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Is Every Polynomial with Integer Coefficients
Near an Irreducible Polynomial?

Michael Filaseta™

Michael Filaseta obtained his Ph.D. from the University of Illinois in 1984. He is
currently a professor at the University of South Carolina, South Carolina, USA. He
has broad interests in classical topics in Number Theory and often works on problems
having direct or indirect connections to polynomials.

1 Posing the problem

A common exercise addressed in number theory courses is to show that there can be ar-
bitrarily large differences between two consecutive primes. The typical argument is to
observe that for every positive integer n > 2, the sequence

nl+2,0l4+3,...,nl4+n

is a sequence of n — 1 consecutive composite numbers. Thus, the largest prime < n! + 2
and the smallest prime > n!4 # are consecutive primes differing by at least n. Since 7 can
be arbitrarily large, so can this gap between consecutive primes.

Imagine for the moment that you were pondering the problem of showing that there are
arbitrarily large gaps between the primes but, for some reason, didn’t think of using the
argument involving factorials above. How else might you show that the gaps between

*Supported by the National Security Agency.

Zwischen aufeinanderfolgen Primzahlen konnen bekanntlich Liicken beliebiger Lan-
ge auftreten. Die Situation wird deutlich komplizierter, wenn man statt Primzahlen
irreduzible Polynome mit ganzzahligen Koeffizienten betrachtet. PAl Turdn hat eine
entsprechende Fragestellung in diesem Kontext formuliert, und der Autor der vorlie-
genden Arbeit diskutiert den momentanen Kenntnisstand zu Turdns Problem. Dabei
stellt er Verbindungen zu Uberdeckungen der ganzen Zahlen her und betrachtet die
analoge Frage zu Turans Problem iiber endlichen Korpern.
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primes can be arbitrarily large? T ask this question because it will be relevant to another
question we will be looking at shortly. My guess is that most of us would turn to the
Chinese Remainder Theorem. For example, setting » to be a positive integer and letting
p; denote the jth prime, then any solution m of the system of congruences

x=—j (modp?), forl<j<n-—1,

has the property that m + 1, m + 2, ..., m + n — 1 are all composite. Thus, as before, the
prime just prior to these # — 1 numbers and the prime just after these # — 1 numbers are
consecutive primes that differ by at least n. Another approach to showing that there are
natural numbers that are not close to primes is to use that the asymptotic density of primes
in the set of natural numbers is 0. This latter approach has interesting connections to the
classical sieve of Eratosthenes and the Prime Number Theorem, but we don’t elaborate on
these here as they lead us too far from the main focus of the paper.

By considering natural numbers in the middle of large gaps between primes we see that
there are natural numbers that are arbitrarily far from primes. In other words, given any
real number C, there are natural numbers » such that any prime p satisfies |n — p| > C.

Now, we replace the natural numbers with polynomials having integer coefficients. We
view the analog of primes here as the irreducible polynomials over @@, that is those non-
constant polynomials in Z[x] which cannot be written as a product of two non-constant
polynomials in Z[x]. Then is it true that there are polynomials that are arbitrarily far from
irreducible polynomials? To make this more precise, we flip the question around and state
the following.

Turan’s Problem: Is there an absolute constant C such that if f(x) € Z[x] of
degree n > 1, then there is a w(x) = Z?:O b;xJ € Z[x] with Z’;’:O |b;| = C
such that f(x) 4 w(x) is irreducible?

Observe that f{x)} = x> has the property that f(x) & x“ is not irreducible for every
nonnegativeinteger a. Indeed, if « = 0, then f(x)4x®iseither v*+1 = (x+1)(x2—x+1)
orx® — 1 = (x — 1)(x2 + x 4+ 1), which are both reducible. Also, f(x) — x? isidentically
zero and considered neither irreducible nor reducible. Otherwise, if ¢ > 0, then x is a
factor of f(x)= x%, and f(x) % x® will be reducible. Since f(x) = x? itself is reducible,
we see that if there is a C as in Turan’s problem, then necessarily C > 1.

