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Fibonacci goes magic

Ehrhard Behrends

Ehrhard Behrends ist Professor fiir Mathematik an der Freien Universitit Berlin. Sei-
ne Spezialgebiete sind Funktionalanalysis und Wahrscheinlichkeitstheorie. Seit Jah-
ren ist er auch in der Popularisierung der Mathematik aktiv. Er hat die Internetseite
www.mathematik.de aufgebaut, zur Zeit entwickelt er im Auftrag der EMS die po-
pulare Internetseite www.mathematics-in-europe.eu.

1 The phenomenon

Let p be a prime number. We write Z, for the set {0, 1, ..., p—1} of residues modulo p,
and we consider the usual addition and multiplication modulo p on Z,,. It will be important
in the sequel that Z,. provided with these operations, is a field, i.e., one calculates as in
the usual number system. (E.g., for x # 0, the number 1/x is defined as that element
y € Z, for which x - y = 1. In the case p = 7, for example, one has 1/5 = 3. And
—x means that y such that x +y = 0. E.g., =1 = p — 1 forx € Z,.} Now let numbers
a,b € Z, be given. They generate a sequence xg, x1,... in Z, by xo = a, x1 := b,
Xn 1= Xp—1 + xp—2mod p for p > 2. Note that this is the usuval Fibonacci sequence
modulo p in the case (a, b) = (0, 1).

Die Fibonacci-Folge hat auch unter Nichtmathematikern einen hohen Bekanntheits-
grad. Viele wissen, dass sie durch die Vorschrift ug = 0, u; = 1, #,, = 1,1 +u,_o fiir
n > 2 definiert ist und dass sie etwas mit dem goldenen Schnitt zu tun hat. Uber diese
Folge werden immer wieder neue Forschungsergebnisse gefunden, und das Fibonacci
Quarterly widmet sich speziell diesem Thema. Im vorliegenden Artikel geht es um ein
iberraschendes Phanomen, das dann auftritt, wenn man verallgemeinerte Fibonacci-
Folgen modulo einer Primzahl p betrachtet. Als Beispiel betrachten wir die Primzahl
p = 7. Firbeliebige a, b € {0, 1, ..., 6} (die nicht beide Null sein sollen) definieren
wir xo = a,x; = b sowie x, = x,_1 + x,—2 mod 7. Dann ist die “gewohnliche”
Summe (also nicht die Summe modulo p) dber die ersten 16 Folgenglieder immer
gleich 49, unabhiingig von a, b. Diese Tatsache ist auch schon fiir einen Vorhersage-
Zaubertrick verwendet worden. Der Autor erklart, wie das Ergebnis mit Konzepten der
elementaren Zahlentheorie, insbesondere mit quadratischen Resten, zusammenhingt.
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Sometimes it happens that, for a particular y € N (depending on p) the sum of the first y
elements of (x,)n—0.1,_. is the same for all choices of a, b with (a, &) # (0, 0) (here we
mean the “ordinary” sum, nof the sum modulo p).

As a special case we note that one can work with y = 16if p = 7, there the sum is always
49. This was used as a magical trick, one finds it, e.g., in Chapter 10 (page 153 ff.) of the
book “Magical Mathematics” written by Diaconis and Graham! (see [1]). The reader is
invited to check this fact with some initial values a, b.

In the present paper we will see that a similar phenomenon occurs when 7 is replaced
by certain other primes p. For example, when working with p = 43 one can choose
y = 88: one can predict that the sum xg + - -+ + xg7 equals 1849 for arbitrary («, b) €
Zaz x Za3\ (0,0).

Admittedly, this might be not extremely interesting for magicians since lengthy calcula-
tions are not particularly attractive. It seems, however, to be worthwile to study the in-
terplay between ordinary summation and summation modulo p and to see the connection
of this kind of problem with (mainly known) facts from elementary number theory, in
particular the theory of quadratic residues.

Our main results can be found in Section 3, they are prepared in Section 2. And finally,
Section 4 contains a short summary.

2 Basic definitions

Some parts of the material presented here are folklore. For generalisations see, e.g., [3] or
Chapter 2(IV) in [2].

The Fibonacei sequence

By (#a)n>0 we denote the usual Fibonacci sequence: ug = 0, #; := | and u, =
Uy—1 + uy—y for n > 2; sometimes it will be convenient to put #_; := 1. The follow-
ing representations are well known:

Proposition 2.1. Denote by P and Q the matrices

{01 PR g |
(1) e=r=(T0)

iy P" = ( il g ), ot = (—1)”( Herl T ) Jorn = 0.

