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I Elemente der Mathematik

Asymptotisches Verhalten der Lösungen
inhomogener linearer Differenzengleichungen
zweiter Ordnung mit konstanten Koeffizienten

Ralf Guckel

Ralf Guckel promovierte im Jahr 2001 an der Universität Leipzig im Fach Mathematik.

Danach war er mehrere Jahre im Management eines mittelständischen Unternehmens

tätig. Im Jahr 2010 wechselte er als Dozent für Mathematik und Statistik an die
Berufsakademie Sachsen.

1 Problemstellung
Gegeben seien eine reelle Zahlenfolge (an)n^>2 sowie reelle Zahlen ß,y, so und s\. Wir
betrachten diejenige Folge (fn)n^0» die den folgenden Gleichungen genügt:

fo so f\ S\ fn=an + ßfn-i + yfn-2 für alle n > 2 (1.1)

Mit (1.1) steht das Anfangswertproblem für die allgemeine lineare Differenzengleichung
zweiter Ordnung (bzw. im Fall y 0 erster Ordnung) mit konstanten Koeffizienten im
Mittelpunkt dieser Arbeit. Wir nehmen dabei im Folgenden stets an, dass die Voraussetzung

ß^0 (1.2)

erfüllt ist. Im Fall ß 0 (und y 7^ 0) lassen sich die Ergebnisse dieser Arbeit separat auf
die beiden vollständig entkoppelten Teilfolgen (f2n)n^0 und (/2«+i)«^o anwenden.

Die Fibonacci-Folge 0, 1, 1, 2, 3, 5, 8, 13,... zählt neben den Primzahlen zu den am
intensivsten studierten Zahlenfolgen überhaupt. Ihre Anziehungskraft verdankt sie unter

anderem der berühmten „Regel vom Goldenen Schnitt": Danach konvergiert der

Quotient zweier aufeinander folgender Fibonacci-Zahlen Fn+\/Fn für n -> 00 gegen
den Grenzwert (1 + \/5)/2. Eine Übertragung dieser Regel auf beliebige lineare
(homogene) Rekursionen bereitet nur wenig Schwierigkeiten. In der Arbeit steht jedoch
vor allem die folgende Frage im Vordergrund: Unter welchen Voraussetzungen und
in welcher konkreten Gestalt lässt sich die „Regel vom Goldenen Schnitt" auch auf
inhomogene Rekursionen übertragen?
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Neben (fn)n^o betrachten wir auch die Losungen (gn)n^o und (hn)n^o der folgenden
Rekursionsbeziehungen:

go — so gl — Si gn ßgn-1 + ygn-2 für alle n > 2 (1.3)

^0 1, h\ ß hn ßhn-1 + yhn-2 für alle n > 2 (1.4)

Die Zahlenfolge (gw)w^o ist also die Losung der zu (1.1) gehörenden homogenen Rekursi-
on. Die Zahlenfolge (hn)n^o lasst sich dagegen m einem gewissen Sinn als Fundamentaloder

Grundlosung von (1.1) verstehen, wie wir spater noch sehen werden.

Rekursionsgleichungen vom Typ (1.1) (und weitreichende Verallgemeinerungen davon)
sind m sehr vielen Gebieten der remen und angewandten Mathematik anzutreffen. Emen

guten Überblick über Theorie und Anwendungen von Differenzengleichungen im
Allgememen vermitteln z.B. die Lehrbucher [9] und [14]. Das mathematische Interesse im Umfeld

solcher Modelle konzentriert sich i. d. R. auf die folgenden drei Probleme:

(P.l) Herleitung einer expliziten Darstellungs- bzw. Losungsformel, möglichst m „ge¬
schlossener" Form.

(P.2) Nachweis der Stabilität oder Instabilität der Losung.

(P.3) Untersuchung asymptotischer Eigenschaften der Losung.

