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Continuous flattening of some pyramids
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1 Introduction

We use the terminology polyhedron for a polyhedral surface which is permitted to touch
itself but not self-intersect, and a polyhedron always can be folded by creases like a piece
of paper. A flat folding of a polyhedron is a folding by creases into a multilayered planar
shape without self-intersection. The results presented here are related to the following two
problems proposed by Erik Demaine et al. ([1], Open Problems 18.1 and 18.3 in [2]).

Problem 1. Can every flat folded state of a polyhedron be reached by a continuous folding
process?

Problem 2. Which polyhedra can be flattened according to the straight-skeleton gluing ?

E. Demaine et al. (see [2], pp. 281-284) showed that every convex polyhedron possesses
a flat folded state obtained by the disk packing method. They also showed the existence
of flat folded states obtained by the straight-skeleton gluing for special pyramids and spe-
cial polyhedra, where they defined the straight skeleton in the three-dimensional space as
follows: offset all faces in parallel so that the perpendicular offset distance is equal among

Orangensaft wird hiufig in quaderformigen Kartonverpackungen verkauft. Hat man
den Saft ausgetrunken, mochte man den Karton platzsparend im Miill entsorgen, indem
man ihn flach in die Ebene faltet. Dies gelingt, ohne den Karton zu bschédigen und
sogar ohne die manchmal vorhandenen Ieimlaschen zu 1osen. In dhnlicher Weise sind
auch manche Einkaufstiiten aus Papier gefaltet. Es stellt sich sofort die Frage, ob jedes
Polyeder in die Ebene gefaltet werden kann, und ob dabei die Ausgangsposition stetig
und tiberschneidungsfrei in die Endposition deformiert werden kann. Die vorliegende
Arbeit geht, startend bei dreiseitigen Pyramiden, just dieser Frage nach.
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all inset faces and trace the trajectories of the edges of the polyhedron, forming faces of
the straight skeleton which bisect pairs of polyhedron faces.

In this paper, we give a precise definition of the straight-skeleton subdivision and gluing
of a convex pyramid P with an n-gonal base for 3 < n < 5. Then, we prove that there is
a continuous flat folding processe for P according to the straight-skeleton gluing. Using
this result, we prove that every convex polyhedron is flattened continuously by using the
straight-skeleton ghuing locally. Finally, we give a remark that each Archimedean polyhe-
dron is continuously flattened by pushing a face toward its opposite face orthogonally.

For each Platonic polyhedron, the existence of a continuous folding process was proved by
J. Ttoh and the author in [3] by using the property of thombi, and we refer this continuous
folding process as a rhombus method. For general convex polyhedra, J. Itoh, C. Vilcu and
the authorin [4] proved, by using the property of cut loci and Alexandrov’s ghiing theorem,
that every convex polyhedron possesses infinitely many continuous flat folding processes
(which are referred as a cut locus method), and they also gave a sufficient condition under
which any flat folded state of a convex polyhedron can be reached by a continuous folding
process, which is a partial answer to Problem 1.

Note that any polyhedron does not change its volume under flexing if shapes of the faces
are fixed, which was proved by 1. Sabitov [3, 6]. So we need infinite line segments for
moving creases to change shapes of some faces and to flatten a polyhedron. The cut
locus method requires a lot of portions for moving creases which cover almost the whole
surface of a polyhedron ([4]). On the otherhand, the thombus method requires very limited
portions of a polyhedron for moving creases. We extend the thombus method to a method
which is applicable to more general situations, and it plays key roles for the proofs of our
theorems.

Section 2 is devoted to propose a key lemma (Lemma 1) and its application on kites (con-
vex quadrilaterals with two pairs of equal adjacent sides) (Lemma 2). In Section 3, we
define the straight skeleton subdivision and gluing for a pyramid with an n-gonal base for
3 < n < 5 (Definitions 3—6). We prove main theorems (Theorems 1-3) that every pyramid
P with an n-gonal base (3 < n < 5)is continuously flattened by the straight-skeleton glu-
ing so that the n-gonal base and one side face have no crease during the folding process.
In Section 4, by applying those main theorems to general convex polyhedra P, we prove
that P is continuously flattened by local use of the straight-skeleton gluing (Theorem 4).
In Section 5, we give a remark that there is another application of Lemma 2 so that each
Archimedean polyhedron is continuously flattened by pushing one face to the opposite
face orthogonally.

