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1 Introduction
Transcendental number theory began in 1844 with Liouville's proof [7] that if an algebraic
number a has degree n > 1, then there exists a constant C > 0 such that \a — p/q\ >
Cq~n, for all p/q e Q\ {0}. Using this result, Liouville gave the first explicit examples
of transcendental numbers, the so-called Liouville numbers: a real number is called a

Liouville number, if for any positive real number cd there exist infinitely many rational
numbers p/q, with q > 1, such that

Im Jahre 1844 gab Joseph Liouville ein erstes Beispiel einer transzendenten Zahl,
nämlich die Liouville-Zahl £ X«>i 10_n!- Fast ein Jahrhundert später schlug Kurt
Mahler vor, die reellen Zahlen in vier Kategorien einzuteilen, je nachdem wie gut sie

sich bei der Approximation durch algebraische Zahlen verhalten. Insbesondere zerfielen

dabei die transzendenten Zahlen in drei Klassen, nämlich die 5-, T- und U-Zahlen.
1952 bemerkte LeVeque, dass die U-Zahlen sich noch weiter, bezüglich ihrer Appro-
ximierbarkeit durch algebraische Zahlen vom Grad m, in die unendlich vielen dis-

junkten Klassen der Um -Zahlen unterteilen lassen. LeVeque zeigte insbesondere, dass

^(3 + £)/2 eine Um-Zahl ist. In der vorliegenden Arbeit konstruieren die Autoren
Um -Zahlen für alle m auf besonders transparente Weise, nämlich als Produkt von £ mit
gewissen algebraischen Zahlen vom Grad m.
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A classical example of a Liouville number is the Liouville constant b, defined as a decimal
with alin each decimal place correspondmg to n' and 0 otherwise. It can be represented
by the fast convergent senes b 10_w' 0 1100010

In 1962, Erdos [4] proved that every nonzero real number can be written as the sum and

the product of two Liouville numbers. Smce the set of the Liouville numbers has null
Lebesgue measure, one may mterpret this as saymg that m spite of bemg an "mvisible"
set, the Liouville numbers are strategically disposed along the real line.

There exist several classifications of the transcendental numbers m the literature. One at-

tempt towards a Classification was made m 1932 by Mahler [8], who proposed to subdivide
the set of real numbers mto four classes (one of them bemg the class of algebraic numbers)
accordmg to their properties of approximation by algebraic numbers. Lor mstance, he split
the set of transcendental numbers mto three disjomt sets named S-, T- and U-numbers.

Particularly, the U-numbers generalize the concept of Liouville numbers.

We denote by cd* (<f) as the supremum of the real numbers cd* for which there exist m-
finitely many real algebraic numbers a of degree n satisfymg

0 < |£ -«I < H(a)-'ü*-1,

where %(a) (so-called the height of a) is the maximum of absolute values of coefficients
of the minimal polynomial1 of a. The number is said to be a U^-number (accordmg to
LeVeque [6]) lf oj*71 (c oo and co*(£) < oo for 1 < n < m (m is called the type of the

U-number). We pomt out that we actually have defined a Koksma -number mstead of a

Mahler Um-number. However, it is well known that they are the same [3, cf. Theorem 3.6]
and [1]. We remark that the set of U\ -numbers is precisely the set of Liouville numbers.

The existence of Um -numbers for all m > 1, was first proved by LeVeque [6]. Indeed, he

was able to exhibit such examples as the mth root of some convenient Liouville numbers,

e.g., ^/(3 + b)/4 is a Um-number, for all m > 1.

In this note, we use the Guttmg method [5] to prove that we can find explicit Um -numbers

m a more natural way: the product of certam m-degree algebraic numbers by b. Moreover,
we obtam an upper bound for cd* More precisely, our result is the followmg

Theorem 1. Let a be an algebraic number of degree m. Suppose that the minimal
polynomial P ofa has a leading coefficient of the form 2a 5b > 1, and p \ P(0),for p 2, 5,

and let b be the Liouville constant. Then ab is a Um -number, with

co* (ab) < 2m2n + m — 1, for n — 1, m — 1 (1)

Lor example, JJ/3/2 b is a Um-number for all m > 1.

1
Throughout the paper, a polynomial is said to be minimal lf it is a primitive minimal polynomial over Z
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2 Auxiliary Results

Before starting the proof of the Theorem, two technical results are needed.