Un Unt1 —Up  Up—1
(ii) Let r, s be the roots 0fx2 —x—1:

1443 =1—\/§

r= , 8
2

2

Then un, = (" — s"}/V/5.
(iii) u, = ((’1’) + 5(;) + 52(2) + .. -)/2”_1; note that this is a finite sum for every n

since C;) =0 forn <m.

The authors prescribe a slightly modified summation modulo 7: subtract 7 from the sum if it exceeds 7. As a
consequence the x,, with x, = 0 and # > 1 will have to be replaced by 7, and the predicted sum will be 63.
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Froof. (1) and (i1) can easily be proved by induction using the definition of the «, and the
factthat r> =7 + 1aswell as s> = 5 + L.

(ii1) From (ii) we conclude that

r—s" (145 = (1 =5
N 23 '

We continue by using the binomial formula for (x + y)*, and we observe that only the

terms containing binomial coefficients (’;) with odd j survive. It only remains to simplify

the resulting terms. ]

Uy =

Matrix calculations modulo p

We now fix an odd prime p, and we consider the powers of P and  modulo p.
! If not otherwise stated we will calculate from now on modulo p !

The following proposition will be crucial for our investigations:
Proposition 2.2. Suppose that ¢ € Z, and that for some n the matrix P" is ¢ times the
identity matrix Id.

(1) Ifc =1orc=—1(= p — 1)thenn is an even number. We write n = 2l.

(ii) Supposethat ¢ = 1.If [ is eventhen P' is the matrix Id or the matrix —1d. If  is odd,

. I —2r
then P is of the form ( e .

(iil) Suppose that ¢ = —1. If 1 is odd then P! is of the form r - 1d, where r* = —1, and if

—2
1 is even one has P! = ( —,.27“ _rr )for anr € 7, such that 5p? = —1.

(iv) Ifn =2l is even, thenc = 1l orc = —1.

), wherer € Z, is such that 5¢% =1 mod p.

Proof. (i) Suppose that n were of the form 2/ 4 1. From P¥*1 = ¢ . Id it would follow
that P! = ¢ - Q' so that, by Proposition 2.1 (ii),

( u-1 o w ) _ C(_I)HI( S )

Hp iyl —H[L] uj
It would follow that u; = c(—1)"2uy 1 and wy 1 =c(—1) 1y so that u; = (= 1) ey
= —u;, and this would imply that #; = u;; = 0. (Here it is essential that p > 2 so that

2 # 0 in Z,.) But this cannot happen since otherwise one would have u#; = Ofork > [ in
contrast to the fact that P* = ¢ - Id.

(i) We conclude from PY¥ = Id that P! = Q' so that u#; = (—l)l“ug and uj+] =
(=1)'u;_1. If I is even this implies that ; = O so that P* is diagonal. Since the square of
this diagonal matrix is Id it is either Id or — Id.
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(i1 —uj—1) =

; ; y r —2r
—2u;_1. Thus, with r := u;_1, the matrix P’ has in fact the form > . ) That

Now suppose that [ is odd. We then know that u;, 1 = —u;_| sothat u;

5r2 = 1 holds follows from P? = Id.
(iii) These assertions can be proved similarly.

(iv) The assumption implies that P! =c Q' so that iy =c(— 1) uy and w1 =¢(— 1Y uri1
hold. If u; # 0 it follows that ¢ = (—l)l“, and in the case u; = 0 we know that u;+; =
u;_1 with u;_1 # 0. Therefore we can conclude from u; 1 = ¢(—1Yuy, ;1 that ¢ = (—1).

O

The period

Let y = y(p) be the smallest integer m such that P™ is the identity matrix modulo
p. This number is just the order of P considered as an element in the finite group of
invertible matrices with entries in Z,. From Proposition 2.1(i) it follows that («, mod p)
is y -periodic and that y is the smallest positive number s such that «,,,, = u, mod p
for all n. By Proposition 2.2(1} y is an even number.