2 Folding kites

For two points x, y in the three-dimensional space R?, we denote by xy the line segment
joining those two points, and by dist(x, y) or |xy| the Euclidean distance between those
two points. Let F be a two-dimensional surface consisting of polygons in R? and let x, y
be two points of F. The intrinsic distance from x to y is defined as the length of shortest
paths in F joining x and y, and it induces an intrinsic metric on . A mapping from F to
a surface G is called an intrinsic isometry if the mapping is isometric with respect to their
intrinsic metrics.
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Definition 1. Let P be a polyhedron in R3. We say that a family of polyhedra {P, : 0 <
t < 1} is a continuous folding process from P = Py to Py if it satisfies the following
conditions:

(1) Foreach 0 < ¢ < 1, there is an intrinsic isometry from P; onto P.
(2) For each x € P the mapping [0,1] 2 7 +—— P, (x) € {P(x) : 0 < < 1l}is
continuous, where P (x) is the image of x in P,.

Moreover, if Py is a flat folded polyvhedron, we say that P is flattened by a continuous
folding process and we call Py a flar folded polyhedron (or state) of P.

For a two-dimensional surface 0 in R? if a family of two-dimensional surfaces {Q; : 0 <
¢ < 1} satisfies the corresponding conditionsto (1) and (2), we call the family a continuous
folding process from O = Qo to Q1.

Definition 2. Let K = abed be a kite with |ab| = |be| and |ad| = |de¢| (see Figure
1(1) for example). Choose any point 2 on bd. Fold K in half by a valley fold on bd
(the distance of corresponding points to ¢ and ¢ is zero), and then fold by mountain folds
on the line segments corresponding to ah (hc), to obtain a flat folding of K. We call the
resulting shape of K a flat folded kite for h and denoted by K}, (see Figure 1(2)). Denote by
a, b, d and i’ the images of a, b, ¢, d and h respectively by the intrinsic isometry
from K to K. Define
Ly = dist(®’, 4.

In the above process, at first, the distance of corresponding points to a and ¢ decreased to
zero, and then the one for b and d decreased to L. Now we show that there is a continuous
folding process from K to K}, such that those two distances decrease simultaneously. We
define a following shape of the kite X.

Let ! be any given number with L, < [ < |bd|. Apply mountain folds to ah, hc and bk,
and a valley fold to hd so that dist(d’, d') = I where x’ means the image of a point x € K
by the intrinsic isometry from X to the resulting shape which is denoted by S;. Then such
S8y is unique except congruence, because &’ and ¢’ are fixed by the three distances from
b, W, and & (see Figures 1(3) and 1(4)). We call S; a simple folded kite with distance .
Define

M; = dist(a/, C/).

Lemma 1. Let K = abed be a kite in R® with |ab| = |be| and |ad| = |de|. Let h be any
point on bd. For any given numbers 1 (Ly <1 < |bd|)and m (0 < m < M), there is a
point g on he such that

(1) by applying mountain folds to {qb, gc, qd, ah}, and valley foldsto (hb, hq, hd} so
that the triangles Ahbg and Ahdg touch to the triangles Aabh and Aadh respec-
tively (see Figures 1(5)and 1(6)), and that

(2) the resulting figure K’ satisfies
dist(f(b), fld)) =1, dist(f(a), flc})) =m

where f is the intrinsic isomeiry from K to K'. We call such K' a folded kite with
distances (I, m).
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Fig. 1 How to fold a kite; (1) a kite; (2) a flat folded kite Ky; (3) creases for mountain folds shown by dotted
line segments and a valley fold shown by a bold dotted line segment; (4) a simple folded kite S5 with distance
I; (9) the point ¢ for a given [, m and creases for mountain or valley folds; (6) the shape of the folded kite with
distances (I, m); (7) a rotated image of the half of S}, with ¢'; (8) the intersection point r; (9) the folded kite with
distances (I, m).

Proof. Let S; be a simple folded kite with the distance ! as shown in Figure 1(4) and denote
by x” € S; the corresponding point to x € K. Divide S into halves along 57’ and #'d’.
Those two parts are symmetric to each another about the plane including Ab'R'd’.