2 An approach to showing C > 2

Next, we consider establishing that C > 2. In other words, we want an example of an
f(x) € Z[x] of some degree n > 1 such that each of f(x), f(x} £ x% and f(x) £ x* %+
x? is reducible for all integers ¢ and b with 0 < @ < n and 0 < b < n. This seems
simple enough. We just have to produce one example of such an f(x) to see that C > 2.
Surprisingly, however, there seems to be no simple example of such an f(x).

Recall that we were able to show that there is no such C in the analogous problem involv-
ing integers that are far away from primes. A natural approach then for trying to show there
is no such C for the polynomial problem is to consider what we did for the problem with
integers and primes and generalize one of those ideas to handle the polynomial problem of
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Turdan. We might be able to figure out some generalization of factorials for polynomials,
but a little effort in this direction should convince you that looking at our above application
of the Chinese Remainder Theorem is more reasonable, especially since the Chinese Re-
mainder Theorem can be applied to polynomials. As to an analog to using that the primes
have density 0 among the natural numbers, we note that B.L.. van der Waerden [13] showed
that polynomials behave in a vastly different way — the density, at least in some sense of
this word, of irreducible polynomials in the set Z[x] is 1.

So, let us see if we can use the Chinese Remainder Theorem to find an example which
establishes that C > 2 in Turdn’s problem. We want a system of congruences for f(x)
such that if f(x) satisfies all of the congruences in this system then f(x), f(x) £ x“ and
f(x) £ x% & x? are reducible for all integers @ and b with O < a, b < n as above. To help
with our arguments, we consider f (x) with at least 4 terms. We start with the congruence

f(x)=0 (mod x).

It is simple enough, and it takes care of a lot. We deduce f(x) is reducible and f(x) £ x*
is reducible for all @ > 1. Similarly, f(x) £ x% £ x? is reducible for @ and » both > 1.
Here, in fact, is where we use that f(x) has at least 4 terms; otherwise, the example
f(x) = x? + x? + x would satisfy the congruence condition on f(x) above and would be
such that f(x)— x> — x? is irreducible. With f(x) as above, we are left with finding other
conditions on f(x) that cause f(x) £ 1 and f(x) =+ x“ % 1 to be reducible for all integers
a € [0,n].

Next, we observe that if we want a congruence f(x) = u(x) (mod m(x)) to imply there
are several polynomials of the form f(x) £ x* & 1 divisible by m (x), then there are not a
lot of choices for what m (x) can be. We note first that we may suppose m(x) is irreducible,
since an irreducible factor of m(x) will divide any polynomial that is divisible by m (x).
Now, for example, if f(x)+x? + 1 is divisible by m(x) for two different positive integers
a, then the difference of two such polynomials, say f(x}+ x* + 1 and f(x) +x%2 + 1
with @1 > a2, is divisible by m (x). Thus, m(x) divides x* — x*. Since f(x) +x* + lis
divisible by m(x) and not x fora = a1 and @ = a3, we deduce m(x) divides x* =" — 1. In
other words, m(x) is cyclotomic; that is, m(x} is an irreducible divisor of x* — 1 for some
positive integer n. A similar argument shows that if m(x) is an irreducible factor of two
polynomials of any one of the forms f(x) +x%—1, f(x)—x?+1and f(x)—x?—1,then
m(x) is either x or is eyclotomic. The importance of considering cyclotomic polynomials
is driven home by the following easily established proposition, the proof of which we leave
to the reader.

Proposition 1. If g(x) € Z[x] and m(x) is a divisor of x™ — 1 for some positive integer
n with m(x) dividing g(x) + x® for some integer a > 0, then m(x) divides g(x) + x® for
every nonnegative integer b = a (mod n).