Quadratic residues

Quadratic residues modulo p are studied since centuries. A number b is called a quadratic
residue modulo p if there exists a such that 2> = b mod p. For example, 9 is a quadratic
residue modulo 11 since 82 = 9 mod 11. On the other hand, 5 is not a quadratic residue
modulo 7 since the only squaresin Z7 are 1 = 12 = 62, 4=22=5and2 =32 =421
b is a quadratic residue modulo p one writes (5| p) = 1, and if this is not the case this is
expressed by writing (5| p) = —1. (In many books one uses (%) instead of (b | p), but for
typographical reasons we prefer our notation. )

We will take the following facts as building blocks for our further investigations. All of
them are proved in a course on elementary number theory or follow easily from results
shown there.

o (a|p) =a? V2 mod p.

¢ The prime numbers p such that (5| p) = —1 are precisely the primes p with p =
3 mod 10 or p = 7 mod 10.

e A prime p satisfies (—1|p) = —1iff p = 3mod 4, and (—1]| p) = 1 holds iff
p =1 mod 4.

e 5|p)=—land (-1|p)=—1(G.e.p =3,7mod 10 and p = 3 mod 4) are true
at the same time iff p = 3 mod 20 or p = 7 mod 20. Similar characterizations are
possible for all cases (5|m) =1 and (-1 | p) = £1.

e If p is a prime, then forevery ¢ € {1, ..., p — 1} one has aP~! = 1 (the “little”
Fermat theorem).
The period in the cases (5| p) = £1
Proposition 2.3.
(i) Suppose that (5| p) = —1. Then PP = — Id mod p so that y divides 2(p + 1).
Gi) If (5| p) =1 onehas PP =1dsothaty | p — 1.
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Froof. (1) If we multiply the representation 2.1(iv) with 271 we arrive at

n—1 n n 2"

and this equation contains only integers. We will consider it modulo p for the particular
valuesn = pandn = p + 1.

Suppose that n = p. The left-hand side reduces to %, mod p. Here we have used the fact
that 2 # 0 mod p so that by Fermats little theorem 2P 1 = 1. Also it is important that
x — x mod p is multiplicative. As far as the right-hand side is concerned we observe that
all (i) with & < p contain a factor p : since p is a prime it will not be cancelled when
simplifying (Z) =pp—1)---(p — k+ 1)/k!. Thus all summands with the exception
of the last one are zero modulo p. This last one is 571/ 2(P ) The first factor modulo p
is —1 (since we assumed that (5| p) = —1) and the secondpis one. So we conclude that
u, = —1mod p.

Let us now consider» = p + 1. Evaluated modulo p the left-hand side equals 21,1 mod
p. The right-hand side has the same number of summands as before. Now the first sum-
mandis p+1 = 1 mod p whereasthe last oneis (—1)(p+1) = —1 mod p. The remaining
summands vanish modulo p since each of them contains a factor p that is not cancelled
when calculating (p}CH) fork < p — 1. We thus have proved that 2,11 = 0, and conse-
quently 1,11 vanishes.

It follows from Proposition 2.1(i) that prtl — _14.

(ii) As in the preceding part of the proof we can show that u, = u,.1 = 1: this time we use
the fact that 5%=1/2 = 1_ It follows that up 1 =0andu, 5 = 1sothat prl=1d O

Note. If (5| p) = —1 (resp. (5| p) = 1) itis often truethat y = 2(p+1) (resp. y = p—1).
If this is the case we will say that p has maximal period.

However, there are also examples where y is smaller. The first p with (5| p) = 1 (resp.
(5| p)y=—1)is p =47 where y = 32 (resp. p = 29 where y = 14).

There are also cases where y is much smaller than possible. E.g., for p = 967, the propo-
sition predicts that y divides 2(p + 1) = 1936, and one has y = 176.

Primes where P¥/2 = —1d

It will be clear rather soon that primes p where P7/?> = —Id play an important role. We
will call them good primes.
Proposition 2.4.
(1) pis a good prime iff y mod 4 = 0.
(i1} Primes such that (5| p) = —1 are good primes.
(iii) There are no good primes with (5| p) = Land (-1 | p) = —1.

(iv) Let p be such that (5| p) = (—=1| p) = L. If the period of p is maximal then p is a
good prime.
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Froof. (1) This follows immediately from Proposition 2.2(1) and (ii).
(i) y is even, we write y = 2{. By Proposition 2.2(ii) P is one of the matrices Id, —Id

or ( —r2r __2: ) with 572 = 1 mod p. By the definition of y it is not possible that

P! =1d,and (5| p} = —1 implies that there are no r € Z, with 5r = 1. Thus P! = —Id.