Für den ältesten und prominentesten Vertreter linearer Rekursionen, die klassische Fibo-
nacci-Rekursion

Fb 0, F\ 1 Fn Fn-i+Fn-2 (1.5)

ist eine explizite Losungsdarstellung seit langem m Gestalt der Formel von Moivre-Bmet
bekannt:

Fn ^= II I - I I I (1-6)

Mit Hilfe der Darstellungsformel (1.6) lassen sich zahlreiche interessante Aussagen über
die Fibonacci-Folge (Fn)n^>o beweisen. Beispielsweise bestehen die folgenden
Grenzwertbeziehungen:

Fn-i-i 1 -\- \/~S
lim _2L_ (1.7)

n-^oo Fn 2

lim
Fn

1 (1.8)
n^oo / 1+V5V

Die Zahl 1+2^ ~ 1,618 heißt „Goldener Schnitt" und gemäß der „Regel vom Goldenen
Schnitt" (1.7) besitzt die Folge (Fn)n^>o eine asymptotisch konstante Wachstumsrate. Man
beachte, dass für beliebige (positive) Folgen (Fn)n^>o aus (1.8) stets (1.7) folgt.

Die Problemstellungen (P.l) und (P.2) können für Rekursionen vom Typ (1.1) m einem

gewissen Sinn als abschließend geklart betrachtet werden. Mit Hilfe der Methode der

erzeugenden Funktionen lasst sich die Losung / von (1.1) als Faltungsprodukt f h*ä
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darstellen mit ä (so, — ßso, «2, o.3,.. .)• Die Lösung h von (1.4) kann explizit und
in geschlossener Form angegeben werden. Gleiches gilt für die Lösung g der homogenen
Rekursion (1.3). Aus Gründen der Vollständigkeit haben wir diese Verallgemeinerungen
der Darstellungsformel von Moivre-Binet (1.6) in die Arbeit aufgenommen (Abschnitt 2).
Daraus lassen sich dann auch die bekannten Aussagen zur Stabilität von h, g und /
rekonstruieren.

Die Arbeiten [2-4,8,10,13,15,16,21-23] befassen sich mit einigen Spezialfällen, in denen
eine Lösungsdarstellung in geschlossener Form möglich ist. Die Inhomogenität wird darin

beschrieben durch eine exponentielle, polynomielle oder faktoriell-polynomielle Folge.
(In den Arbeiten [21,22] werden allgemeinere Sätze zur Lösungsdarstellung bewiesen,
konkrete Anwendungen bleiben dann jedoch wieder auf die bereits genannten Fälle
beschränkt.)

Asymptotische Eigenschaften der Lösungen homogener Rekursionen mit (asymptotisch)
konstanten Koeffizienten bilden den Gegenstand einer ganzen Reihe von Arbeiten von

h{k)
Poincare [20], Perron [17,18] und Birkhoff [7]. Darin werden die Grenzwerte lim -Ajf

n—00 hn '
eines Systems von Fundamentallösungen in Beziehung gesetzt zu den Nullstellen Xk

des zugrundeliegenden charakteristischen Polynoms. Vgl. dazu auch [9, Kap. 8].

Direkte Verallgemeinerungen der Arbeiten von Poincare und Perron auf nicht-homogene
Rekursionen finden sich z.B. in [ 1,5,12] und [ 19]. Allerdings schließen die darin formulierten

Voraussetzungen an die (nichtlineare) Störung den vorliegenden Fall einer einfachen
linearen Störung aus.

Asymptotische Eigenschaften der Lösungen der inhomogenen Rekursion werden indirekt
auch in den Arbeiten [6] und [11] untersucht. Darin wird u. a. gezeigt, dass für das

Faltungsprodukt von Lösungen homogener Rekursionen unter bestimmten Voraussetzungen
wieder eine Regel der Gestalt (1.7) erfüllt ist. In unserem Fall wird jedoch lediglich einer
der beiden Faktoren durch eine Rekursion erzeugt.

Im Mittelpunkt der vorliegenden Arbeit steht nun die Frage, unter welchen Bedingungen

und in welcher konkreten Gestalt sich die Beziehungen (1.7), (1.8) auf die Lösung
(fn)n^0 der allgemeinen linearen Rekursion (1.1) übertragen lassen. Die zur (teilweisen)
Beantwortung dieser Frage verwendeten Methoden in Abschnitt 3 stammen im Wesentlichen

aus der reellen Analysis. Sie sind keineswegs neu oder tiefliegend. Allerdings finden
sich einige der hier bewiesenen Resultate in dieser Form bislang nicht in der Literatur. Das

betrifft vor allem die Ergebnisse für inhomogene Rekursionen.