The same result holds with g(x) 4+ x® and g (x) + x” replaced by g (x) — x® and g(x) — x°.
Taking g(x)tobe oneof f(x)£1, we seethat we can show a congruence class of exponents
a are such that, say, f(x) + x® + 1 are reducible by restricting f(x) to be in a congruence
class modulo a cyclotomic polynomial. For example, if f(x) = 0 (mod x — 1), then
Jx)+x%—1is divisible by the first cyclotomic polynomial @ (x) = x — 1 for all integers
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a (forall a = 0 (mod 1)); in fact, the condition f(x) = 0 (mod x — 1) implies also that
fx) —x% + 1is divisible by x — 1 for all . This is a good point to remember. We have
just seen that the two congruences f(x) = 0 (mod x) and f(x) = 0 (mod x — 1), still
considering f(x) with at least 4 terms, are enough to guarantee that f(x) and f(x)%+x? are
reducible for a > 0, that the polynomials £ (x)4x%+x? and f(x) —x* — x? are reducible
for all positive a and b, and that f(x) + x* — L and f(x) — x? + 1 are reducible for all
a = 0. We are left with finding conditions on f(x) that ensure the polynomials f(x) £+ 1,
Sf)+x%+1and f(x)—x“ — 1 are reducible for all nonnegative integers . We will see
momentarily that such conditions on f(x) are already available in the existing literature.
For now, we can nevertheless try to set up congruences that f(x) might satisfy modulo
cyclotomic polynomials to find an f(x) which shows that C > 2 in Turdn’s conjecture.
With a bit of careful thought, one might be led to something like the following system of
congruences.

f(x) =0 (mod x) fx)=-2 (mod x% 4+ x + 1)
f(x)=0 (mod x — 1) fxy=2 (mod x? — x + 1)
f(x)=0 (mod x + 1) fx)=—x"—1 (modx* — x? + 1)

f(x)EO(modx2+l) f(x)5x16+1 (mod x5 — x* + 1)
f(x) =0 (mod x* +1) fx)=—x*2—1 (mod x'® — x* +1)
f(x) =0 (mod x® + 1) F)y=x2 41 (modx3? — x4 1)
F)=0(mod x¥+1)  fx)=-1 (mod x*2 4 1)
fx)=1 (mod x* — x*2 + 1)

The moduli, besides x, are all cyclotomic polynomials. By Proposition 1, one can check
that any f(x) satisfying all of the above congruences will have the property that f(x),
Fx)Ex%and f(x)+x*4xb are reducible for all nonnegative integers a and b. Since there
is no restriction here on @ and b being < n, these congruences are more than sufficient for
ensuring that C > 2 in Turdn’s conjecture ... or are they? We still need to check that we
can apply the Chinese Remainder Theorem with the above congruences. In fact, the moduli
are relatively prime so that the Chinese Remainder Theorem guarantees the existence of
an f(x) satisfying the above system of congruences.

The solutions in f(x) to the above congruences are not easily written down, and there is
no reason for the purposes of this paper to display such an f(x). There is a unique solution
if we restrict the degree of f(x) to be less than the degree of the product of the moduli,
and this solution is (in part)

7192 191 190 x4 x3 2 x

=ttt T T w T E
Yikes! This isn’t what we wanted at all. Turdn’s conjecture is about polynomials f(x) with
integer coefficients, so this example that we constructed has not provided us with a proof
that C > 2 after all. L.esson learned. Don’t forget that the Chinese Remainder Theorem

for polynomials provides a solution in F[x] where F is the field of coefficients for the
polynomial. We have to work harder if we want an example in Z[x] proving C > 2.
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3 A connection to covering systems

It is a little late to cut to the chase, but the author is ready to confess that he knows of no
example which shows that C > 2. Furthermore, there is a result of Andrzej Schinzel [11]
from 1967 that suggests that such an example might be hard to come by. To describe this
result, we give a little background.

A covering svstem of the infegers is a finite collection of congruences
x =ay (mod my), x = a; (mod my), ..., x =a, (mod m,),

with the property that every integer satisfies at least one congruence in the system. Two
examples of a covering system, one somewhat trivial and the other with more substance,
are given in the columns below.

x =0 (mod 2) x=0 (mod2)

x =1 (mod 2) x=0 (mod 3)
x =1 (mod4)
x=1 (mod 6)
x =11 (mod 12)

There are a variety of interesting results and open problems concerning covering systems.
A classical use of complex variables to say something about the non-complex world arises
in a short argument that if every integer satisfies exactly one congruence in a covering
system with » > 1 congruences, then the largest modulus in the covering system must
appear at least twice as a modulus for the system. To see this, order the moduli in the

system so that my < my < ... < m,. The condition 7 > 1 implies each m; > 1. Observe
that we can restrict to a; € {0,1,...,m; — 1} in our system and that the exponents
appearing on the right of

z%

:Zaj +Zaj+mj+zaj+2mj+“‘

1—z7"

are then simply the nonnegative integers satisfying the congruence x = a; (mod m;).
Hence, if every integer satisfies exactly one of the congruences in our system, we have

