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1 Introduction

A functional equation is an equation whose unknowns are functions. Cauchy's functional
equation [17] (p(x + y) cp(x) + (p(y), Schröder's equation [28, 39] (p o / sg>, and

Schilling's equation [7, 25] 4q(p(qx) (p{x + 1) + 2(p(x) + (p(x — 1) are examples of such

equations.

Functional equations arise in many branches of mathematics, for example, dynamical
Systems [1, 19, 24, 43], functional analysis [42], geometry [8, 9], Information theory [3],
wavelet theory [20, 21], and special functions [27]. They also occur in other disciplines
such as physics [22, 33], engineering [15, 16], economics [4, 23] and so on.

*Supported by the Fund of the Sichuan Provincial Education Department (13ZB0005), NSFC # 11101295 and
the Key Project of the Sichuan Provincial Department of Education (12ZA086).

Funktionalgleichungen bilden nicht nur ein reichhaltiges Forschungsthema, sondern
sie sind auch beliebte Probleme bei Mathematikwettbewerben. Oft entspringen
Funktionalgleichungen konkreten Anwendungen. Sucht man etwa für ein diskretes dyma-
nisches System v i-> f(x) ein erstes Integral </>, so entspricht dies gerade dem Auffinden

einer nicht konstanten Lösung der Funktionalgleichung (p o f (p. Die Autoren
untersuchen in ihrer Arbeit eine Klasse von Funktionalgleichungen, welche mit der

Babbage-Gleichung in Beziehung steht. Letztere fragt nach einer Funktion /, deren

n-te Iterierte fn die Identität ist. Insbesondere werden in der vorliegenden Arbeit
explizite Lösungen für die Gleichung cp ±(p o / + g angegeben, wobei / eine Lösung
der Babbage-Gleichung, und g eine gegebene Funktion ist.
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The systematic study of functional equations did not begm until 1966 [2], although many
great mathematicians have been studymg them before, mcludmg Euler (1768), Cauchy
(1821), Abel (1823), Darboux (1895), and Banach (1920) (cf. [27]). In the last five dec-

ades, the theory of functional equations has developed very rapidly and gradually became

an mdependent field of mathematics. Functional equations also became a common topic
m mathematics competitions, see the books [13, 30, 41], some problems and Solutions m
the Journals The American Mathematical Monthly and Mathematical Excalibur [18], and
the Website "KoMaF" [34].

Apart from competition problems, a considerable number of mterestmg problems (see,

e.g., [10, 14, 24]) mvolve the followmg smgle variable functional equation - Babbage's
equation

cpn ld, (1)

where (pn denotes the nth iterate of a self-map (p, and ld Stands for the identity. Ch. Babbage
[5, 6] studied lts Solutions m the reals. In 1916, J.F. Ritt [38] gave four types of real
Solutions. Fater, the results on Babbage's equation were generalized mto many different
directions, e.g., contmuous Solutions m [28, Theorem 15.2], meromorphic Solutions m [28,

pp. 291-292], also [40, Example 2], homeomorphic Solutions on the unit circle m [26], and

mvolutions on the plane m [31].

Motivated by the functional equation (p o / (p for an mtegrable map / (see [24]) and the

competition problem to determme the function (p R\ {0, 1} -> R such that

{p(x) + (p ^^ 1 + x,

this paper mvestigates the smgle variable functional equations

(p ±(po f + g, (2)

where /, g are given and / is globally periodic with the pnme penod n (i.e., fl ^ ld for
1 < i < n and fn ld).

The general form of these equations above is

F((p°fu ,<p o fn,id) 0, (3)

where F, f\, fn are given and (p is unknown. When F is linear and the functions

fl, fn form a group under composition on their domam, S. Presic [29, 36, 37] char-
actenzed all Solutions of (3). The unique Solution of a special case m (3) is determmed

by M. Bessenyei [10] under additional regulanty assumptions. Further mvestigations have
been carned out by M. Bessenyei and his collaborators [11, 12] for the unique differen-
tiable Solution of (3).

The equation (2) is another special case of (3). With the methods of linear algebra com-
bmed with a version of recurrent Iteration, we present exact Solutions of (2) and the for-
mulas of Solutions are different from those m [32]. We also present some examples and

applications.
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2 The main results

The equation (2) is a class of linear functional equations and the correspondmg homoge-
neous equation is

(p ±(po f (4)

Similar to [29, p 101, Theorem 3 1 5], we have the superposition prmciple for the linear
functional equation (2)

Lemma 1. Let S be a set and (G, +) a group, f S —> S and g S —> G be two given
mappings Then the general Solution cp S -> G of equation (2) is given by cp cp\ + cp2,

where (p\ S —> G is a particular Solution of (2), and (p2 S —> G is the general Solution

ofequation (4)