2 Verallgemeinerung der Formel von Moivre-Binet
Ausgangspunkt unserer Überlegungen ist die folgende quadratische Gleichung, die wir
charakteristische Gleichung der Rekursionsbeziehung (1.1) nennen:

Die beiden Lösungen /u 1, H2 der charakteristischen Gleichung (2.1) heißen charakteristische

Zahlen der Rekursionsbeziehung (1.1). Es gilt für alle z £ C die folgende Beziehung:

z2 — ßz — y 0 (2.1)

1 - ßz - yz2 (1 - /uz) (1 - fi2z) (2.2)
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Lall Bedingungen an /?, y Bedingungen an jui, V2

I ß2 + 4y >0 Vi, V2 £ R, vi 7^ V2

II ß2 + Ay =0 VI, V2 e R, vi V2

III ß2 + 4y < 0 Iii, [12 £ C\R, vi ~V2

Tabelle 1

Insbesondere gelten die Identitäten

Vl+ V2= ß

vi V2 -y
(2.3)

(2.4)

Die Nummenerung der beiden charakteristischen Zahlen soll o. B. d. A. so gewählt sein,
dass ji i die betragsmaßig kleinere der beiden Zahlen darstellt:

\Vl\ < \V2\ (2.5)

Die qualitativen und asymptotischen Eigenschaften der Losungen (hn)n^>o und (gn)n^o
der Rekursionen (1.4) bzw. (1.3) hangen m erster Linie von den Koeffizienten ß und y

ab, die ihrerseits mit den charakteristischen Zahlen ju\ und [12 im Zusammenhang
stehen. Wir unterscheiden im Lolgenden die drei Lalle I, II und III, vgl. Tabelle 1. In den
Lallen I und II werden durch die Lolgen (hn)n^>o und (gn)n^0 im Wesentlichen exponenti-
elle Wachstums- und Abklmgprozesse beschrieben, wahrend der Lall III zu oszillierenden
Lolgen mit entweder konstanter oder exponentiell wachsender oder exponentiell fallender

Amplitude fuhrt. Die Einzelheiten sind m den beiden nachfolgenden Sätzen 1 und 2

zusammengefasst.

Satz 1. Lur die durch die Rekursion (1.4) definierte Zahlenfolge (hn)n^o gilt die folgende
explizite Darstellung:

hn —

/4+1-/4+1
M2 - Ml

(n + l)Vi

sm(n + l)(p\
\vi\

sin^i
mit (p\ arg/*i

im Lall I

im Lall II

im Lall III

Beweis. Die Abschätzung \hn\ < (\ß\ + \ y \)n gilt für alle n > 0 und lasst sich direkt
anhand der Rekursion (1.4) durch vollständige Induktion zeigen. Mithin ist die durch die
Vorschrift

h(z) (2.6)
n=0
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erklärte Funktion (die „erzeugende Funktion" der Folge (hn)n^o) wohldefiniert in einer

Umgebung des Nullpunktes z 0. Weiter gilt

Oü

ßz-y z2) h(z) ^ hn (zn - ßzn+l -yzn+2\
n=0
oo

^_t(hn— ßhn-1 - y hn-2) z" + ho + (h\ — ßho) z

n=2

ho + (hl - ßho)z 1

und somit

Hz) ——- j • (2-7)
1 - ßz — yzz

Wir entwickeln nun die rechte Seite der Beziehung (2.7) in eine Potenzreihe und bestimmen

den Wert von hn durch einen Koeffizientenvergleich. In den Fällen I und III gilt für
alle z G C aus einer hinreichend kleinen Nullumgebung:

1 Falle I, III 1

l-ßz-yz2 (1 - fl\z)(l ~ JU2Z) H2
} / f*2 ^ 1 \
- 111 \1 - fl2Z 1 juiz)

112

1 / 00 00 \
I X 1 ,.n+l„n x 1 ,.n+l„n \—12^2 ^ -2-^i z I
\n=0 n=0 /

00 „«+1 _ „«+1
_ 7*2 7*1 n

h
Im Fall III schreiben wir ju\ \/i\ \el(pi mit (p\ arg ju\ G (—7T, 0) U (0,7r). Daraus folgt
fi2 \ ji\\e~l(pi und

