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A simple recursion for power sum polynomials

Helmut Ianger

Helmut Langer studied mathematics at the Vienna University of Technology where he
received his Ph.D. in 1976. Since 1984 he holds the position of an associate professor
at the Institute of Discrete Mathematics and Geometry of the mentioned university.
Algebra is one of his main research interests.

There exists some literature on power sum polynomials and their connection to Bernoulli
numbers and Bernoulli polynomials (cf., e.g., [1]-[5]). In this note we provide an elemen-
tary proof of a simple recursion for power sum polynomials.

In the following N (Ng resp. IR) denote the set of all positive integers (non-negative integers
resp. real numbers), let k € N, n € Np and x € R and put

n
Pk(n) = Zikil.
i=1

First we show that Pr(n) is a polynomial in # of degree k.
Lemma 1.

1 Mook
Pen) = (4 DF = 1= (i " 1) Pi(n)).

i=1

Die Potenzsummen 1% + 2 4 ... 4+ »* sind Polynome vom Grad & + 1 in n. Diese
Potenzsummenpolynome sind ein beliebter Gegenstand mathematischer Untersuchun-
gen. Die Wurzeln reichen bis in die griechische Antike. Der Ulmer Rechenmeister
Johannes Faulhaber legte 1631 den Grundstein zur heute nach ihm benannten Formel
fiir Potenzsummen. Unter anderem befassten sich Jakob Bernoulli und wenig spéter
Leonard Euler mit diesen Polynomen. Deren Koeffizienten stehen in engem Zusam-
menhang mit den Bernoulli-Zahlen, die wiederum an den unterschiedlichsten Stellen
der Mathematik auftreten, so etwa bei der Taylor-Entwicklung des Tangens und des
Cotangens oder bei der Berechnung von Werten der Zetafunktion. Der Autor der vor-
liegenden Arbeit gibt einen neuen Beweis der Rekursionsformel von Dietmar Treiber,
der ohne Bernoulli-Zahlen auskommt, und iibersetzt die Formel in einen schlanken
Algorithmus zur Berechnung der Polynome.
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Proof.
n n k—1 k ) k [l ]
4+ D= 1= G+ 1 =5 =ZZ(i)f’ = Z(i - 1) > it
i=1 j=1i=0 i=1 j=1

kork
= Z (i B 1) Pi(n).
i—1

Using induction on & we get

Lemma 2. Pi(n) is a polynomial in n of degree k with leading coefficient 1/ k.
Let

k
Pr(n) = Z akgni.
i=0

The following lemma contains some easy properties of the coefficients of Py (n).

Lemma 3.
k

apo = Q and Zaki =1.
i=1

Proof. Pp(0) = Oand Pi(1) = 1

Now we can prove a simple recursion formula for the polynomials Py (x).

Theorem 4.

X 1
Pi(x)=x and Prr1(x) = k/ Pr(t)dt + (1 — kf Pr(t)dt)x.
0 0

Proof. Since

Peri(n+1) — Peyi(n) = (n + 1F
forevery n € Ny we have

Pepi(x 4+ 1) = Py (x) = (x + DF
forevery x € R. Hence

PG+ 1) = Py () = kG + 11 = k(Pelx + 1) — Pie(v))
and therefore
P];rl(x + 1) —kP(x+1)= P];rl(x) — kPy(x).
Hence
P]i—o—l(”) —kPr(n) = Pié+1(0) — kP (0)=:a

forall » € Ng whence
Pié+1 (x) —kPr(x)=a

forall x € R. Therefore

x
Pry1(x) = k/ Pr@)dt +ax + b
0
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with some b € R. Since P41(0) = 0and F;1(1) = 1 we have
1
b:Oanda:l—k/ Pr(t)dt. O
0

Theorem 4 leads to the following algorithm for calculating the polynomials Py (n):

Algorithm. We have P;(n) = n. Fork € N the polynomial Py 1(n) can be obtained from
Pr(n) by the following three steps:

(i) Integrate Py(xn) with respect to n (with integration constant 0).
(ii) Multiply this polynomial by a constant such that the leading coefficient equals
1/(k + 1).
(ii1) Add a multiple of n such that the sum of the coefficients equals 1.

We finally demonstrate the usefulness of this algorithm by calculating Px(n) for k =
1,2,3,4,5:

Pi(ny=n

R no ont on
PQ(”)ZE‘I"FE_?-FE

n? n? noon mt on
&w=(g+172+8=?+5+8

n? n3 n? nt 13 n2
P4(7’L)=(E+E+E)-3+O-H=I+7+I

nd ot nl n 7 at 5 n
PS(”)=(0+8+12)-4—30—5 ?4-3 35
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