Step 1. Rotate the half part including ¢’ about 5'd’ so that the distance between a’ (in
the other half part) and ¢” (the rotated point of ¢’), is the given number m (Figure 1(7)).
Denote by k" the rotated point of %', and by r the intersection of a’d’ and ¢”h” (Figure
1(8)). Since the rotated half part and the other half part including a’ are congruent and
symmetric to each other about the plane including Ab'rd’, we have |a'r| = |¢”r|, and
hence Abrh' = Ab'rh” and Ad'rh = Ad'rh”, where X = Y for subsets X, ¥ in R?
means that X is congruentto Y.

Step 2. Let ¢ be the point on ¢ in K corresponding to r (Figure 1(5)). Apply mountain
foldsto {¢b, gc, qgd, ah}, and valley foldsto {#b, hg, hd} so that the triangles Ahbg and
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Ahdg touch to the triangles Aabh and Aadh respectively. Then we obtain a folded kite
with distances (I, m) (Figure 1(9)). O

Lemma 2. Let K = abed be a kite in R® with |ab| = |be| and |ad| = |de|. Let h be any
pointonbd, andletly — Ly (Ly <l < |bdyandm; — 0(0 <m, < My, )ast — 1
(0 <t < 1). There is a continuous folding process [K; 1 0 <t < 1} of folded kites with
distances (I;, m¢) so that Ko = K, and that K1 is a flat folded kite for h.

Proof. For any fixed ! (L, < [ < |bd|), the point ¢ approaches the point ¢ asm — 0
where 0 < m < M. So,ifl; — Ly and m; — 0 (m, < M),) simultaneously asr — 1
(0 <1 < 1), there is a continuous folding process of {K; : 0 <1 < 1} of folded kites with
(&, m;) by Lemma 1. O

Remark. In the continuous process of folded kites with (7;, m;) for 0 < ¢ < 1 shown in
the proof of Lemma 2, the point ¢ approaches the point ¢ as ¢ — 1, and so the creases for
mountain folds on bg and dq move from bk and di to be and ¢d.

Lemma 1 is an extension of the property of rhombi, shown in [3] where £ is fixed as the
midpoint of bd.

3 The straight-skeleton subdivision and gluing

We assume that pyramids are convex through this paper. We define a straight skeleton
subdivision of a pyramid P with an n-gonal basefor3 < n < 5 and show that the pyramid
P can be flattened by a continuous folding process according to such a subdivision.

Definition 3. Let 3 < n < 5 and let P be a pyramid which has an n-gonal base B =
b1by -+ by, an apex a, and side faces F; (1 < i < n), where F; has the edge b;b;41 and
indices are considered modulo n (see Figures 2(1), 3(1), and 4(1)). Let T be its unfolding
along n edges adjacent to a, and let a; (1 < i < n) be corresponding points to a in T,
where ¢; € F; (we use the same symbol for the corresponding point or face in 7 to an
original point or face in P, except a, if there is no fear of confusion) (see Figures 2(2),
3(2), and 4(2)). For each vertex b; (1 < i < n) there are three faces {B, F;, F;—1} which
are adjacent to b;, and whose angles at b; are denoted by 8;, &, and #; respectively. Define
fori(1 <i<mn)

o =G+ —0)/2, fi =& —ai, yi =0 — ai
Thenfori(l =i <n), o+ =&, a; +y;i = . fi + y; =6; and
20 + fi + vy =6+ & + ni = Zai_1bia;.

Foreach i (1 < i < n), draw a half-line {; starting at b; toward the interior of B so that /;
forms the angles f; and y; with the edges b;b;1 and b; b;_1 respectively (Figure 2(2)).

Lemma 3. If P is a triangular pyramid, those three half-lines I; (1 < i < 3) are concur-
rent.

