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Limit shape of iterated Kiepert triangles
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We consider the following discrete dynamical System: Start with a base triangle Ao
ABC having at least two different vertices; erect externally on all sides of Ao similar
isosceles triangles with apex angle n — 2#o; get the Kiepert triangle Ai A\B\C\ by
taking the apices opposite to A,ß, and C, respectively. Note that #o 0 gives the medial
triangle Ai, which is directly similar to Ao- We iterate the process with Ai and n — 26\y

A2 and 7i — 262, and so on. It is shown in [2] that this sequence of triangles has an

equilateral limit shape when the apex angles are all equal and nonstraight. We give here

a very short proof of this result and we determine the convergence behavior for any other
choice of the apex angles.

Aus einem Dreieck kann ein neues Dreieck auf viele Arten entstehen. Ein Beispiel ist
das Napoleon-Dreieck: Gleichschenklige Ohren mit einem Scheitelwinkel von 120°,
die über den Seiten eines Dreiecks errichtet werden, ergeben immer ein gleichseitiges
Dreieck. Oder die aufeinanderfolgenden Höhenfusspunktdreiecke eines Dreiecks: ihre

Formenfolge kann beinahe jedes Verhalten aufweisen. Erwähnenswert ist auch die
fraktale Struktur der Folge der Spiegelungsdreiecke, wo die Eckpunkte jeweils an
der gegenüberliegenden Seite gespiegelt werden (G. Nicoliier, Iterated Reflection
Triangles, Forum Geometricorum 12 (2012), 83-129). Der Themenkreis der iterierten
Dreiecke (und Polygone) ist sehr fruchtbar und bedient sich oft zyklischer Matrizen
und der diskreten Fourier-Transformation. Die Autoren des vorliegenden Artikels
verallgemeinern mit Hilfe einer Formfunktion einen Teil der Arbeit Iterative Triangle
Transformations von D. Vartziotis und S. Huggenberger, die hier vor kurzem erschienen

ist.
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We use for any tnangle A UVW in the complex plane (with at least two different
vertices) the shape function [1]

aiA)=u + n + wc2
Wlth ^U + VC2 + WC

^

One has cr(A) cr(A/)if and only lf A and A' are directly similar for the given ordered

vertices, andcr(A) 0oroo means that A is apositively ornegatively onentedequilateral
tnangle, respectively. The image of o is the extended complex plane: one has cr(A) f
for the vertices 0, 0, 1 m order, and o (A) s ^ £ for the vertices 0, 1, ^37-

Theorem 1. If the successive angles 60, 6\, ]0, §[ are bounded away from 0 and
from the above sequence oftriangles converges to an equüateral limit shape.

Proof. Suppose that Ao ABC is positively onented. The vertices of Ai are then

A + B A-B
Ci — hi—-—tan#o?

and cyclically. A simple computation gives

,A s
1 - \/3tan6>0

<7(Ai) -= — <r(A0)
1 ~h v 3 tan 0q

(note that 60 30° proves Napoleon's theorem). Smce Ai is also positively onented, one

gets
1 — s/3 tan9\ 1-V3tan<90

cr(A2) 7 p o(Ao),
1 + V3tan^i l + V3tan^o

and so on. Smce each factor 1|1S smaller than some fixed bound b < 1 (Figure 1),

one has o (An) 0.

Theorem 2. If one excepts the trivial case of an equilateral base tnangle Ao, the above

sequence ofiterated Kiepert tnangles converges to an equilateral limit shape ifand only

z/lim^^oo IILo 1+^7 tan
fl* ^ l'e'y lfand only tfthe successive angles 9o fxo, 0\

\x\, e [0, |-[ are such that 6k \ for some k or X^=ollx^H °°> where \\x\\

mm(v, 1 — x) denotes the distance from x e [0, 1] to the nearest integer 0 or 1.

If the sequence ofiterated Kiepert tnangles has no equilateral limit shape (and if Ao is

positively onented), the sequence (c(Aw)) has the nonzero limit

r(A0) Jd 11 — -s/3 tan 0k

k=o ± 1

when lim^oo Qk 0» and has otherwise exactly two accumulation points given by

/ a \ TT ^ — *an^±ff(A0) fi=o
1 + /3 tan 0k
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Proof After continuous extension at v 1, the function

1 — \/3 tan(yx) 2
f(x\ 2 i

l + V3tan(|-v) l + V3tan(|-x)

falls from 1 to — 1 on [0, 1] with /(§) — ^ (Figure 1), and its derivative

f'( \ -73 tt

4sin2(|-(x + 5))

grows on [0, |] from —a/3tt —5.44 atx 0 to atx with f'{\)
— Abefore falling to —on [|, 1]. One has thus (Figure 1)

1 - 6||*|| < \f(x)\< 1 - ||*|| < e"M, Vx e [0,1],

and nr=ol/fe)l —
e~^-,:=0"A,:": the infinite product is 0 or diverges to 0 when

for some k or Xy£o WXk II 00.

Conversely, suppose that all Xk are ^ ^ and that Xy£o WXk H < 00: one ^as ^en WXk H < Tö

as soon as k is large enough, say for all k > K, and one gets n&^o1\f(xk)\ ^ 0; further,
since

1 -6||v|| > e-10M for ||jc|| <

one obtains n^/rl/(x^)l — > 0. The füll product TlkLo\f(Xk)\> whose
factors lie in ]0, 1], has thus a limit X > 0 (and any X e ]0, 1] can be obtained by
an appropriate choice of the v^'s): by taking Ao nonequilateral and positively oriented,
a(An) a( A0) n^o f(xk) has a limit =b2cr(Ao) 0 if all f(xk) are eventually



64 G Nicoliier and A Stadler

positive; otherwise, the infinite subsequences of the a(An) with positive and negative
n&=o f(xk) have opposite limits Ao (Ao) and — Ao (Ao), respectively. Note that ±Aa (Ao)
are, when ^ — er (Ao), shapes of Kiepert tnangles of Ao-
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