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I Elemente der Mathematik

Die Regel von l'Höpital

Horst Struve und Ingo Witzke

Horst Struve unterrichtet seit 1992 an der Universität zu Köln. Sein Hauptarbeitsgebiet
ist die Didaktik der Mathematik. Hier interessiert ihn insbesondere die Entwicklung
von mathematischem Wissen, sowohl bei Schülern als auch in der Geschichte der
Mathematik.

Ingo Witzke promovierte 2008 bei Horst Struve mit einer Arbeit über die Entwicklung
des Leibnizschen Calculus. Seine Forschungsinteressen beziehen sich auf Theorie-,
Wissens- und Begriffsentwicklung bzgl. des Lehrens und Lernens von Mathematik.

Professor Dr. Hans Joachim Burscheid (Universität zu Köln) zum 75. Geburtstag

Einleitung
Ein klassisches Problem der Analysis ist die Berechnung von Grenzwerten. Hierfür gibt es

einfache Regeln, etwa die folgende, die eine Aussage über die Quotientenfunktion zweier

reellwertiger Funktionen / und g macht: Ist a e M und sind lim f(x) a und
x—>a

lim g(v) ß mit ß 7^ 0, so ist lim ^777 f. Diese Aussage ist nicht mehr in dem
x^a x^a P

Fall anwendbar, wenn der Grenzwert „vom Typ jj" ist, d.h. wenn a 0 und ß 0 sind.
In diesem Fall gilt jedoch unter gewissen Bedingungen, etwa der Differenzierbarkeit von /

Die Autoren bedanken sich bei Dr. Eva Müller-Hill für wertvolle Diskussionen und Hilfen beim Abfassen des

Artikels.

Klassische mathematische Theorien wie die Differential- und Integralrechnung besitzen

einen kanonischen Aufbau: Nach der Einführung der reellen Zahlen werden
zunächst Grenzwerte, Stetigkeit, Folgen und Reihen behandelt, um dann zur Differentiation

und Integration zu kommen. In der Geschichte der Analysis hat sich die Theorie

aber längst nicht so geradlinig entwickelt. Der heutige kanonische Aufbau ist das

Ergebnis eines langen historischen Prozesses. Im vorliegenden Beitrag wird dies am
Beispiel der Regel von THöpital gezeigt, die hinsichtlich ihrer Formulierung als auch

ihres Beweises eine bewegte Geschichte hinter sich hat.
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und g in einem Intervall um a und der Existenz von lim AM> dass auch lim AA existiert
x^a 8 W x^a

und die beiden Grenzwerte übereinstimmen. Diese Aussage wird als Regel von l 'Höpital
bezeichnet, weil - wie es in vielen Büchern zur Geschichte der Mathematik heißt1 - diese

Regel sich in dem ersten gedruckten Lehrbuch zur Differential- und Integralrechung
findet, der 1696 erschienenen Analyse des infiniment petits von G.F.A. de l'Höpital.2

Abbildung 1 Zeitgenössisches Bild von l'Höpital

Historisch interessierte Mathematiker werden die Aussage, dass in einem 1696 verfassten
Lehrbuch eine Aussage über Grenzwerte enthalten ist, allerdings mit Skepsis aufnehmen -
wurde doch der Grenzwertbegriff zum ersten mal in der ersten Hälfte des 19. Jahrhunderts

von Cauchy in systematischer Weise zur Begründung der Differential- und Integralrechnung

eingeführt. Was hat der Marquis de l'Höpital also wirklich formuliert und bewiesen?

In unserem Beitrag zeigen wir anhand von in der Geschichte der Mathematik einflussreichen

Lehrbüchern, dass die Regel von l'Höpital Unterschiedliches bedeutet hat und auf
verschiedene Arten bewiesen wurde. Nach den Analyse des infiniment petits von l'Höpital
betrachten wir die Theorie des fonctions analytiques von J.L. Lagrange aus dem Jahr 1797,
den Traite du calcul differentiel et du calcul integral von S.F. Lacroix von 1797 und
schließlich Cours d'Analyse von A.L. Cauchy von 1821. Bei allen vier Werken handelt
es sich um Lehrbücher, in denen die Autoren - alle exzellente Mathematiker - die
Infinitesimalrechnung auf systematische Art darstellen. Eine vollständige Beschreibung ihres
Inhaltes findet man in dem Buch Landmark Writings in Western Mathematics 1640-1940
(I. Grattan-Guiness (2005)), in dem die einflussreichsten mathematischen Lehrbücher der
Neuzeit dargestellt werden.

