definierte Zahlenfolge (%, } >0 gilt die folgende
explizite Darstellung:

n+l _  a+l
Lo S, B im Fall I
H2 — M1
(4 D] im Fall II
b, =
sin(rz + 1
Iml"i(n. o1 im Fall 11
sin ¢y
mit g1 = arg 4

Beweis. Die Abschitzung |A,| < (|f] + |y D" gilt fir alle # > 0 und ldsst sich direkt
anhand der Rekursion (1.4) durch vollstindige Induktion zeigen. Mithin ist die durch die
Vorschrift

hlgha= Y digh (2.6)
n=0
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erklarte Funktion (die ,.erzeugende Funktion™ der Folge (,),>0) wohldefiniert in einer
Umgebung des Nullpunktes z = 0. Weiter gilt

(1 - pz— yz2) h(z) = ihn (z” —prt - yz"“)
n=0

[o.0]
=D (tn = Phat = yhn-2) 2" + ho + (b1 — Pho)z
n=2

=ho + (h1 — fho)z =1

und somit {
hz) = —— . 2.7
(2) Py E— 2.7)
Wir entwickeln nun die rechte Seite der Beziehung (2.7) in eine Potenzreihe und bestim-
men den Wert von %, durch einen Koeffizientenvergleich. In den Fallen I und III gilt fiir

alle z € C aus einer hinreichend kleinen Nullumgebung;:

1 Falle [, IIT 1 _ 1 ( pa )
1—fz—yz? (1 — u12)(1 — paz) #2—#1 1—poz  1—pyz
n+1n n+1n
= “y'z I
i (Eee T
00 n+l +1
_ Z#Z i iy
= p—m

Im Fall II schreiben wir g1 = |u1|e™®! mit ¢y = arg u; € (—z, 0} U (0, 7). Daraus folgt
#2 = |p1le”*"t und

+1 +1 - ; .
gy = py Fanm e Hntler _ gilntDor L 8in(n + oy
= g : =" —.

MU — 1 e il — el sin g1

Im Fall II gilt schlieBlich

>0

1 Fall I 1 1 d 1 o0
a -1 n— n_n
= = z (m+1utz
1—pz—yz? (1—pmz)? wrdel— gz Z ; o

O

n=1

Satz 2. TFir die durch die Rekursionen (1.3) bzw. (1.1) definierten Zahlenfolgen (gn)n0
und ( f»)a0 gelten fiir n 2 2 die folgenden expliziten Darstellungen:

gn = sohn + (51 — f50) hn1 , (2.8)

fo=gn+ D an il 2.9)
k=0
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Beweis. Wir setzen
ap:=sp und a:=s51— fso. (2.10

Wir nehmen zunichst an, dass die Voraussetzung

limsup +/ |on| < +00 (2.11)

n— 00

erfillt ist. Aus der Rekursionsbeziehung (1.3) folgt dann die Existenz einer Konstanten
C>0mit|f,| € (C+ ||+ |y|)" firalle n > 1. Somit sind die durch

f2) = anz” und  a(z) = Zanz"

n=0 n=0

erkldrten Funktionen wohldefiniert in einer Umgebung von z = 0, und es gilt:
[ee]
(1-pz=922) f@) =2 fu (" — g™t = y2?)
n=0

=D fu—Bla1 =7 fa-2)2" + fo+ (fi = Bfo)z

n=2
= Zanz” + 50+ (51 — fso)z = alz) .
n=2
Esistalso f(z) = a(z)h(z) sowie
Z [ = (z anz") . (Z hnz") = Z (Z an_khk)z” }
n=0 n=0 n=0 n=0 \k=0

Ein Koeffizientenvergleich liefert somit fiir alle n > 0:

7 n—2
fn = Zanfkhk = SOhn + (Sl - ﬁSO) hnfl + Zanfkhk .
k=0 k=0

Damit ist — unter der zusitzlichen Voraussetzung (2.11) —bereits alles bewiesen, denn die
Darstellungsformel fiir g ergibt sich als Spezialfall aus der Darstellungsformel fiir f. Die
Voraussetzung (2.11) kann nachtriglich fallen gelassen werden. Um die Darstellungsfor-
meln (2.8), (2.9) etwa fiir einen Index ng zu zeigen, kann das Erfiilltsein von (2.11) durch
den Ubergang zur modifizierten Stérung (Gin Yn o mit a, = o, firn < nound G, = O fiir
n > ng erzwungen werden. Die Folgen (f7)z>0, (82)n>0 und (5, )s>0 bleiben bis zum
Index ng allesamt unverindert. O

Die in Satz 2 formulierte Darstellungsformel fiir f ldsst sich unter Verwendung eines
geeigneten diskreten Faltungsoperators = kompakt wie folgt schreiben:

f=g+oxh.
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Die Losung f der inhomogenen Rekursion ergibt sich somit als Summe aus der Losung
g der homogenen Rekursion und einer Faltung der Stérung o mit der Fundamentalldsung
h. Fiir den Operator * gilt (a x b), = ZZ;% apb,_i. Ergidnzt man die Inhomogenitit
(s )n>2 Wie im Beweis von Satz 2 durch zwei Startwerte, vgl. (2.10), so nimmt die expli-
zite L.osungsformel die folgende einfachere Gestalt an:

f=axh.