ßn2+l - Fan_iii - g'("+i>i sin(»+l)yi
H2 ~

'"1 g-'fi — e'fi sin^i

Im Fall II gilt schließlich

1 Fall 11 1

_
1 d 1

1 -ßz-yz2 (l-nizj1 niAzl — [i\z n=l n=Q

Satz 2. Für die durch die Rekursionen (1.3) bzw. (1.1) definierten Zahlenfolgen (gn)n^0
und (fn)n^0 gelten für n > 2 die folgenden expliziten Darstellungen:

gn S()hn + (s\ ~ ßso) hn-\ (2.8)
n—2

fn gn ^ '
ttn—khk • (2-9)

k=0
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Beweis. Wir setzen

ao sq und a\ s\ — ßso (2.10)

Wir nehmen zunächst an, dass die Voraussetzung

hmsup $\an\ < +oo (2.11)
n—>oo

erfüllt ist. Aus der Rekursionsbeziehung (1.3) folgt dann die Existenz einer Konstanten
C > 0 mit \fn\ ^ (C + \ß \ + \ y \)n für alle n > 1. Somit sind die durch

oo oo
n=^,fnZn und a(z)

n=0 n=0

erklarten Funktionen wohldefiniert m einer Umgebung von z 0, und es gilt:

oo

(l-ßz-y z2) f(z) ^fn (zn - ßzn+l - y z"+2)
n=0
oo

X! ~ ßf"'1 ~ yfn-2) z" + /0 + (/l - ßfo) Z

n=2
oo

^ anzn + so + Ol - ßso) z — a(z)
n=2

Es ist also /(z) a(z)h(z) sowie

oo / oo \ / oo \ oo / n \^ I ^ I I ^ I ^ I ^ an-khk I ZU

n=0 \/?=0 / V/?=0 / /?=0 V/:=0 /
Em Koeffizientenvergleich liefert somit für alle n > 0:

w n—2

fn ^ '
(^n—khk H~ (^1 M) hn—l H~ ^ '

(%n—khk

k=0 £=0

Damit ist - unter der zusätzlichen Voraussetzung (2.11) - bereits alles bewiesen, denn die

Darstellungsformel für g ergibt sich als Spezialfall aus der Darstellungsformel für /. Die
Voraussetzung (2.11) kann nachträglich fallen gelassen werden. Um die Darstellungsformeln

(2.8), (2.9) etwa für einen Index no zu zeigen, kann das Erfulltsem von (2.11) durch
den Ubergang zur modifizierten Störung (än)n^>2 mit än an für n ^ no und än 0 für
n > no erzwungen werden. Die Folgen (fn)n^o> (gn)n^o und (hn)n^>o bleiben bis zum
Index no allesamt unverändert.

Die m Satz 2 formulierte Darstellungsformel für / lasst sich unter Verwendung eines

geeigneten diskreten Faltungsoperators * kompakt wie folgt schreiben:

/ g + a *h
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Die Lösung / der inhomogenen Rekursion ergibt sich somit als Summe aus der Lösung
g der homogenen Rekursion und einer Faltung der Störung a mit der Fundamentallösung
h. Für den Operator gilt (a * b)n Ergänzt man die Inhomogenität
(ttn)n^2 wie im Beweis von Satz 2 durch zwei Startwerte, vgl. (2.10), so nimmt die explizite

Lösungsformel die folgende einfachere Gestalt an:

f — a-kh

Hierbei ist nun der gewöhliche Faltungsoperator, (a * b)n X&=o akhn-k• Diese
Überlegungen verdeutlichen die weitreichende Analogie zur Lösungstheorie für gewöhnliche
Differentialgleichungen mit konstanten Koeffizienten. Vgl. dazu auch die Darstellungen
in [14, Kap. 3] und [9, Ch. 2].

3 Verallgemeinerung der Regel vom Goldenen Schnitt

Im Weiteren besteht unser Ziel zunächst darin, die Übertragbarkeit der Grenzwertbeziehung

(1.7) auf die Folgen (hn)n^>o und (gn)n^o zu prüfen. Die Ergebnisse finden sich in
den Sätzen 3 und 4. Die Übertragbarkeit auf die Lösung (fn)n^0 der inhomogenen Rekursion

(1.1) ist Gegenstand der nachfolgenden Sätze 5-8.