FProof. Let p be the intersection of i1 and {2. Let p; (1 < i < 3) be the mirror image
of P about the edge bgbf+1 inT (P) Since |a1b1| = |a3b1|, |b1p1| = |b1p| = |b1p3|,
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Fig. 2 (1) A triangular pyramid P and its straight skeleton subdivision; (2) an unfolding of T and half-lines; (3)
the comresponding straight skeleton subdivision of its unfolding; (4) the subset O of P with creases for valley
folds on b1 pq and by py; (5) the moving creases for the continuous flat folding process of P, (6) Py for some
0 <t < 1 in the continuous flat folding process; (7} the flat folded state Py.
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and Zajbip1 = a1 = Zasbyps, we have Aajpi1by = Aazpsby and hence |aypy| =
lasz p3|. Similarly, we have |ajp1| = |aap2|. Therefore |a2ps| = |azps|. which leads
Aazprbs = Aazpibs by |bsaz| = |bzaz| and |bspa| = |b3ps|. Since £Lprbips = 205,
we have Zparbzas + ZLpsbsas = 05 + & + 3 — 205 = & 4 43 — 63 = 203, Hence
Za2b3p2 = La3b3p3 = 3. Therefore, Lblb_?,p = Zb1b3p3 = 53 — 03 = ﬂ3, and
Zbabsp = 3 — P3 = y3, that is, the line /3 passes through the point p. O

Definition 4. Let P be the triangular pyramid discussed in the proof of Lemma 3. Since
each face of P includes p or p;, draw line segments from such points to the vertices of
the face (Figures 2(1) and 2(3)). Then each side edge ab; (1 < i < 4) in P is a common
edge of two congruent triangles which comprise a kite. We call such a subdivision the
straight-skeleton subdivision of P.

Then all parts in such a subdivision are paired by congruence such that each side edge
of P is a diagonal of a kite. If by gluing two parts in each pair (i.e., putting one upon
another), we obtain a flat folded state of P, we call such state a flat folded state of P with
the straight-skeleton gluing.

Theorem 1. Each triangular pyramid F has a continuous folding process {F;: 0 <t <1}
from P to aflat folded state Py with the straight-skeleton gluing so that the base and one
side face of P have no crease during the process.

Proof. Let Q be the subset of P obtained by removing one kite (say b2 prap2) from P
(see Figure 2(4)). Apply valley folds to line segments {51 py, b3 p2}, and rotate the apex
a about the edge b1b3 toward by continuously so that it touches the plane including the
base Abi1bsb3. Then pi and py rotate simultaneously about the edges 515y and bybs
respectively, and approach to p € Abi1bab3, and hence, Q is flattened continuously.

Let & be the intersection of the edge ab, and the extension of the line segment b3 p. Since
the quadrilateral ap b2 ps of P is a kite, by Lemma 2 it has a family of folded kites on
p2h which comprise a continnous folding process. Hence, P is flattened by a continuous
folding process with the straight-skeleton gluing, and B and F3 have no crease during the
process (see Figures 2(5)—(7)). ]

Definition 5. Let P be the quadrilateral pyramid discussed in Definition 3. Let p be the
point closer to &1 in intersections {1 NIy and {1 M 14 (either of them if they are equal), say
p =4 Nh. Letqg = 13Ny (possibly ¢ = p). Divide the quadrilateral base B = b1b2b3bs
into four parts by {byp, bap, b3q, bsg, pg} (Figure 3(2)). Divide each side face F; of
P by the mirror image of the part including b;5;,1 about b;b;, 1, and by line segments
joining a; to the images of p or ¢ (see Figure 4(1) and Figure 4(2)). Then each side edge
ab; (1 =i < 4)in P is a common edge of two congruent triangles which comprise a kite.
We call such a subdivision the straight-skeleton subdivision of P.

Then all parts in such a subdivision are paired by congruence such that each side edge of
P is a diagonal of a kite. If by gluing two parts in each pair, we obtain a flat folded state
of P, we call such a state a flar folded state of P with the straight-skeleton gluing.

Theorem 2. Any quadrilateral pyramid P has a continuous folding process [Py : 0<t <1}
from P to aflat folded state Py with the straight-skeleton gluing so that the quadrilateral
base and one side face of P have no crease during the process.
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Fig. 3 (1) A quadnlateral pyramid P and its straight skeleton subdivision; (2) the corresponding straight skeleton
subdivision of its unfolding; (3) the subset @ of P with creases for valley folds; (4) the moving creases for the
continuous flat folding process of P; (5) F; for some 0 < ¢ < 1 in the continuous flat folding process; (6) the
flat folded state Py.