Hierbei ist nun * der gewohliche Faltungsoperator, (¢ * b), = ZZ:O agbn—_i. Diese Uber-
legungen verdeutlichen die weitreichende Analogie zur L.osungstheorie fiir gewohnliche
Differentialgleichungen mit konstanten Koeffizienten. Vgl. dazu auch die Darstellungen
in [14, Kap. 3] und [9, Ch. 2].

3 Verallgemeinerung der Regel vom Goldenen Schnitt

Im Weiteren besteht unser Ziel zunichst darin, die Ubeﬂragbarkeit der Grenzwertbezie-
hung (1.7) auf die Folgen (5in)n:z0 vnd (gn)az0 zu prifen. Die Ergebnisse finden sich in
den Sitzen 3 und 4. Die Ubertragbarkeit auf die Losung (/5 )» 0 der inhomogenen Rekur-
sion (1.1) ist Gegenstand der nachfolgenden Sitze 5-8.

Satz 3. Unter den Voraussetzungen
Pr+4y 20, p#0

ist i, # O firalle n = Ound es gilt die folgende Verallgemeinerung der Grenzwertbezie-
hung (1.7):
Rat1

lim
n—00

=3 .

I3

Beweis. Im Fall g2 + 4y > 0 gilt unter der zusitzlichen Voraussetzung f # 0 mit
g = ﬁ € (=1, 1) folgendes:

hn+1 _ Iug+2 _ Iu711+2 . 1 _qn+2 niof ”
hn MSH _ Iurlz—o—l 1— qn+1

Im Fall 5% + 4y = 0ist die Giiltigkeit der Behauptung wegen

hnyr  n+2 _(1+ 1 n—0
hy _n—i-l'ul_ n+1 A He

ebenso offensichtlich. O

Die Voraussetzung f # 0 schlieBt — wie bereits eingangs bemerkt — lediglich denjenigen
Fall aus, bei dem sich die Folge in zwei entkoppelte Teilfolgen mit konstanter Wachstums-
rate aufspaltet. In diesem Fall gilt (im Ubrigen auch chne die Voraussetzung A2 +4y > 0)
firallen > 0:

hon =77, haat1=0.
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Satz 4. Unter den Voraussetzungen

B4y 20, p#0

gilt fiir die Folge (g, ). >0 die folgende Verallgemeinerung der Grenzwertbeziehung (1.7):

lim gnt1 | H2, falls 51 # w150
n—00 g, puy, fallssy = uyso #0

Beweis. Wir nehmen zunichst an, dass s; # wuysp gilt. Wegen gy + w2 = f ist das
dquivalent zu souo + 51 — fso # 0. Zusammen mit lim,,_, o hz“ = po # 0folgt demzu-
folge g, = soh, + (51 — Bso)h,—1 # Ofiiralle n > ng. Daraus wiederum folgt zusammen
mit der Darstellung

" ‘thrl 451 — fBs
gutl _ 50hnt1 + (1 — fsodhy _ by O TR, TUTTP
g sohn+ (51— Bs0)hn-1 ha-1 so-hh" + 51— Bso

n—1

und Satz 3 sofort der erste Teil der Behauptung. Im zweiten Fall 57 = uyso fihrt der
Grenzibergang n — oo aufgrund des unbestimmten Ausdrucks ,,g“ nicht unmittelbar
zum Ziel. Wegen uy + po = fund piur = —y gilt aber

hpgt = Pha + yhay = (i + p2dhn — pipoha_1
und somit fiir alle n > 1:
gnt1 = sohni1 + (51 — Bs0)hn = sohny1 — p250hn
= 50 (nt1 — pr2hn) = sope1 (ha — p2ha—1) = p1gn .

Somit ist (g,)n>0 eine geometrische Folge, und aus der zusitzlichen Voraussetzung
#1850 # 0 ergibt sich die Behauptung. ]

Die beiden im letzten Satz ausgeschlossenen Fille s1 = so = 0 sowie s1 = g1 = 0 fihren
7u g, = Ofiirn > 1. Im Fall # = 0 gilt indes (ohne weitere Voraussetzungen):

g2n = 507", g1 =s517" .