Satz 3. Unter den Voraussetzungen

ß2 + 4y^0, ß^O
ist hn 0 für alle n > 0 und es gilt die folgende Verallgemeinerung der Grenzwertbezie-

hung (1.7):

r hn+1
lim —— H2 •

n-^oo hr,

Beweis. Im Fall ß2 + 4y > 0 gilt unter der zusätzlichen Voraussetzung ß ^ 0 mit

hn+i _
4+2 - nT2

_
1 - </"+2

g := — E (—1, 1) folgendes

n—>oo

K nn+l - nn+l 1 - qn+l

Im Fall ß2 + 4y 0 ist die Gültigkeit der Behauptung wegen

hn+1 n + 2 / 1 \ oo

1"' ('+ ^TT) "2 " M2
hn

ebenso offensichtlich.

Die Voraussetzung ß ^ 0 schließt - wie bereits eingangs bemerkt - lediglich denjenigen
Fall aus, bei dem sich die Folge in zwei entkoppelte Teilfolgen mit konstanter Wachstumsrate

aufspaltet. In diesem Fall gilt (im Übrigen auch ohne die Voraussetzung ß2 + 4y ^ 0)
für alle n > 0:

h2n 7 h2n+\ 0 •
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Satz 4. Unter den Voraussetzungen

ß2 + 4y^0, ß^O

gilt für die Folge (gn)n^o die folgende Verallgemeinerung der Grenzwertbeziehung (1.7):

i §n-\-1
lim

H^OQ gn

fl2 falls S\ ^ jl\Sp

fi\ falls s\ ju\so 0

Beweis. Wir nehmen zunächst an, dass s\ ^ ji\so gilt. Wegen fi\ -\- ji2 ß ist das

äquivalent zu so/i2 + s\ — ßso 7^ 0. Zusammen mit lim^oo /i2 7^ 0 folgt demzufolge

gn sohn + (s\ — ßso)hn-\ 7^ 0 für alle n > no. Daraus wiederum folgt zusammen
mit der Darstellung

hn-\-1 /i

gn+l Sphn+l + C?1 ~ ßso)hn hn
S°

hn ^ S°

gn Sohn + (äi - ßso)hn-l hn-\
p

hn
j_ v Rv$0 1- S\ ~ ßSo

K-1

und Satz 3 sofort der erste Teil der Behauptung. Im zweiten Fall s\ fi\so fuhrt der

Grenzubergang n -> 00 aufgrund des unbestimmten Ausdrucks nicht unmittelbar
zum Ziel. Wegen ju\ + ji2 ß und //1//2 — 7 gilt aber

A/1+1 ßK + yK-\ (/zi + P2)K ~ BiP2hn-i

und somit für alle n > 1:

gft+i V)^G+i T~ C?i ßso)hn — V)^G+i Pisphn

^0 (A/1+1 - ^0/Z1 (hn - P2hn-1) /Ugrc

Somit ist (gw)w^o eine geometrische Folge, und aus der zusätzlichen Voraussetzung

ju\so 7^ 0 ergibt sich die Behauptung.

Die beiden im letzten Satz ausgeschlossenen Falle s\ so 0 sowie s\ ji\ 0 fuhren
zu gn 0 für n > 1. Im Fall ß 0 gilt indes (ohne weitere Voraussetzungen):

g2n=S0y", g2n+\=S\y"

Bereits im vergleichsweise leicht zu behandelnden Fall der homogenen Rekursion (1.3)
lasst sich also die Regel vom Goldenen Schnitt lim^oo ^2 — 112 nicht m jedem Fall,
sondern nur unter der zusätzlichen Voraussetzung s\ 7^ ju\so anwenden. Ist diese Voraussetzung

nicht erfüllt, so ist die klassische Regel vom Goldenen Schnitt durch eine andere

Grenzwertbeziehung zu ersetzen.