Proof. If p = g, the existence of a continuous folding process from P to a flat folded state
of P with the straight-skeleton gluing is obtained by a similar argument to the case n = 3,
where we apply Lemma 2 to two kites instead of one. So, we omit the details.

Now assume p # g. Choose one side face of P which has a quadrilateral in its subdivision.
For example, choose Fy = Abibsa in P (Abibgas in T). Let Q be the part of P obtained
by removing two kites ap1b2p2 and agi1b3ge from P, where Q is connected at a (see
Figure 5(3)). Apply valley folds to {b1p1, p2g1, g2b4, p2b3} in Q. Rotate the apex a
about the edge 5154 toward the edge by b3 continuously until it touches the plane including
the base B. Then, two pairs {p1, p2} and g1, g2} approach p and ¢ respectively and
simultaneously, and hence Q is flattened continuously.

By Lemma 2, each kite which was removed from P, is continuously flattened so that the
distance between p; and po as well as the distance between g1 and g2 decrease to zero.
The process is similar to the one for n = 3, so we omit the details. Hence, P is flattened
by a continuous folding process according to the straight-skeleton gluing, and B and £4
have no crease during the process (see Figures 4(4)-(6)). ]

Definition 6. Let P be the pentagonal pyramid discussed in Definition 3. Let p be the
closer point to &1 in intersections {1 My and I3 N I5 (either of them if they are equal), say
p = 1 Ny Let g be the closer point to b4 in intersections I4 M I5 and I4 N I3 (either of
them if they are equal), say ¢ = 14 Ns.
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For a point r on the half-line /3 in the base B we denote by rq, 2, and 73 the mirrorimages
of r about byb3, bsby, and b1bs respectivelyin P. Then we can choose r such that |rjaz| =
|r3as|, whose existence is as follows. Let @’ be the mirror image of as about bybs in T.
Fold the face F> with a valley fold along some line segment in F7 so that byb3 are fixed
and that a; goes to the position of a’. Then the position of r is obtained as the intersection
of /3 and the crease for the valley fold. (It may help to consider the quadrilateral pyramid
with the base b1byb3bs and the apex ¢ and apply the continuous folding process to it by
Theorem 2, and then the flat folded state indicates the valley fold in F3.)

Then Aribzay = Arabzas by |rbs| = |rbs|, |aabs| = |bzas|, and Zr1bzay = Srybaas.
Hence |r1a2| = |r2a3| and so

[rial = |r2a| = |r3al.

Divide B into five parts B; (1 < i < 3) by {b1p, bap, bar, bagq, bsq, rp, qr} so that
B; has b;b; 1. Divide each side face F; (1 < i < 5) by the mirror image (denoted by B)
of B; about b;b; 1, and line segments joining vertices of B/ to a (a; € T) (see Figures 6(1)
and 6(2)). Then each edge ab; (1 < i < 5)is a common edge of two congruent triangles
which comprise a kite. We call such a subdivision the straight-skeleton subdivision of the
pentagonal pyramid P.

Then all parts in such a subdivision are paired by congruence such that each side edge of
P is a diagonal of a kite. If by gluing two parts in each pair we obtain a flat folded state of
P, we call such a state a flat folded state of P with the straight-skeleton gluing.

Theorem 3. Any pentagonal pvramid P has a continuous folding process {P;:0<r <1}
Jfrom P to a flat folded state Py with the straight-skeleton gluing so that the pentagonal
base and one side face of P have no crease during the process.

Proof. If p = g, then p = ¢ = r, which is similar to the case n = 3, P is flattened by a
continuous folding process according to the straight-skeleton gluing by applying Lemma 2
to three kites instead of one.

Suppose p # q. If p = r or ¢ = r, which is similar to the case n = 4, P is flattened by a
continuous folding process according to the straight-skeleton gluing by applying LLemma 2
to three kites instead of two.

Suppose p # r and g # r. Let ¢ = b1bs which is the common edge of two pentagonal
parts in the subdivision. Let X; (1 < i < 3) be kites with the side edge ab;11 as its
diagonal, which are disjoint with e.