Bereits im vergleichsweise leicht zu behandelnden Fall der homogenen Rekursion (1.3)
lasst sich also die Regel vom Goldenen Schnitt lim,,— Entl 22 nicht in jedem Fall,
sondern nur unter der zusétzlichen Voraussetzung sy # u 150 anwenden. Ist diese Voraus-
setzung nicht erfiillt, so ist die klassische Regel vom Goldenen Schnitt durch eine andere
Grenzwertbeziehung zu ersetzen.

Das qualitative und asymptotische Verhalten der Folge ( f; }»»0 wird natiirlich wesentlich
von den Eigenschaften der Storung (¢, ), 32 beeinflusst. Entsprechende Aussagen lassen
sich dann und nur dann aus der Losungsformel (2.9) ableiten, wenn sich die darin auf-
tretende Summe explizit auswerten, vereinfachen oder zumindest abschétzen lasst. Um
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die Darstellung nicht unnétig zu verkomplizieren, fithren wir die folgenden Bezeichnun-
gen ein:

oo = 50 (3] ::Sl—ﬂso.
Einen ersten Einblick in die vorliegenden Verhiltnisse geben die folgenden Uberlegungen:
Wenn der Grenzwert lim ;{—” existiert und von Null verschieden ist, dann gilt
n—oa fn
h
lim @ — lim =L
n—eo  fy =00 fi,

Dies folgt unmittelbar aus der Beziehung

Jor1 _ Jarr Pagr e

= . (3.1
f n hn+ 1 hn f n
HFir den somit zu untersuchenden Ausdruck {i konnen wir schreiben:
k=0 fn
¥ wobei o

die betragsmiBig groBere der beiden charakteri stlschen Zahlen darstellt. Konvergiert die
Reihe 377 o My ¥ absolut gegen eine von Null veschiedene Zahl, so konnen wir daraus

auf die Konvergenz des Ausdruckes ;% schliefen. Der nachfolgende Satz prézisiert diese

Uberlegungen.

Satz 5. Unter den Voraussetzungen

BE4+4y 20, B#£O
sowie

oy = limsup v/ |an| < |@2] und Z k;éO

n—x o0 2

gelten fiir die Folge (/7)o die folgenden Grenzwertbezichungen:

0]
. fn ok . fatl
lim — = T lim = us .
n—o0 i, s > 00 fn

Beweis. Aufgrund der Beziehung (3.1) und den Voraussetzungen geniigt es, die erste der
beiden Grenzwertbeziehungen zu zeigen. Wir untersuchen die beiden Fille I (zz1 # u2)
und IT (u1 = po # 0) separat.
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Fall I: Wegen f # Ogilt |uq| < |u2] Mitg 1= % € (—1, 1) gilt dann fiir die Fundamen-

n+l1

talfolge hn = uj lifq sowie
S _ iakhnfk gl
- - kT gntl
b e s 1o
n

|
—

|
,_Q —
=

£
N
&
Il Bl
(=]
‘s:|$>
[SESIED
|

[N

=

o
T
™M
= | &
—_ | 7
\—/

Auferund der Voraussetzung konvergiert die unendliche Reihe > % gegen eine von Null

2
verschiedene Zahl. Um zum Grenzwert iibergehen zu konnen, ist noch der kritische Term
a" D> o ZT" fiir n — oo abzuschitzen. Mit u := %‘M‘ gilt 0 < o, < < |uz| sowie
1

mn
3

k=0 #1

n n k
1 Iz

<lg" D lowl—— < Cla* > ()
=l =\l

n+1
7]
- (3)
= Clql" |21 nso

_*
|21l

Die Behauptung ist somit im Fall I bewiesen.

Fall IT: In diesem Fall gilt

k=0 —o X
L ay 1 < kag
= ¥ o
—o &2 n!-i_lk:O'u2

Die Behauptung ergibt sich nunmehr in Analogie zum Fall I aufgrund der Abschitzung

< kap| | C < PR L
k< 2 ()

- ! il
o M5 = \lual
n+2 n+1
Iz Iz Iz
() e () ")
_C (I#zl) |122] l#2l) nsse
= 4 _
n
)
|22 O

Man prift leicht nach, dass die Bedingung >'7° Z—’; # 01in Satz 5 die direkte Verallge-
2

meinerung der Bedingung s; # z150 aus Satz 4 darstellt.
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ImPFall || > |p2| darf vermutet werden, dass das Wachstumsverhalten der Folge ( £ )a 0
durch das Wachstumsverhalten der Stérung (¢s)»;>0 dominiert wird. Eine Grenzwertbe-
ziehung der Gestalt (1.7) setzt dann allerdings mindestens eine entsprechende Grenzwert-
beziehung fiir die Stérung voraus, weshalb wir fortan die folgende ,,schirfere” Definition
der Zahl ¢, verwenden:

: Opt-1
Oy 1= lim .
n—=00 Oy,

Es wird stets angenommen, dass dieser Grenzwert im eigentlichen Sinn existiert. Insbe-
sondere sei a, # 0 firfast alle 7.