Das qualitative und asymptotische Verhalten der Folge (fn)n^0 wird natürlich wesentlich
von den Eigenschaften der Störung (an)n^2 beemflusst. Entsprechende Aussagen lassen

sich dann und nur dann aus der Losungsformel (2.9) ableiten, wenn sich die dann
auftretende Summe explizit auswerten, vereinfachen oder zumindest abschätzen lasst. Um
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die Darstellung nicht unnötig zu verkomplizieren, führen wir die folgenden Bezeichnungen

ein:

ao := so a\ := s\ — ßs$

Einen ersten Einblick in die vorliegenden Verhältnisse geben die folgenden Überlegungen:
fn

i
hn

Wenn der Grenzwert lim A existiert und von Null verschieden ist, dann gilt

(3.1)

r /«+1 r hn+\
lim lim

n—^oc jn n—?oQ hn

Dies folgt unmittelbar aus der Beziehung

fn+1 fn+1 hn-\-1 hn

fn hn-\-1 hn fn

Für den somit zu untersuchenden Ausdruck ff- können wir schreiben:
hn

fn _
hn-k

K~^aklkf'n k=0 w

Im Grenzwert n -> oo verhält sich der Ausdruck asymptotisch wie [ifk, wobei [i2
die betragsmäßig größere der beiden charakteristischen Zahlen darstellt. Konvergiert die
Reihe Xj£o akl*2k absolut gegen eine von Null veschiedeneZahl, so können wir daraus

auf die Konvergenz des Ausdruckes ^ schließen. Der nachfolgende Satz präzisiert diese

Überlegungen.

Satz 5. Unter den Voraussetzungen

ß2 + 4y >0, ßfO

sowie
oo

a* := lim sup $\an\ < I//2I und ^ ^/Q
£=0 H2

gelten für die Folge (fn)n^ 0 die folgenden GrenzWertbeziehungen:

r fn ^ Olk r fn+1
lim r~ 2^ ~r' lim "u- ^2.^°° " t^O ^2 n^°° fn

Beweis. Aufgrund der Beziehung (3.1) und den Voraussetzungen genügt es, die erste der
beiden Grenzwertbeziehungen zu zeigen. Wir untersuchen die beiden Fälle I (ju\ f JU2)

und II (ju\ ji2 7^ 0) separat.
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Fall I Wegen ß ^ 0 gilt \u\ \ < I//2I Mit q — E (—1, 1) gilt dann für die Fundamen
1 _ßU+1

talfolge hn JU2 i_q sowie

fn hn-k "E1 ak 1 - ^"+1 *
7n nn—k uk 1

/, /, ..k | _ nhn
k=0 *=0<"2 1 1

11 + 1

—
1 f"S-1 — - «n+1 V —^

1 _an+l l „* q Z-, k ]q \k=0<"2 *=0<"l/

Aufgrund der Voraussetzung konvergiert die unendliche Reihe 2] 8e8en eine von Null
ß2

verschiedene Zahl Um zum Grenzwert ubergehen zu können, ist noch der kritische Term
qn X/Lo fur n 00 abzuschätzen Mit [i a*+^21 gilt 0 < a* < [i < I//2I sowie

"Z
*=0^1

q t < ^C|<7|"Z (rV)
S 1^1 feVl/nl/t=o

1

ci?r

i^ii*

-(£)
«+1

1 - l/^l I

Die Behauptung ist somit im Fall I bewiesen

Fall II In diesem Fall gilt

n hn-k ak (1 ^ \- Z«*— Z —k l1 - y» k=0 4=0^1 V "+i/
n 1^7'v t (Xfc I 'v t k(%k

r~L u\ n + 1 ^ //£
<:=0 -"2 " + 1

<:=0 <"2

Die Behauptung ergibt sich nunmehr m Analogie zum Fall I aufgrund der Abschätzung

1 'v t k(Xk

n 4 u^
t=0 -"2

< c Z*(—V
"S VI"2"/

n+2

c
n H£»2

Man prüft leicht nach, dass die Bedingung Xy£o t / Oin Satz 5 die direkte Verallge-
jU2

memerung der Bedingung 51 7^ //1^0 aus Satz 4 darstellt
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Im Fall | a* | > | n21 darf vermutet werden, dass das Wachstumsverhalten der Folge (fn)n^0
durch das Wachstumsverhalten der Störung (an)n^>0 dominiert wird. Eine Grenzwertbe-
ziehung der Gestalt (1.7) setzt dann allerdings mindestens eine entsprechende Grenzwertbeziehung

für die Störung voraus, weshalb wir fortan die folgende „schärfere" Definition
der Zahl a* verwenden:

#«+1
a* := lim

n^oo an
Es wird stets angenommen, dass dieser Grenzwert im eigentlichen Sinn existiert.
Insbesondere sei an 7^ 0 für fast alle n.