1 . %
I—Z_Zl—z’”f"
j=1

This equation holds for all z € C with |z] < 1. Now, we see that if m, # m,_;,then as z
approaches the complex number = e*™i/mx from inside the unit disc D={z € C: |z| <1},
the right side has a single term which has absolute value tending to infinity whereas the
left side approaches 1/(1 —¢). Thus, for z € D close enough to ¢, the absolute value of the
right side exceeds the absolute value of the left side, showing the above equation cannot
hold.
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It is possible to avoid the use of a complex variable here. For example, one can argue first
that if m; # m,_j. then necessarily m, > 6. Then one can take z = 2 in the equation
above and use that 2™ — 1 is divisible by a prime p that does not divide 2™/ — 1 for any
j < r.Then the right side has p dividing the denominator when simplified but the left side
is simply —1. Nevertheless, the above elegant and simple use of a complex variable has
made a permanent mark in this subject.

Among the various open problems in the subject is the problem of determining whether
the minimum modulus m1 in a covering system with distinct modulim; < mp < --+ <m,
can be arbitrarily large. Pal Erdds [4] wrote, “This is perhaps my favourite problem,” and
offered as much as $1000 for a solution to this problem (cf. [7], §F13). The current record
on the largest size of m was given by Pace P. Nielsen [ 10] who obtained a covering system
with distinct moduli > 40. In addition, his covering consisted of over 10°° congruences
with each modulus only divisible by primes < 103. Recall earlier that we were interested
in showing that there are conditions that we could impose on f(x)} in additionto f(x) =0
(mod x) and f(x) =0 (mod x — 1) that would imply C > 2. Although, this idea did not
pan out the way we intended, leading us instead to an f(x) with rational but not integral
coefficients, it is worth noting that we could have used this result of Nielsen to readily
establish conditions on f(x),but again with the same drawback of producing a polynomial
in @[x] that is not in Z[x]. Recall that we wanted to ensure that the polynomials f(x) £ 1,
F)+x+1and f(x)—x*—1 are reducible for all nonnegative integers a. By Proposition
1, if we take
flxy=x%+1 (mod Oy (x)),

where ®,,  (x) is the m jth cyclotomic polynomial, then f(x) —x® — 1 will be divisible
by @, (x) for every nonnegative integer a = a; (mod m;). Recalling that earlier we
saw a covering system x = a; (mod m ;) consisting of distinct moduli m ; from the set
{2,3,4,6, 12}, we obtain a list of 5 congruences for f(x) as above modulo (ij (x) where
m; e {2,3,4,6, 12} If f(x) satisfies these congruences, then f(x) —x% — 1 will be divis-
ible by a cyclotomic polynomial @, (x), withm ; € {2,3,4, 6, 12}, for every nonnegative
integer a. Now, we take advantage of the covering system found by Nielsen, noting though
that a somewhat simpler covering system would suffice in the end here. Suppose x = aj .
(mod mg), with j € {1,2,...,r}, form Nielsen’s covering system with minimum modu-
lus 40. Then if we choose f(x) so that

f)==x" =1 (mod T, (x),

we see that as above f(x) 4+ x? + 1 will be divisible by one of the cyclotomic polynomials
@, (x), where j € {1,2,...,r}, for every nonnegative integer a. Since each m’J > 40,
the r 4 5 polynomials @, (x) and ®,,+ (x} appearing above are pairwise relatively prime
polynomials. To ensure that the two polynomials f(x) £ 1 are reducible, we simply add
two more congruences involving unrelated moduli, like

fx) =1 (mod x* +2) and flx) = =1 (mod x* —2).

Combining these with the congruences f(x) = 0 (mod x) and f(x) = 0 (mod x — 1)
mentioned earlier, we deduce from the Chinese Remainder Theorem that there must be an
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£ (x) (albeit in Q[x]) such that f(x), f(x) & x? and f(x) & x* + x are reducible for all
nonnegative integers @ and b. So this gives us an alternative way to see that such an f(x)
exists in Q[x].

