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Two curious integrals and a graphic proof
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1 Introduction

This paper deals with some integrals of products of the sinc function defined as

sin(¢)/t fort £0

1
1 fort =0 M

sine(r) = {

2001 veroffentlichten David und Jonathan Borwein im Ramanujan Journal eine Reihe
von Integralformeln, die dem Namensgeber der Zeitschrift sicher auch gefallen hitte:

oo 1 ¢ T
/ Hsmc( )dt: —
b L 2% + 1 2

firn = 0, 1,..., 6. Wer nun gewettet hitte, das ginge so weiter, hitte verloren: Der
Wert des Integrals fiir n = 7 liegt ndmlich mit

467807924713440738696537864469
935615849440640907310521750000 4

haarscharf unterhalb von % und fillt fiir wachsende n weiter. Der Beweis der Borweins
lieferte leider wenig Einsicht in das Phinomen. In der vorliegenden Arbeit fithrt der
Autor ein sehr einfaches und intuitives Argument ins Feld, welches den Effekt erklart.
Dariiber hinaus wird ein modifiziertes Beispiel prisentiert, wo der Wert 5 erst nach 57
Schritten unterboten wird.
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The Borweins described an astonishing fact using these sinc¢ functions [1, 2]:

0 -
/0 sinc (¥) dt = 5 (2)

R . t T
A smc(z‘)~smc(3)dt_2 (3)
S . t . t 4 = "
fo smc(t)-smc(§)~smc(§) t_E 4
o0 . t . t P =z 5
/0 smc(t)-smc(g)~...-smc(E) t_z (5)

but then

e () s () e () <5 o
fo sinc(z) - sinc 3 ... sine - - sinc 5 <§. (6)

The value of that last integral is = 0.499999999992646 x .

As they write, when this fact was recently verified by a researcher using a computer al-
gebra package, he concluded that there must be a “bug” in the software. It is not a bug,
though; this series of integrals really only results in # /2 up to a certain point, and then
breaks down. This astonishes most mathematically educated readers, as especially those
readers mentally extrapolate the sequence shown above and find it surprising that some-
thing fundamental should change when the factor sinc(x /15) is introduced in (6).

This was proven in [1], but the proof is not graphic, and while it is intellectually appeal-
ing, it is difficult to really understand. In this paper we provide a simpler version of the
Borweins’ proof which gives a graphic and therefore intuitive understanding of whar it is
that changes fundamentally when the sequence breaks down.

In addition, it also lets us show that the integral series above breaks down much later if
there is another factor 2 cos(r) in the integral:

/OO 2 cos(t) - sine (t) dt = z (7
0 2
& : y t . t T

/0 2 cos(z) - sinc(?) - sinc (g) .. ... sinc (m) dt = 7 (8)
> : : ! 5 t . i T

/0 2 cos(r) - sinc(¢) - sinc (g) ... .sinec (m) - (m) i = : ©)

We will now show where, and why, these two series break down, and we will do this in two
steps: in Section 2, we show mostly graphically what happens when a rectangle function
is repeatedly convolved with narrower unit-area rectangles. In Section 3, this insight then
leadsto a comparativel y simple calculation of the point where the above series break down.
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2 Convolution with a rectangle

The convolution of two functions is defined as [3, 4]

o0

F)«6@= [ FuGu-adr. (10)

=00

If G is a unit-area rectangle of width 1/%, e.g.,
G(w) = krect (ko) ,

then this convolution operation corresponds to taking the moving average of the function
F, where the width of the moving-average window is the width of the unit rectangle.
Figure 1 shows examples for F and G for three different values of w. In this example,
the function F has a plateau, i.e., it is constant F(0) in the middle, has two falling slopes
towards the outside, and is zero outside these slopes.

Gley —n) Glen —n) (e — )

G
N
1
1
1

Fig. 1 Factors in the convolution integral (10} for three different values of .

For w3, the product F ()G (5 — o) is obviously zero for all # and F + G = 0 at ws. This
is the case for all @ such that G lies outside the region where F is non-zero. For a», the
product F ()G (5 — w) is a rectangle with area #(0), hence F * G = F(0) at awy. This is
the case for all w such that G lies within the region where F = F(0). For w1, the product
F ()G (5 — @) is a shape with finite area smaller than F(0). So 0 < F % G < F(0) forw
and all similar cases. And this is already everything we need.

Figure 2 shows two rectangles with unit area and widths 1 and % We will now discuss,

graphically first, what happens when F is repeatedly convolved with G.

Let F(w) = rect(w) and G(w) = 2rect(2w), as shown in Figure 2. Now we look at
a series of convolution products shown in Figure 3. There, Fo = F, F1 = Fp *x G,

Glw) |2

Fow) 1
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Fig. 2 Two unit-area rectangles F and G with different width.
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Fig. 3 Convolution products: every Fy is the function above convolved with G, a unit-area rectangle of width %

Fy = I % G, and so on. All these functions have markers on them that help us see what
happens qualitatively.