Satz 6. Unter den Voraussetzungen
B*+4y 20, B#0
sowie

loce| > |uz]
gelten fiir die Losung ( f;)» 0 von (1.1) die folgenden Grenzwertbeziehungen:

1
lim £ = lim ﬁza*.

=00 (1, (1_&) . (1_ &) a0 fn
e Ol

Beweis. Aufgrund der Beziehung

fn+l _ fn+1 ) Op41 . a_n
fn Unt1 Cn fn

genligt es zu zeigen, dass die erste der beiden Grenzwertbeziehungen erfillt ist. Dazu
zerlegen wir

]

7 7 k
E zzanfkhkzz(anfk _ik) hk_’_z(&) h_l;; . (32)

U o On ko * %n O o V¥ s

Der zweite Summand konvergiert gegen eine von Null verschiedene reelle Zahl, da auf-

< 1 gilt und andererseits der Bruch h—ﬁ hochs-
H3
tens linear mit £ wichst. Genauer gelten mit ¢ = % die bereits im Beweis von Satz 5

grund der Voraussetzungen einerseits g_z
"

k
ausgenutzten Beziehungen h—ﬁ = 1712; (m Fall I, g1 # pg) bzw. h—‘; =k + 1 (im Fall
H Hy

2,
II, g1 = po). Daraus folgt im Fall I

SOV - ) S
k=0 \%* 5 1—q i3 \ox 1-q =5\ o

n—>00 1 1 q 1
5 . _ .
l—g _#2 1-gq (_#

Oy Oy
1
= £0

(-2) (%)
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und im Fall IT
i (ﬂ)k iy _ d (Z”: (ﬂ)kﬂ)
=0 Oy ,ug d(ﬁ_i) =0 Ol
U
n—00 d e 1

(@EU-2) 7 m
(£ # O

Es bleibt zu zeigen, dass der erste Summand in der Zerlegung (3.1) fiirn — o0 gegen
Null konvergiert. Hierfir wiederum ist es hinreichend, zu zeigen dass

7
lim E
nt—> 00
k=0

Wir wihlen dazu eine positive reelle Zahl ¢, fiir die gilt:

1 1 1
< —— und sgn (— x 6) = sgn (—) .
[42] Ol e

Weiterhin bestimmen wir eine natiirliche Zahl ng = no(e), fiir die gilt:

|zl =0.
G,

Un—k
n

1
a

1
— ¢
(22"

0<

1 770 | 1
— —e< 2= <« — 4 ¢ firallen = ng .
Ol Oy e

Es sei zunichst . > 0. Dann folgt aus der letzten Abschitzung durch Aufspaltung des

Oy—,
Bruches 7% in ein Teleskopprodukt mit £ Faktoren:
Un
1 5 , 1 £
0<(——s) <&nk<(—+8) firallek <n—ng+1.
Os Oy Os

Daraus wiederum ergibt sich die Abschitzung

() -

die man ebenso auch im Fall o, < 0 zeigt. Wir setzen

[

Danngilt 0 < g1 < g2 < ﬂl—z und fiirk < n — ng + 1 gilt die Abschitzung

On—k 1

= firallek <n—np+1,

Uy, ak

1
—+e

Oy

— —if
Oy

— — B
Oy

3 5

q1:=mjn{ —+e¢ ]
Gy

Ol 1 {— q1

= B g g,

k k k
<q1_qz<k“12"

On ak
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Multiplikation mit | u2|k und Summation iberk =0, 1, ...,n — ng + 1 ergibt schliellich
n—ng+1 - 1 n—rng+1
n—k k k—1 k
> — =l < 28 D kg M pal
a ak
k=0 " % k
oo 26|l
(1 — g2 |u2])?
Andererseits gilt
i a it a
n—k k l ng—1 . |
> | gl = e = !
k=n—ng42! *7 * =0 | o1 % Oy
a no—2 a u 7 no—2 p /
-1 l = 2
<7 ™ D N e I s
n Ong—1 Gy u2
=0 1=
H2 n mo—2 o : — 50
i3
= o] (1) z o+ 2y
v 0 Gng—1 Ok 1—p | #2
—_———
% %