Satz 6. Unter den Voraussetzungen

ß2 + 4y^0, ß^O
sowie

l«*l > I/^21

gelten für die Lösung (fn)n^ 0 von (1.1) die folgenden GrenzWertbeziehungen:

r fn 1

r fn+\
lim — r r- lim a*

n^ooan /i\\ / H 2\ n^oo fn*n L _ /u\ L _ ff2\
V «* / \ a* /

Beweis. Aufgrund der Beziehung

fn+l fn+1 &n+1 #n

fn &n+1 M-n fn

genügt es zu zeigen, dass die erste der beiden Grenzwertbeziehungen erfüllt ist. Dazu

zerlegen wir

a2>
a" k=0 a" k=0VCt" a*' t=0Va,/ -"2

Der zweite Summand konvergiert gegen eine von Null verschiedene reelle Zahl, da

aufgrund der Voraussetzungen einerseits | ^ <1 gilt und andererseits der Bruch ^ höchstens

linear mit k wächst. Genauer gelten mit q ^ die bereits im Beweis von Satz 5
k+ i

y"2

ausgenutzten Beziehungen % — (im Fall I, ju\ n2) bzw. % k + 1 (im Fall
H2 v

II, //l //2)- Daraus folgt im Fall I

£rt\a*/ ii\

£

t=0 v--/ ^2 - -J i=o k=0
1 1 q 1

1 -q 1 -tu l-q l-^i
a* a*

7 \—7 7 ^ 0

(l-—)(l-—)\ a* / \ a* /
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und im Fall II
n / \ k

hk_

n\

('"0
^0

Es bleibt zu zeigen, dass der erste Summand m der Zerlegung (3 1) für n -> oo gegen
Null konvergiert Hierfür wiederum ist es hinreichend, zu zeigen dass

hm V
n^OQ ' 4

k=0

ttn—k 1

\ß*2\k =0

Wir wählen dazu eine positive reelle Zahl e, für die gilt

0 <
1

—
a*

—und sgn (— ± s) sgn (—)
\M2\ \a* / \«*/

Weiterhin bestimmen wir eine natürliche Zahl no no(e), für die gilt

1 &n— 1 1
r 11 \s < < b s tur alle n > no

et* an et*

Es sei zunächst a* > 0 Dann folgt aus der letzten Abschätzung durch Aufspaltung des

Bruches n k
m ein Teleskopprodukt mit k Faktoren

an

0 <
/ 1 \K an-k 1 \*
[ s < < he für alle k ^ n — no + 1

\a* / an \a*
Daraus wiederum ergibt sich die Abschätzung

etn—k 1

< |/i \k I VI
II he — I 8 für alle
\\a* / \a* /

k ^ n — no + 1

die man ebenso auch im Fall a* < 0 zeigt Wir setzen

q\ mm <

1 1 1 1

8 1
b 8 <72 max 8 1

a* et* a*
+ £

Dann gilt 0 < q\ < <72 < 77— und für k < n — no + 1 gilt die Abschätzung
f*2

etn-k 1

h < 91-92 ^ & <?2 !_«1
an a% <12

2 k 8 q^
1
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Multiplikation mit \^2\k und Summation über & 0, 1,.. .,n — no + 1 ergibt schließlich

n—fto + 1

z
k=o

&n—k 1

an al

n—riQ + \

\H2\k < 2e- X k ^?2_1 I21'
k=0

/i—>oo | // 21

(1 - IA2l)2
'

Andererseits gilt

Gtn—k 1
no~2

1

an~l

n0-2

z
1=0

a*

H2

n0-2

•z
/=o

GC*

H2

\H2 \n—l

Da die Zahl e beliebig klein gewählt werden kann, folgt für s -> 0 die Behauptung.