Lemma 1. Given P( v) e Z[x] with degreem anda/b e Q\{0}. If Q(x) amP(bx/a),
then

7~L(Q) < max{|a|, \b\}mTL(P),

where, as usual, TL{P) denotes the maximum of absolute values of coefficients of P {the
so-called height of P).

Proof If P(x) X7=0 ajXJ, then Q(x) X7=0 ajbJam~JxJ. Supposing, without loss

of generality, that \a\ > \b\, we have \a\m\üj\ > \a\m~J\üj \\b\J for 0 < j < m. Hence,
we are done.

In addition to Lemma 1, we use the fact that algebraic numbers are not well approximable
by algebraic numbers.

Lemma 2 (Cf. Corollary A.2 of [3]). Let a and ß be two distinct nonzero algebraic
numbers ofdegree n and m, respectively. Then we have

\a — ß\ > (n + 1) m^2(m + 1) w/2max

x H{a)-mH{ßyn.

(n + 1)—(—L/2 + iy(n-1)/2
2~n

Proof A sketch of the proof can be found in Appendix A of [3].

3 Proof of the Theorem

For k > 1, set

k

pk 10*' ^ 10-7', qk 10*' and ak —.Ä **

We observe that TL{ak-\) < TL{ak) 10*' TL{ak-\)k and

\(-ak\ <lfu{ak)-k~\ (2)

Thus, setting y^ — aa^, we obtain of (2)

1«^ - 7*1 < cH(ak)~k~l, (3)

where c 10|a|/9. It follows by Lemma 1 that TL{ak)m > 7-^(öc)—17^(y^) and thus we
conclude that

M - 7t I < cH(af+lVmH(7kr{k+l)/m- (4)

Consequently, ab is a t/-number with type at most m (since yu has degree m).
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We claim that H(ak) < H(yk), for all k > 1. In fact, let P(x) X7=0aJxJ
minimal polynomial of a. In particular, Pia) 0 and a simple calculation gives Q(yk)
0, where Q(x) X7=o ajP1k J

clkxJ g Note that deg Q m and y^ is an ///-
degree algebraic number. Thus, in order to prove that Q is the minimal polynomial of yk,
we need to prove that Q is primitive. In other words, we must prove that

gcdfotf.aiPT1«.'' • 'a»^D L

This follows immediately from the facts that gcd(ao,..., 1 and the hypotheses on

«o and öm (yielding gcd(«o? gcd(am, pk) 1), we leave the details to the reader.

Thus, in particular, we have that

H(yk) > maxflaollwl", |an||«l"} > maxfl^l, \qk\} — H(ak)

as desired.

Now we use this together with Lemma 1 to obtain

H(yk+1) < H(a)n(ak+i)m n(a)H(akf+1)m < H(a)H(yk){k+l)m (5)

Now, let y be an n-degree real algebraic number, with n < m and PL(y) > PL(y 1). Thus,
there exists a sufficient large k such that

n(yk) < H(y f'"2 < H(yk+l) < H{a)%(yk){k+^m. (6)

On the other hand, Lemma 2 yields

ly* - y I > fim,n)U{y)-mU{yk)-\ (7)

where f(m,ri) is a positive number which does not depend on k and y (see Lemma 2).
Therefore by the chain of inequalities in (6)

\7k ~ 7 I > f(m, n)H(a)-l/2mU(ykr{k+l)/2-n. (8)

By taking H(y) large enough, the index k satisfies

H(yk)ik+1)/2~n > 2c/(m, n)~lH(a)k+l/2m. (9)

Thus (4), (8) and (9) yield that |yk — y | >2\ak — yk\. Therefore, for all n-degree algebraic
numbers with a sufficiently large weight, we have

1

\a{ - y I > \yk - y I - \a - yk\ > -\yk - y \

> ^^-H(y)-mH(yk)-n > ^

where we used the left-hand side of (6). In conclusion, ak is a Um-number with co*(ak) <
2m2n + m — 1. This finishes the proof.

We finish by pointing out that Alniagik et al. [2] showed the existence of Um-numbers
with sharper upper bounds for co* (f), where n 1,.. .,m — 1. However, in their method f
is constructed as the limit of a rapidly converging sequence of m-degree algebraic numbers
and therefore could not be made explicit.
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