Another open problem in the subject is to determine whether there is a covering system
in which the moduli are all distinct odd integers > 1. ErdSs offered $25 for a proof that
no such odd covering system exists, and John Selfridge has offered up to $2000 for an
explicit example of an odd covering system (cf. [5]). As the story goes, the two of them
had disagreeing opinions as to whether an odd covering system exists, so they expressed
their confidence in their contrary points of view by offering prizes to anyone who could
prove the opposite point of view is correct. In particular, this means that, at the time, Erd&s
thought an odd covering system does exist and Selfridge believed that there are no odd
covering systems. We note that no financial gain has been promised for a non-constructive
proof that an odd covering system exists. Needless to say, neither Erdds nor Selfridge ever
had to pay the prize money they offered to resolve this problem.

That covering systems might have something to do with Turan’s conjecture should not
be surprising given Proposition 1. This is certainly the case for the constructions of f(x)
given above, but those constructions involving covering systems led to f(x) € Q[x]. What
happens if we require, as we want, that f(x)in Z[x]? The following helps in understanding
the difficulty in finding such an f(x)} that will imply C > 2 in Turdn’s problem.

Theorem 1 (Schinzel [11], 1967). In the following, (1) implies (ii).
(1) There is a polynomial g(x) € Z[x] satisfying g(0) # 0, g(1} £ —1 and G(x) =
g(x) + x% is reducible for every integer a > Q.

(i1) There is a covering system of the integers with distinct odd moduli > 1.

The implication is explained also in [5]. To better appreciate the connection with Turdn’s
problem, we view g(x) here as f(x) + 1, say, with f(x) having at least 4 terms as before.
As we did earlier, we take f(x) = 0 (mod x), so the condition g(0) # 0 will be satisfied.
We do what we can with the cyclotomic factor x — 1 by requiring also that f(x) = 0
(mod x — 1). This ensures f(x)+x% — 1 and f(x) — x“ + 1 are reducible for all integers
a > 0. The condition f(x) = 0 (mod x — 1) also implies g(1) # —1. To establish that
C > 2in Turan’s problem, we want to find an f(x) € Z[x] that, in particular, ensures g(x)
satisfies (i) above. According to Schinzel’s theorem, we can only find such an f(x) if there
is a covering system as in (ii). Thus, the existence of such an f(x) implies the existence
of an odd covering system, that is a covering system which, if made explicit, would have
been eligible for a $2000 prize.

As a consequence, it would seem that establishing C' > 2 in Turdn’s problem is difficult,
in contrast to how easy it is to demonstrate there are composite numbers that are not near
primes. There is still some hope, though, of finding an example since (i) in Schinzel’s
theorem concerns all integers @ > 0, whereas an example showing C' > 2 in Turdn’s
problem only requires that we consider 0 < a < deg g.
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4 The plausibility that C < 3

If we allow for deg w(x) > deg f (x) in Turan’s problem, the following result shows that
the problem can be resolved with C = 3.

Theorem 2 (Schinzel [12], 1970). For every f(x) = Z’}:O ujxj € Z[x), there exist
infinitely many polynomials w(x) = Z;:O bjx/ € Z[x] with ijo |b;] <3 and f(x)+
w(x) irreducible. At least one of these satisfies s < exp ((5n + 7)(\|f\| + 3)) where

Ifll = /35 gar

Since it is of some interest to obtain s in this result as close to n as possible, we note
that Pradipto Banerjee and the author [1] established that the bound on s can be made to
depend linearly on » instead of exponentially on n. However, the dependence on the sum
of the squares of the coefficients, as in the bound for s above, remains exponential.

5 More convincing evidence that C < §

Perhaps the above discussion has already persuaded the reader that there exists some C
as in Turdn’s problem. But there is also compelling evidence of a different sort. In 1996
and 1997, Attila Bérczes and Lajos Hajdu [2, 3] viewed this problem from another point
of view. Consider the analog in the field 2 of arithmetic modulo 2. There are only a finite
number of polynomials of each degree, so for a certain degree n, we can determine the
minimal distance of each polynomial in Fy[x] from an irreducible polynomial of degree
< n in Fy[x]. The tables below show the polynomials of degrees 1, 2 and 3 in Fo[x] (in
the left column) and their minimal distance from an irreducible polynomial in Fy[x] (in
the right column).