Wir wenden uns nunmehr demjenigen „Ausnahmefall" in Satz 5 zu, bei dem die unendliche

Reihe Xy£o geßen Null konvergiert.
n2

Satz 7. Unter den Voraussetzungen

ß2 + 4y ^ 0 ß 7^ 0 sowie |a*| < |//11 und ^ —- 0

und ferner

V -7 / 0 im Fall I, im Fall II
*=0^1 *=0^1

gelten für die Lösung f), )„>o von (1.1) die folgenden Grenzwertbeziehungen:

/n
hm —

«->•00 Tl'j1

~ ak2 —r im Fall I
M2 ~ Ml k=o ii\

_
£2,
Z-< L

£=0 ß i
im Fall II

r fn+1
lim —— //in^oo fn
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Beweis. Es genügt, die erste der beiden Grenzwertbeziehungen zu zeigen. Wie bereits
beim Beweis von Satz 5 müssen auch hier die beiden Falle I und II gesondert betrachtet
werden.

Fall I: Wir zerlegen

r T / \ n n n
Jn _ B1 / 1*2 \ O-k ak

Ml
~

M2-M1 [v^i/ T^Mi f^4
Der zweite Summand innerhalb der Klammer konvergiert gegen eine - laut Voraussetzung
von Null verschiedene - reelle Zahl. Wir zeigen, dass der erste Summand gegen Null
konvergiert. Wir wählen dazu eine reelle Zahl e > 0 sowie eine natürliche Zahl ko ko (e)>

für die gilt:
a\+k

ak
< |a*| + e < \ju\\ furk^ko,

daraus folgt dann

an+k

ak
< (|a*| + s)n < \n\\n fürk > ko,n e Nq

Damit lasst sich der kritische Term

n n/ \ n n / \ n w / i \ n w
/* 2 \ ak _ / [12 \ ak _ | |w h~4~~\k~a k^+l4~~\4)

-4)

an+k
— llk

1 ^2

kQ — \ oo
an+k an+k

t=i 4 k=k0 4
wie folgt abschätzen:

n n/ \ n n

Gr £ Ok_

— ..k
k=0 ^2

<

<

1

Hl

1

Hl

an+k
*0-1

§
ako

m\
k=k0

an+k

ak

a+_

42

*o-i

£ (|a*|+e)"+*-*°
k=l

a^
42

+ (la*! + e)n

k̂=ko

Ok_

42

_ /|a*| + £V
V + \

*0-1

X(l«*l+e)*_iö
*=1 J"2 k=k0

a+_

42

Fall II: Der Beweis kann m Analogie zum Fall I gefuhrt werden. Es ist

fr.
n ^«*(n -k + l)(l1

^1 *=0

-k

u*k kdk n—>oo /ca*
(« +1) 2^^-2^ — ^ ~2^ —

kau
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Satz 8: Unter den Voraussetzungen

ß2 + 4y >0, ß ^0
sowie

\ßi\ < \a*\ < \ß2\ und 2-=°
k=o ^2

gelten für die Lösung (fn)n^ 0 von (1.1) die folgenden GrenzWertbeziehungen:

fn
lim —

1

n—^oo a

\ a* / V a* /

i • fn-\-\
lim ——-

Beweis. Auch in diesem Fall genügt wiederum der Beweis der ersten Grenzwertbezie-
hung. Aus den Voraussetzungen folgt zudem, dass der andernorts separat zu behandelnde
Fall II entfällt. Mit q := ^ zerlegen wir

fn hn-k
— 2^ak—n 4 n

k=0

1

1 f*2
1 ~ q an

Zuk _ n+l y Ok_

k V ' k
U=0 2

l-q
fi 2 /U /U

und betrachten die beiden Summanden innerhalb der eckigen Klammer separat. Mit
Überlegungen, die denjenigen im Beweis von Satz 7 gleichen, finden wir

ii n u oo oo
t12 ak _ t12 ak _

1

/! .k /! .k«» t=0 <«2 t=B+i -«2 t=i ^2

OO/ \i oo / \ k

_y M_a|U_y a »-
1 -

1 _ a*

H2

sowie

B i &k _ Mn-k k

n //k ft
B \

Un k=0<"l £=0 ß"

V"/1 \ £ M^oo 1

Es gilt demzufolge

r fn
lim —

1

/U

H2

1

/U
y"2

/^2

/U
0C;k LSM'-S)

Damit ist der Beweis vollständig.
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