Da die Zahl ¢ beliebig klein gewihlt werden kann, folgt fiir ¢ — 0 die Behauptung. [

Wir wenden uns nunmehr demjenigen ,,Ausnahmefall“ in Satz 5 zu, bei dem die unend-
liche Reihe D" Z—’i gegen Null konvergiert.
2:

Satz 7. Unter den Voraussetzungen
BZ4+4y 20, B#£0 sowie |ax| <|g1]l und Z—k =
)
und ferner

. a S, ka
ST 20 imFalll, > 20 imFallll

=0 #1 =0 #1

gelten fiir die Losung (£ )r >0 von (1.1) die folgenden Grenzwertbezichungen:

[e ]
> % imFall
L 2 #2 = 1 k= iy
Lm wr 2 kay
St B [ e im Fall IT
k=0 7y
1 fn+1
= 1
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Beweis. Es geniigt, die erste der beiden Grenzwertbeziechungen zu zeigen. Wie bereits
beim Beweis von Satz 5 miissen auch hier die beiden Fille I und II gesondert betrachtet
werden.

Fall I. Wir zerlegen

Lo _m_|(e)yya 3o

uy w2 — k0’“2 k—o'“l
Der zweite Summand innerhalb der Klammer konvergiert gegen eine — laut Voraussetzung
von Null verschiedene — reelle Zahl. Wir zeigen, dass der erste Summand gegen Null
konvergiert. Wir wihlen dazu eine reelle Zahl ¢ > 0 sowie eine natiirliche Zahl kg = ko (¢),
fir die gilt:

A1+k s
R L ey d e < |uy| fiirk 2 ko,

daraus folgt dann

Opn+k

< (low| + &) < |pl" firk > ko.n € Np .

Damit lédsst sich der kritische Term

) 55

L) o H2 1) i M2 il

|
|
A~
|5
N—
M
e
I
|
—
|~
S
=
M3
g
o+
*

Il
|
N
| =
\‘—/
=
&
Mi
<
=
=+
iy
£
=
=+
~
1

wie folgt abschitzen:

fin N e @ 1" = a a a 23
uz 3 L n+k ko n+k
(L) 32 < | | E |- )+ 3
k=012 | k=1 0 =k 2
L (kg1
< 2 Gl 425700 | 4 (] £ 00" > |2
Hi1 — P ,u2
ky—1 el
o + )" ke | O Ok
Z(L) DRI E 5 e ] P S A f a4
el k=1 2| gk | F2
Fall IT: Der Beweis kann in Analogie zum Fall I gefithrt werden. Es ist
Zak(”_k+1)/v¢1
'“1 k=0
®. ok ko o ot
gy Y iR s -
pardl k=0 #1
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Satz 8: Unter den Voraussetzungen

Br+4y 20, B#0

sowie
20 i
la] < low] < |ga| wnd D" =L =0
=02
gelten fiir die Losung ( f)» >0 von (1.1} die folgenden Grenzwertbeziehungen:
1
lim I — fim I g,

n—=>00 (ty, (1_ﬂ (1_& ’ n—>00 fn
e Lo

Beweis. Auch in diesem Fall geniigt wiederum der Beweis der ersten Grenzwertbezie-
hung. Aus den Voraussetzungen folgt zudem, dass der andernorts separat zu behandelnde
Fall II entféllt. Mit g := % zerlegen wir

£ c 1, w8 | e =
z k Z k
n 1o =0 #1

n—k
-7 _ e
O l—ga, =

n n n 1
_ 1 A oy
=1—q :

k
On o2 H20n 75 1y

h

und betrachten die beiden Summanden innerhalb der eckigen Klammer separat. Mit Uber-
legungen, die denjenigen im Beweis von Satz 7 gleichen, finden wir

1h ~ Ok B e o — ok 1
e A5 o Sl

[
On o M2 R —— L} o1 % M
oo %

Cn+k k 1 2.5 n—0Q 1
3 ) B ) (e B
k=1 i Lo T 1- -

sowie
1~ o 2 Bt
1 n—k
o, et R Z L
% ogp#L  g=p o
_ " Un_k 1 1 i Hi =00 1

- on ok )1 + e 1

k=0 % > k=0 ~7F 1 - o

*

Es gilt demzufolge
#1
1 1 1
lim ﬁ = 1-— 7 — #2 = g

=g, L 7. 2% g & MY (2
U )25 e e g

Damit ist der Beweis vollstindig. O
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