Let Q be the part of P obtained by removing those K; (1 < i < 3), where P is connected
at a (Figure 6(3)). Apply valley folds to {b1p1, par1, r241, g2b5, p2b3, q1b3} in Q. Ro-
tate the apex a about the edge b1b5 toward the vertex b3 continuously so that it touches the
plane including the base B. Then, three pairs {p1, p2}. {r1, r2}. and {41, g2} approach p,
7, and g respectively and simultaneously, and hence O is flattened continuously.

By Lemma 2, kites K; (1 < i < 3) which are removed from P, are continuously flattened
so that the distances of pairs {p1, p2}, {r1, 2}. and {q1, g2} decrease to zero. Hence P
is continuously flattened with the straight-skeleton gluing, and B and F5 have no crease
during the process. O
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Fig. 4 (1) A pentagonal pyramid P and its straight skeleton subdivision; (2) the corresponding straight skeleton
subdivision of its unfolding; (3) the subset O of P with creases for valley folds; (4) the moving creases for the
continuous flat folding process of P; (5) P for some 0 < ¢ < 1 in the continuous flat folding process; (6) the
flat folded state P;.
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4 Application to convex polyhedra

We give an application of the existence of the continuous flat folding process of n-gonal
pyramids for3 < n < 5 so that the n-gonal base has no crease during the process.

Theorem 4. Ler P be a convex polyhedron. Then P is flattened continuously by using the
straight-skeleton gluing locally.

Proof. We prove Theorem 4 by mathematical induction on the numbernp of vertices of a
convex polyhedron P.

If n, =4, then P is a pyramid with a triangular base. Hence it is flattened continuously
by the straight-skeleton gluing by Theorem 1.

Let k > 4. Assume that any P with np < k vertices can be flattened continuously. Let P
be a convex polyhedron with np = &k + 1 vertices. Since the edge graph of P is planar,
there is a vertex v which is incident to at most five edges, which is a well known fact
obtained by the Fuler formula for a planar graph. Denote the set of incident vertices to v
on P by N,. Then the number of vertices in ¥, is at most 5. Let P’ be the convex hull of
the set of vertices of P except v.

Consider all planes passing through at least three vertices in N,. Choose H among them
closest to the vertex . H divides P into a pyramid 7, (without a base) and the remaining
part of P whose convex hull is denoted by . Since the boundary of T, is a triangle, a
quadrilateral, or a pentagon, we can flatten 7, continuously and attach it to Q by Theo-
rems 1-3.

Let U (possibly an empty set) be the set of all intersections of the plane H and the interior
of some edge of P incident to v, that is, vertices of Q but not vertices of P. Then U has at
most two vertices since N, has at most 5 vertices. If U is empty, then Q is congruent to P’.

If U has only one point x, then x is incident to exactly three vertices w; € N, (1 <i < 3)
in Q. Let T, be the pyramid with the apex x and the base Awjwaws. By flattening T,
continuously, we obtain a convex polyhedron congruent to P’.

Suppose U has two points x and y. If x and y are not adjacent to each other, then by
flattening T and T, continuously we obtain a convex polyhedra congruent to P’. If x and
v are adjacent to each other, then by flattening 7', continuously the degree of y changes to
four in the resulting convex polyhedron. So we use for y a similar process used for v, and
then the resulting polyhedron is congruent to P’

Since the number of vertices of P’ is k, P’ is flattened continuously by the assumption
for k on the mathematical induction. Therefore, P is flattened continuously by using the
straight-skeleton gluing locally. O

5 Some remarks

If a convex polyhedron  has two parallel faces which includes all vertices of P and
which satisfies some additional condition, we can prove by Lemmas 1-2 that Q has a
continuous flat folding process so that those two faces are in parallel positions and have
no crease during the folding process. By using this fact any Archimedean polyhedron P
has a continuous flat folding process so that its specified two parallel faces are parallel and
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(0 2

Fig. 5 (1) Dotted line segments show how to slice the truncated octahe-
dron P by parallel planes; (2) the flat folded state of P.

have no crease during the process. The proofs are a little tedious, so we omit them. Figure
5(1) shows how to divide the truncated regular octahedron into parts by parallel planes to
have vertices on their boundary and to satisfy conditions. Figure 5(2) shows its flat folded
state.

By using the straight-skeleton gluing locally, we may find continuous flat folding processes
for non-convex polyhedra. We leave such problem for the future research.
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