The first graph shows F with four types of markers: a circle, O, marking the point where
Fo(0) = 1, two crosses, +, marking the two points where Fo( + %) == % which is how

the rectangle function rect(-) is conventionally defined; a ten-pointed star, %, marking the
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begin and end of the range in which the left slope of F; is point-symmetric around (— %, %) ;
and a pentagon, ¢, marking the begin and end of the range in which the right slope of
is point-symmetric around (%, %)

Intuitively seen, repeated convolution with G is a step-wise erosion process. In this erosion
process, each convolution step reduces the width of the plateau as well as the width of the
point-symmetric regions by twice the width of G, symmetrically. Proceeding through
Figure 3 from top to bottom, it can be seen how the plateau is eroded from Fp to Fy
and becomes a single point in F;, and how it disappears from F3 onwards, such that
F34 (0) < 1. Fj3 still has point-symmetric regions, though. These point-symmetric
regions are reduced to single points in1F4 , aI}d are then eroded by the repeated convolution

from Fs5 onwards, such that £5 ¢ (ii) < 5.

All that remains to do at this point is a generalization of this discussion, and this goes as
follows: Let {ax} be a monotonically non-increasing series of positive real numbers. Let
Fo = ap rect(apmw) and recursively define Fy = Fi—1 * aj rect{aim). The function Fj then
has the total width >°7_ ax. The platean gets eroded when the sum of the widths of the
rectangles convolved with Fy is greater than the width of Fy:

Fo(0) = 1
F,(0) =1 forall n such that Z ap < ag
k=1

F,(0) < F,_1(0) otherwise.

The erosion of the symmetry points happens when that sum is twice as large:

ap ap 1
B(®)-n(-)-
0l% 0 > >
F(“O) F( “0) L foran hthtzn: <2
bic.. | —— ) = = forall n such tha
" > A > > 7 kilak, ag
F, (%) =F, (_az_o) < Fp 1 (%) otherwise.

3 Calculating the two curious integrals

Now we have enough to tackle (2)—(9). The arguments of those integrals are even func-
tions, so in general, we can calculate

o0 n
27, =f [ ] sinc(axr)ds (11
X =0
and
o0 3
2e, =/ 2 cos apt H sinc(axt)dt . (12)

—e k=0
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In order to do this, we use the Fourier transform in the form used in engineering and signal
processing [3, 4],

F(w) =/Oo f)e 7¥dr ; (13)
f@) = i/mF(m)ef”’da). (14)
27 J_x
Tt follows from (13) that
ro = [ rwar, as)

hence the integral (11) can be calculated by evaluating the Fourier transform of the inte-
gral’s argument at o = 0.

In general, the Fourier transform of a product of functions is

o0
: 1
| s = P s 6. (16)
&5 2w
The Fourier transform of the sine function is
&« . 2
] sinc(apt)e 7/ “dr = T et (w) . (17
S 2ay 2ay,

If we use the commutativity of the convolution, (16) can be written as

[ N fO)g)e 7™ dr = F (o) %G(w) : (18)

If g(z) = sinc(ag?), then the second term of the convolution in (18) is a unit-area rectangle
of width 2ay.

We now see two things: First, the Fourier transform of the product of sinc functions in
(11) is simply a series of convolutions of the function Z—O rect(%ao), which is a rectangle of
width 2ap and height al with unit-area rectangles of width 24y, 2a,, and so on. Second,
the value of 2z, from (11) is the value of that Fourier transform at & = 0, which starts
to decrease when the platean of alo rect(Z‘”To) is eroded. This is very similar to the graphic
discussion in Section 2. It therefore follows immediately that

bia
210 = —
ag

n
2%, = ol for all » such that Zak < ap
ap
k=1
27, < 21,1 otherwise.
Therefore the integral series (2)—(6) breaks down when the sum a1 + - -+ + a, exceeds

1, which is when the term sinc(x/15) comes into the product. This is what the Borweins
proved in [1].
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Now on to (12). We first replace the cos(-) by its exponential representation and then use
the linearity of the integration to obtain a sum of integrals:

00 B o
2, = f 2 cos agt H sinc(ayt)dt = /
k=0

—o0 —0

0o . 00 . #
= / e o H sinc(ayt )dt +[ e /o H sinc(ayt)dt . (19)
o -

k=0 = k=0

HA
(ejaot + eﬂ'aot) H sinc(ayt)dt
k=0

This additional exponential factor has a distinct effect in the Fourier transform (13). It
causes a frequency shift:

[s 0] (s 0]
] e 1% f(e 1 dr = / fleye itotaot g
[s.°] —

Therefore the value of the second integral in (19) is the value of the Fourier transform of
the product of sinc functions not for @ = 0, as before, but for @ = —ap. And this is
precisely where we find the symmetry point of one slope in Section 2. Similarly, the first
integral in (19) has the value at the other slope’s symmetry point, at @ = +ao. Without
further effort, we see that the series in (12) breaks down when the symmetry points of the
slopes are eroded, and this gives

2
T T
260 = —, 2&, = — forall n such that Z ap < 2ag
ap ag —

2, < 28,1 otherwise.

Therefore, the integral series (7)—(9) breaks down when the sum ¢y + - -+ 4+ @, exceeds 2,
which is when the term sine(x /113) comes into the produet, much later than for the first
series.

Acknowledgement. I would like to thank Marcel Steiner and Peter Niklaus for the in-
teresting and helpful discussions about this proof, and the reviewer for his very valuable
comments that helped me improve this paper considerably.
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