(iii) Suppose that, with ! := y /2, we would have P’ = — Id. By Proposition 2.2(i) { would
be even. Let R be the matrix P'/2.

By Proposition 2.2(iii) there are two possibilities. R could be a diagonal matrix ( 8 (r) )

—2r  —r
5r? = —1. But by our assumption we can write 5 = d” so that (dr)?> = —1 in contradiction
to(=1]p)=—1.
{(iv) The p such that (5| p) = (—=1| p) = 1 are precisely the primes with p mod 20 €
{1,9}. Thus p — 1 mod 4 = 0 when the period is maximal. (There are, however, good p
with (5| p) = (=1 p) = 1 where the period is not maximal. 89 is the smallest p with this
property, the period is 44.) ]

with 7> = —1. This is not possible since (—1|p) = —1. Or R = ( Foo ) with

The zeros in (1, mod p},=q1,...

As a last preparation of our main results we investigate how often the #,, mod p vanish in
a period. Let v be the cardinality of the set {k | 0 < &k < y — 1, ur = 0}. (Recall that all
calculations are modulo p.)

Proposition 2.5.
(i) vell, 2,4}
G If O | p) = —1, then v € {2,4}. More precisely: if (—1 | p) = —1 holds, thenv = 2,
and in the case (—1 | p) = 1l one hasv = 4.

Proof. (i) u; = 0 means that P is diagonal. Let & be the smallest positive number such
that P¥ is diagonal. By Proposition 2.2(iv) P2 is either Id or — Id. This proves the claim:
if P¥ =Idthenk = y andv = 1;if k& < y and P?* = Idthenv = 2;and if k¥ < y and
P% = _Idthenv = 4.

(ii) Since p is good we already know that #,,2» = 0 so that v € {2,4}. Suppose that
(=1]p) = —1. If v = 4 would hold we would know that R := P?/* = ( 6 0 ) is

-
diagonal with > = —Id. This is not possible since this would imply that r> = —1, a
contradiction. This proves that v = 2 in this case.

It remains to consider the case (—1|p) = 1. Again, with R = P¥/*, we know that
R? = —Id. By Proposition 2.2(iii) R is of the form - Id (which would imply v = 4)

or of the form ( —r2r __2: ) with Sr2 = —1. The second variant is not possible since
we can write —1 as d* so that 5#2 = —1 would yield 5 = (d/r)?, a contradiction to

Glp)=-L i
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3 The main results

Let us return to the problem of the first section: we choose (a, b) # (0, 0), we define
xo:=a,x1 :=bandx, := x,_1 + x,_2 mod p, and we are interested in xp + - - - +x, _1,
where here we mean the “ordinary” sum, not the sum modulo p.

Proposition 3.1. Suppose that p is a good prime. Then, regardless of a, b, the following

is true:
e Ifno zero occurs in Xo, ..., xy -1, thenxo +-- -+ xy -1 equals y - p/2.
e Ifthere are zeros in xg, . .., Xy _1, then
xo 4+ xy=ply/2-v/2).
Proof. We know that P?/2 = —1Id and it is easy to see that (x,, x,11)" = P"(a, b)".

{(For a row vector (¢, d) we denote by (c, al)l the associated column vector.) This implies
that x, 24+ = —x; foreveryr.

Thus, if we write xo + -+ - + x _1 as (xo + xy /2) + (x1 + x5 241) + - -+ We generate y /2
summands of type r + (—r). Each of these summands equals p if r £ 0 and O in the case
r =0:notethat —r = p —rinZ, if r # 0.

This proves the first part of the proposition. It remains to check the number of zeros in
Wy =« exge iy~

Suppose that there is a zero, at position &, say. For the calculation of the (ordinary) sum
of the xq, ..., x, 1 we may start at xz: X, Xg41,...,%y 1, X0, - .., X;—1 (note that the
sequence is y -periodic). But this is precisely the sequence “ug, ..., u, 1 mod p, multi-
plied with xz41”. In particular there are precisely v zeros in the shifted sequence and this
is therefore also true for the original sequence. They will occur pairwise at certain posi-
tions & and k& + y /2. There are v/2 such pairs and each one contributes with the value
0 to the sum. y /2 — v/2 pairs of type r, p — r with  # 0 remain, and this proves the
proposition. O

Sometimes it is not necessary to consider both cases in the preceding proposition. Let p be
a good prime. We will call it very good if for each choice of (a, b) # (0, 0) the associated
sequernce contains v zeros.