% 2

x 0 x4+l 1
x+1 0 Xk 1
x2 2 x3+x+1 0
x2+1 1 x3+x2 1
%2 d x 1 % g x? el 0
x2+x+1 0 x3+x2+x 2
x3+x2+x+l 1

Thus, in F2[x], every polynomial of degree < 3 is a distance of at most 2 from an ir-
reducible polynomial in Fy[x]. And, as they noted, this has a direct implication on the
problem of Turan. Given any polynomial f(x) of degree n € {1,2,3} in Z[x], we now
know that thereisa w(x) = Z’}:o bix/ € Z[x] with Z?:o |6;] < 3suchthat f(x)+w(x)
is irreducible modulo 2 and, hence, irreducible over (3. The bound 3 on Z'}:O |b;| comes
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from allowing for the possibility that f(x) might have an even leading coefficient, so we
may need to add the term x” to ensure that we are obtaining an irreducible polynomial of
the appropriate degree. As an example, we note that if every coefficient of a cubic f(x) is
even, then we can take w(x) = x7 4+ x + 1 to deduce f(x) + w(x) is irreducible modulo
2 and, hence, irreducible over Q. Considering a w(x) with fewer terms may or may not
work here.

Bérczes and Hajdu extended this idea to show that every polynomial in IF2[x] of degree
< 24 is within a distance 4 from an irreducible polynomial in I [x] and, hence, one may
take C = 5 for every polynomial of degree < 24 in Turdn’s problem. These computations
have been extended further using different approaches by Gilbert Lee, Frank Ruskey and
Aaron Williams [8], Michael J. Mossinghoff [9], and Mossinghoff and the author [6]. At
this point, we know that one may take C = 5 for polynomials up to degree 40.

Independent heuristic arguments done by Lee, Ruskey and Williams and by Mossinghoff
suggest how the minimal distances to irreducibles are distributed in Fa[x]. If & = Jx(n)
denotes the density of polynomials in I [x] of degree n which have minimal distance & to
an irreducible polynomial in IF5[x], then the heuristics give

1 1 gt  1pe™
dh=-, q= + )
n 4 7
52:2—674 B 1—674’

4 7!

5_1+e*41 4 1 é_e*“l 4
2= 4 n,an 4_4 n})’

These lead to approximate asymptotic densities of 24.54%, 49.54%, 25.46% and 0.46%
for polynomials in Fy[x] which have minimal distance to an irreducible polynomial 1, 2,
3 and 4, respectively, with the asymptotic densities for any other distance being 0. These
asymptotics agree with the actual computations amazingly accurately. Mossinghoff [9]
produced Figure 1 based on his computations up to degree 34. The lined curves show
the heuristic densities d(n), and the points displayed with different styles for each k£ €
{0, 1, 2, 3, 4} show the actual density of polynomialsin IF>[x] of degree # which have min-
imal distance to an irreducible polynomial £. The second lowest curve shows the density
of irreducible polynomials of degree n modulo 2 closely matches the asymptotics given
by dy = 1/n. The number of irreducible polynomials of degree n modulo 2 is known to
be approximately 2" /n. What we don’t know, but can conjecture, is that the remaining
points, concerning densities of polynomials a distance < 4 from an irreducible polyno-
mial, continue to match up well with the asymptotics J;. In fact, we do not even know for
any fixed positive integer k > 5 that the density J; () approaches 0 as n goes to infinity.
Presumably, this is the case for all £ > 5.

Mossinghoff and the author [6] have shown that a positive proportion of polynomials f(x)
in Fz[x] have distance > 4 to an irreducible polynomial. To clarify, forsuch f(x)in Fp[x],
if g(x) is any irreducible polynomial in Fo[x] of any degree, then the polynomial f(x) —
g(x) (equivalently, f(x) + g(x)) in Fao[x] has at least 4 terms. The argument involves a
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covering system which produces as a particular example of such an f(x) the polynomial

f(x) = x243 _|_x238 +x233 +x232 +x231 +x227 +x225 +x223 +x222 +x221
_|_x217 +x216 +x214 208 206 203 202 201
+x +x +x
+x +x +x +x +x +x +x +x
+x +x +x +x +x +x +x +x
+x +x +x116 +x115+x114 _l_xlOS +x103 +x100+x99

+x98 +x95 +x94 +x92 +x88 +x83 +x81 +x72 +x68 +x63

+x +x199

+x

+ x
+x

+ x
+x

+ x
+x

+ x

197 +x

196 192 186 184 180 175 174

+x171
+x149

+x129

169 167 164 163 162 160 157 155

147 146 145 143 141 136 133 130

125 124

+x61 +x55 +x52 +x50 +x49 +x47 +x46 +x43 +x36 +x35

+x29+x26+x23+x22+x20+x18+x14+x10+x7+x6.