Proof Let (p S -> G be an arbitrary Solution of (2) and (p\ S -> G a particular Solution
of (2) Then

cp ±(po f + g,

(PI ±<pi o f + g

Thus (cp — ipi) ±(<p — <p\) o f It follows that (p — (pi is a Solution of (4)

On the other hand, let (p2 S -> G be an arbitrary Solution of (4) and (p\ S -> G a

particular Solution of (2) Then

(p2 ±(p2 o /,
(pi ±(pi o f + g

Thus {(p\ + (pf) =l=(^i + (pf) o / + g It follows that (p\ + (p2 is a Solution of (2)

In what follows, it suffices to find the general Solution of the homogeneous equation (4)
and one particular Solution of (2)

Lemma 2. Suppose f is globally periodic with the prime penod n on a set S and the
unknown (p maps the set S to a set G Then the general Solution of(p (pofis given by

<p(x) H (x, f{x), f2(x),

where H Sn —> G is anyfunction satisfying

H (x, f(x), H [/(x), f2(x), fn~l(x),x^

Proof Let (p S G be a Solution of (p (p o / Then define H Sn ^ G m this way
take an arbitrary xo G 5,

H(xo,f(xo), ,/"_1(^o)) =<p(xo), Vx0 S,

on other pomts (x\,X2, ,xn) e Sn, define H arbitranly We see that C/(xo)
{xo, f{xo), fn~l{xo)} is an orbit of xq It follows from [28, Theorem 1 6] that (p is
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constant on C/(xo). So

H (x0, /(jco), • • •, fn~l (jco)) <p{xo) <p(f(xo)) H (/(xo),..., /"_1 (xo), x0).

On the other hand, a simple calculation shows that (p := H satisfies (p (p o /.
Let n be an integer greater than or equal to 2. A uniquely n-divisible Abelian group (K, +)
is an Abelian group having the property that for each x e K there is a unique y e K such
that x ny. So we can denote y by

Lemma 3. Suppose f is globally periodic with the prime period n ona set S, and (G, +)
is a uniquely n-divisible Abelian group. Then the general Solution (p : S —> G ofcp (po f
is given by

n — 1

V(x) (/!(x)), (5)
/ =0

where h : S —> G is an arbitrary function.

Proofi For an arbitrary function h \ S G, the function

n—1

?>(*) := (/'(*))
i=0

evidently satisfies (p (po f. On the other hand, if (p is a Solution of the equation (p (p o /,
then (p (p o fl for every positive integer i. Since (G, +) is a uniquely n-divisible Abelian

group, we have for any x (E S

<p(x) w(f(x)) (p{fn~\x))
tp(x) 1 1 1

n n n

_ yJ V (fix))
n

i=0

Set h(x) := Then (5) holds.

Lemma 4. Suppose f is globally periodic with the prime period n on a set S, n is odd,
and (G, +) is a group andfor each y e G, 2y 0 ifand only ify 0. Then (p —cp o /
has a unique Solution from S to G given by (p{x) 0.

Proof. By successively substituting fJ(x) for v in <p(x) —(p o /(v) for each j
1, 2,..., n — 1, we obtain a set of n equations in the n unknowns (p{fJ (x)):

~

<p(x) + <p(f(x)) =0,
<P(f(x)) + <p(f2(x)) 0,

: (6)

<p(fn~2(x)) + (x)) 0,

_
V(fn~' (x)) + <p(x) 0.
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Since n is odd, we have

<p(x) -<p(f(x)) <p(f2(x)) <p(fn~x (x)) ~(p(x).

Thus#>(v) 0.

With similar arguments as in Lemmas 2, 3, proofs of the following two lemmas are easily
supplied.

Lemma 5. Suppose f is globally periodic with the prime period n on a set S, n is even,
and (G, +) is a group. Then the general Solution (p : S —> G of (p —(p o / is given by

<p(x) — H (x, f(x),. ,.,fn~x(xpj

where H : Sn —> G is anyfunction satisfying

H (x, f{x),fn~l(x)) + H (f(x), f2ix),.fn~'ix),x^ 0.

Lemma 6. Suppose f is globally periodic with the prime period n on a set S, n is even,
and (G, +) is a uniquely n-divisible Abelian group. Then the general Solution (p : S —> G

of (p —(p o / is given by

n — 1

<PV) ^i-l)'h (/'(•*)),
/ =0

where h \ S —> G is an arbitrary function.

Now we shall give exact Solutions of (2).