Proposition 3.2.

(i) Let p be a prime with maximal period suchthat (5| p) = (—1| p)= —1. Then p is
avery good prime.

(ii) There are no other very good primes.

Proof. (i) It will be convenient to associate with P a discrete dynamical system. We define
amap @, on A, :=7Z, x Z, by

(a,b)" = P(a,b)t = (b,a+ b)".

By the orbit of an (a, b} we mean the sequence (0% (a, b)Y )n=o0,1..... and the period of
(a, byt is the smallest positive m with o7 (a, b)*+ = (a, b)*.
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The period of (0, 13 is y, and the orbit of this point visits precisely v = 2 elements in
{0} x Zp in a full period (cf. Proposition 2.5). Let us consider any orbit starting at some
(a, b)* that passes through an element of {0} x Z,. It will be the shift of a multiple of
the orbit through (0, 1) and therefore its length is also y and it will also touch two points
in {0} x {1,..., p — 1} on its way. Thus there are (p — 1)/2 possible orbits that do not
omit this set. Different orbits are disjoint, and we may conclude: the union of the orbits
that touch {0} x {1, ..., p — 1} visit (p — 1}/2 (= the number of orbits) times 2(p + 1} (=
the length of each orbit) pointsin A’ := A\ {(0, 0)}. This number equals p> — 1, and this
is just the cardinality of A’. It follows that there are no orbits that omit {0} x Z, and this
proves (i).

The preceding argument shows that p will be very good iff y times (p— 1) /v equals p”— 1.
By propositions 2.3 and 2.5 this happens only when the conditions of (i) are met. O

4 Résumé: Which primes can be used for a magic trick?

How our results can be translated to give rise to a magic trick will be described now; p
will always denote an odd prime.

Very good primes

These are the primes with (5| p) = (—1]|p) = —1 (or, equivalently, the p that satisfy
p mod 20 € {3, 7}) with maximal period 2(p + 1). The first examples are

3,7,23,43, 67,83, 103, 127, 163, 167,223,227, 283, . ..

They can be directly used for a magical prediction trick: the (ordinary) sum over the first
2(p + 1) elements of the sequence (x,) is p(y /2 — v/2) = p?, regardless how (a, &) #
(0, 0) have been chosen.

Good primes
Good primes can be found in the following three families:

e The primes with (5| p) = (=1 p) = —1 (or, equivalently, the p that satisfy p mod
20 € {3, 7}) where the period is smaller than 2(p + 1). For these p we have v = 2.
Here are the first examples (with the period in brackets):

47(32), 107(72), 263(176), 307(88), 347(232), 563(376), .. .

e The primes with (5| p) = —1 and (—1| p) = 1 {or, equivalently, the p that satisfy
p mod 20 € {13, 17}). Here we have v = 4. The first examples are the following (in
brackets one finds the period):

13(28), 17(36), 37(76), 53(108), 73(148), 97(196), 113(76), . . .

e The primes with (5| p) = 1 and (—1]| p) = —1 (or, equivalently, the p that satisfy
p mod 20 € {1, 9}) such that y mod 4 = 0. There are cases where v = 2 and others
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where v = 4. We do not know a general result. Here are examples together with the
associated y and v in brackets.

41(40; 2), 61(60; 4, 89(44; 4), 109(108; 4), 149(148; 4), .. .

The transformation to a magical prediction trick is in these cases slightly more compli-
cated: there have to be prepared two envelopes with the “prediction”, one containing the
number p(y /2 —v/2), the other the number py /2.

One starts by inviting someone in the audience to choose a, b € 7, with (a, &) # (0, 0)
and to calculate the first y elements of the associated sequence (x,). It is crucial to check
during these calculations whether one of these numbers is zero. Depending on whether the
answer is “yes” resp. “no” the prediction of the (ordinary) sum xg + - - - 4 x, 1 will be
p(y /2—v/2) resp. py /2. (It will be really necessary to prepare both envelopes since both
“yes” and “no” can occur)

It is natural to ask what one can predict in the case of p that are not good, i.e., for
the p that satisfy either p mod 20 € {11, 19} or p mod 20 € {1, 9} where in addition
y mod 4 = 2. In all these cases there seem to be more than two — even many — can-
didates for xg + -+ 4+ x;, _1. E.g, for p = 29 the period is 14, and the possible sums are
116, 145, 174,203,232, 261. At present there seems to be no possibility to provide precise
predictions.
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