If we can show that polynomials f(x) in F2[x] are always a distance < 4 from an irre-
ducible polynomial in IF[x] of degree < deg f. then we can take C = 5 in the problem
of Turan. One can try to do better by working with irreducibility over different fields. This
idea, originally from Bérczes and Hajdu [2, 3], was used by Mossinghoff [9] to show that
every polynomial of degree < 18 in IF3[x] is within 3 of an irreducible polynomial. This
allows one to take C' = 4 in Turdn’s problem for polynomials over @@ of degree up to 18.
These authors considered working over other finite fields as well but found there was no
further gain in Turan’s problem from doing so.
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6 Working modulo odd primes

We are ready to go full circle and return to our attempt to prove one needs C > 2 in Turdn’s
problem. Recall that we gave a construction that failed to do what we wanted because it
produced an f(x)in @[x]and notin Z[x]. A similar construction can be used to give some
new information about polynomials in IF, [x].

Let p be an odd prime. There exists an f(x) in Fp[x] of degree < 18 that
is a distance > 3 from every irreducible polynomial. Furthermore, a positive
proportion of the polynomials f(x) in F,[x] are a distance > 3 from every
irreducible polynomial.

In other words, for such f(x), if g(x} is any irreducible polynomial in F,[x] (of any
degree), then the polynomial f(x) — g(x)} in IF,[x] either (i) has at least 3 terms, (ii)
has a coefficient in the set {42} and another coefficient in the set {1, +2}, or (iii) has a
coefficient that is not in the set {0, £1, £2}.

We illustrate the argument for this result by considering p = 3. For convenience, we
represent the elements of F5 as —1, 0 and 1. For our earlier construction, we considered,
among other congruences, f(x) satisfying f(x) = 0 modulo each of the polynomials x,

x — 1 and x¥ + 1 where 0 < J < 3. In F3[x], the latter two polynomials on this list
factor as

x4+1=(x2+x—1)(x2—x—1) and x8+1=(x4+x2— 1)(x4—x2—1).

To obtain one f(x) as in the result above, one can use the Chinese Remainder Theorem
over I3[ x] with the congruences
f(x) =0 (mod x) f(x)=0 (modx?+x—1)
f(x) =0 (mod x — 1) fx)=1 (modx?—x—1)
fx) =0 (mod x + 1) f)=0 (modx’+x*—1)
f(X)EO(modx2+1) fx)y=-1 (mod x* — x* — 1).

The f(x) € F3[x] having smallest possible degree satisfying these congruences is

B 18 4l 4 B B A I L T B B A A B
We clarify how to show every f(x) satisfying the above congruences is a distance > 2
from an irreducible polynomial in F3[x]. Note first that deg f > 11 since the congruences
imply that f(x) is non-zero and divisible by

x(x — D+ DE2+ DE2+x = DO+ 2= 1),

The congruence f(x) =0 (mod x)implies f(x) itself is reducible as well as any polyno-
mial of the form f(x) 4 x* where @ > 0. The congruences f(x) = 1 (mod x> —x — 1)
and f(x) = —1 (mod x* —x2— 1) imply f(x) =1 are reducible. Let a and b be arbitrary
nonnegative integers. We want to show that the various polynomials f(x) & x* & x* are
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reducible in F3[x]. Since f(x) = 0 (mod x), we may restrict our consideration to polyno-
mials of the form f(x) = x“ £ 1. To finish the argument, we now make use of the notation
JFx) @x“ @ 1 to represent the polynomials of the forms f (x)+x*+1 and f(x)—x%—1
and the notation f(x) @x“ @ 1 to represent the polynomials of the forms f(x)+x* — 1
and f(x) — x® + 1. Then we have the following implications:

F)Y@x“@@ 1 are reducible

F)Y@Ex“@ 1 are reducible for a = 1 (mod 2)
FY@Ex“@ 1 are reducible for a = 2 (mod 4)
F)Y@Ex“@ 1 are reducible for a = 4 (mod 8)
fx)+x*+ 1 isreduciblefor a =0 (mod 8)
fx) —x® =1 isreduciblefor a =8 (mod 16)
fx) —x® =1 isreduciblefor a =0 (mod 16).

fx)=0 (modx —1)
fx)y=0 (modx+1)
fxy=0 (mod x% + 1)
fxy=0 (mod x2 + x — 1)
fxy=1 (mod x? —x — 1)
fxy=0 (mod x* + x7 = 1)
fx)y=-1 (mod x* — x7 = 1)

il

Combining the above information, we deduce every polynomial a distance < 2 from f (x)
in IF3[x] is reducible, giving us what we wanted.

To show that a positive density of the polynomials in IF3[x] are a distance > 3 from an
irreducible polynomial, it suffices to show that a positive density of the polynomials satisfy
the above congruences. This will be clear to some of our readers, and we appeal to [6] for
details, where a similar argument is done over Fa2[x].

The more general result for an arbitrary odd prime p can be done using a very similar
argument. Of particular importance to our argument in IF3[x] is that the cyclotomie poly-
nomials x* + 1 and x® + 1 were reducible in Fs[x]. In fact, the polynomial xt+1is
a classic example of a polynomial that factors nontrivially modulo every prime, and the
reader unfamiliar with this fact will likely enjoy thinking of a proof. The fact that x® + 1
factors nontrivially modulo every prime p follows by simply replacing x with x? in the
factorization of x* + 1. More precisely, we can write

x4 1 =hi()ha(x) (mod p)  and  x® 4+ 1 = h3(x)hq(x) (mod p),

where the 4 ;(x) are distinct, pairwise relatively prime polynomials in F,[x] since p is
odd. In terms of the covering argument above, one can replace the last four congruences
on f(x)with

flx)y=0 (mod A1(x)) F(x) =0 (mod As(x))
f(x) = p— 2 (mod ha(x)) f(x) =2 (mod h4(x)).

An additional argument is then needed to establish the reducibility of polynomials of the
form f(x) £ 1 in Fy[x]. One can check that the congruences above provide an f(x)
satisfying f(x) £ 1 is reducible in F5[x]. Alternatively, one can take advantage of the fact
that x2 + 1 factors modulo 5 to give a simpler set of congruences. For p > 5, we add to
the congruences above the two additional congruences in IF,[x] given by

fx)y=1(modx —3) and f(x)=—1 (modx + 3).
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The sum of the degrees of the moduli used in the construction of f(x)inlF,[x]isin general
< 19, and this is enough to show the existence of an f(x) as stated earlier of degree < 18.
The density argument for the result in F,[x] as before follows along the lines of [6], and
one can in fact deduce that asymptotically at least 1/p'° of the f(x) € F plx]area distance
> 3 from an irreducible polynomial.

Before ending, we note that the simple looking polynomial
fx) = 5x° + gx? + 2%3 + 9x2 + 10x

has the property that f(x) has distance > 3 from every irreducible polynomial in F7[x].
Thus, the existence result for polynomials of degree < 18 in F,[x] that are a distance > 3
from every irreducible polynomial in IF,[x] is not sharp, at least for all primes p. In fact,
one can show that the bound 18 can be replaced by < 8 for every prime p = 1 (mod 8).

7 Wrapping up what we know and don’t know

In conclusion, we have made various connections between Turdn’s problem and covering
systems. Although Turdn’s problem remains a fascinating open problem, we have given
some fairly strong evidence that every polynomial is within a distance 5 of an irreducible
polynomial and likely within a distance 4. We have also seen that allowing more flexibility
on the degree of w(x) in this problem allows for a solution with C = 3. On the other hand,
with or without this flexibility, we do not even know if one can take C = 2. Unlike the
arbitrarily large sizes of gaps between primes in the set of natural numbers, the sizes of the
gaps between irreducible polynomials in the set of polynomials with integer coefficients
remain a mystery and are seemingly bounded.
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