Theorem 1. Suppose f is globally periodic with the prime period n on a set S, and
(G, +) is a uniquely n-divisible Abelian group. Then there exists a Solution (p : S —> G of

n — 1

9 9 ° / + § if cmd only if ^ g o fl =0. Further, the general Solution (p : S —> G is
i=0

given by
n — 1 n—2 i .x

<P(x) ^h (f ^ ——-—-g(f (x)), (7)
/ =0 / =0

where h '. S —> G is an arbitrary function.

n — 1

Proof. By the recurrent iteration to^? <^o/ + g,we have ^ g ° fl 0. On the other
/ =o

n — 1

hand, assume that ^ g ° fl =0- Set
i=0

<p(x) := X ~—"—-8(f (x)) (8)
j=o

n
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which yields that

^ in — 1 — i) ^ {n — 1 — /) +1
(p -(p ° / X go/ -X s°/

i=0 i =0

^ (n — 1 — i) ^ (n - i)S—;—s°f -2L—^*°f
1=0 1=1

(n - 1)
n~l4-; i-^-g° ff * n

1
n

i l

So (8) is a particular Solution of cp o / + g. By Lemmas 1, 3, (7) is the general
Solution.

Theorem 2. Suppose f is globally periodic with the prime period n on a set S, n is odd,

(G, +) is a a uniquely 2-divisible Abelian group. Then (p ~(pof + g has a unique
Solution from S to G given by

>,« S(~')'82(/'W). W
1=0

Proof. By induction, we have

7-1

<p(fJ0)) (-0J<p(fJ0)) + J^(-0lg(fl0)), j 1,2,... (10)
i=0

Since n is odd, set j n, then (10) becomes

n—l

<»(x) +yy-i)'g(/'(.r)).
(=0

Thus (9) follows. One can check that (9) is a particular Solution of (p — o / + g. By
Lemmas 1, 4, (9) is a unique Solution.

Theorem 3. Suppose f is globally periodic with the prime period n on a set S, n is even,
(G, +) is a uniquely n-divisible Abelian group. Then there exists a Solution (p : S —> G

ii—l
of(p —cp o / + g if and only if ^ (—1 )lg(fl(x)) 0. Further, the general Solution

i=0
(p \ S ^ G is given by

Hx) Z (/'w) + S ~ 'wW). (11)
1=0 1=0

where h \ S —> G is an arbitrary function.
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Proofi Since n is even, set j n, then (10) becomes

n—1

<p(x) (p(x) + ^(-l)lg(f(x)),
1=0

n — 1

which implies that ^ (—1)lg(fl(x)) 0.
i=0

n — 1

On the other hand, assume that ^ (—l)z£(^zCO) 0 holds. Set
i=0

^ ^ (-!)'(" - 1 - Osif'O))
<P(X):=2_, • (12)

r. n
1=0

Then one can check that (12) is a particular Solution ofcp — (p o f + g.By Lemmas 1, 6,

(11) is the general Solution.

Remark that the conditions of Theorems 1 and 3 respectively, have a close connection with
the following two functional equations

n — 1

I>o/'=0, n > 2, (13)
/ =0

n — 1

^ (— 1)^ o /z 0, n > 2 is even, (14)
/ =o

where / is a given globally periodic map with the prime period n. The general Solutions
of these two equations are defined with the method of iterative construction in the paper
[32]. However, for some applications, it remains interesting to give exact Solutions, which
are not of the form of a piecewise function.

3 Applications and examples
In this section, we conclude with some examples. The interested reader can find exact
Solutions for more functional equations on the Website [35] with a nice Classification.

Example 4.1. Find the function (p : (0, +oo) —> R satisfying (p{x) + (p{\/x) 1.

Observe that 1/2 is a particular Solution. By Theorem 3, the exact Solution of this equation

is

cp{x) h(x) — h( l/x) + 1/2,

where h : (0, +oo) —> R is an arbitrary function. With the method of iterative construction
in [28, Chp.l] or [32], the general Solution with the form of piecewise function is given by

(po(x), ifve(0, 1)

(p(x) 1/2, ifx 1

l — Cpo (1/*) if X G (1, oo)

where - (0, 1) —^ M is an arbitrary function.
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Example 4.2. Consider the Knuth mappmg T R2 -> R2 m this form [14]

T(x,y) (-y + |*|, *),

which is globally periodic with the pnme penod 9

By Theorem 1, all first mtegrals of T are of the form F(x, y) Xj=o h(TJ (x, y)), where
h Rw ^ R is an arbitrary non-constant function In particular, choosmg h (x, y) y, we
get a first integral

F(x, y) y + \y- |*|| + |* - |y - |*||| + |y - |* - |y||| + I* - |y| + |y - |* - |y||||

Example 4.3. Find the function <p R\{—1, 2} —> R satisfymg <p(x) — tp(f(x)) g(x),
where f(x) is globally periodic with the pnme penod 3

One can examine

/ — 7 / x ~b 7 /x > > > X
x + 1 x —2

By Theorem 1, there exists a Solution of this equation lf and only lf

«W + S(tTT) + s(-J^) 0

Further, the exact Solution is given by

2g(x) + g (inr) /2x — 7\ / x + 7\

where h R\{ — l,2}^Risan arbitrary function
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