Wgl. etwa Carl B. Boyer: A History of Mathematics. New York 1968, p. 460.
2In der Literatur findet man verschiedene Schreibweisen des Namens des Marquis: l'Hospital (in der Originalausgabe

der „Analyse..."), l'Höpital (wie der Name modern geschrieben wird) und auch l'Höpital (wie man
den Namen in der „l'encyclopedie..." von d'Alembert & Diderot finden kann). Wir schreiben im folgenden
„l'Höpital".
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ANA LYSE
DES

INFINIMENT PETITS,

Pour l'inteüigence des lignes courbes.

A PARIS,
DE L'IMPRIMERIE ROYALE.

M. D C. X C V I.

Abbildung 2 Titelblatt der Erstausgabe der „Analyse des infiniment petits"

Durch unseren Streifzug durch die Geschichte der Analysis möchten wir am Beispiel der

Regel von l'Höpital zeigen, dass sich die Auffassung von Analysis im Laufe der Zeit
geändert hat. Auch Mathematik ist eine Kulturwissenschaft, die Zeitströmungen kennt und
deren Gegenstände, Begriffe und Methoden weiterentwickelt werden.

1 L'Höpital und Johann Bernoulli
Wer der Entdecker der nach l'Höpital benannten Regel ist, darüber wurde lange Zeit
gerätselt. Die Regel wurde, wie gesagt, zum erstenmal 1696 in den Analyse des infiniment
petits veröffentlicht, was für eine Urheberschaft von l'Höpital spricht. Kaum war dieser

allerdings im Jahr 1704 gestorben, meldete sich Johann Bernoulli zu Wort und beanspruchte
die Entdeckung für sich. Über 200 Jahre blieb die Frage offen. Einen ersten Hinweis
erhielt man 1922 als R Schafheitlein in Basel in J. Bernoullis Handschriften ein Manuskript
zur Differentialrechnung aus den Jahren 1691/92 entdeckte und eine beträchtliche
Übereinstimmung mit den Analyse des infiniment petits feststellte. L'Höpital hatte offenbar
erheblich von Bernoulli profitiert. Die Regel für § ist allerdings nicht in der Bernoulli-
schen Differentialrechnung enthalten. Im Jahr 1955 entdeckt man dann im Briefwechsel
von Bernoulli eine Abmachung zwischen diesem und l'Höpital, in dem ersterer sich
verpflichtete, letzteren in den Leibnizschen calculus einzuführen und die Urheberschaft und

Entdeckungen dem Marquis zu überlassen. Im Gegenzug erhielt Bernoulli eine jährliche
Gratifikation - eine für heutige Verhältnisse sittenwidrige Vereinbarung. Zu den Erkenntnissen,

die Bernoulli dem Marquis mitteilte, gehörte auch die Regel für jj, wie ein Brief
aus dem Jahre 1694 belegt. L'Höpital verwendet in seinem Lehrbuch auch fast dieselben

Beispiele, an denen Bernoulli ihm die Regel erläutert hatte. Es bleibt festzuhalten, dass die

Regel eigentlich nach Johann Bernoulli benannt werden müsste - der allerdings Namenspatron

für genügend andere mathematische Aussagen ist (vgl. hierzu D.J. Struik (1963)).
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Die nach l'Höpital benannte Regel findet man in seinen Analyse des infiniment petits zu
Beginn von „Section IX" in Abschnitt 163. Dort formuliert er das folgende „Probleme"

Soit une ligne courbe AMD (Fig. 130 in Abbildung 2) (AP i, PM
y, AB a) teile que la valeur de l'appliquee y soit exprimee par une fraction,
dont le numerateur et le denominateur deviennent chacun zero lorsque x a,
c'est-ä-dire, lorsque le point P tombe sur le point donne B. On demande quelle
doit etre alors la valeur de l'appliquee BD.3

Bemerkenswert ist, dass l'Höpital ein Problem über Kurven formuliert und nicht eines -
wie in der modernen Formulierung der Regel - über Funktionen: Gesucht ist die Ordinate
eines Punktes einer gegebenen Kurve. Kurven wurden zu Zeiten von l'Höpital nicht etwa
durch Funktionsgleichungen definiert sondern in der Descarteschen und griechischen
Tradition durch Konstruktionen. Diesen so definierten Kurven wurden dann im nachhinein
Gleichungen zugeordnet, die die Werte v der Abszissen und y der Ordinaten der
Kurvenpunkte beschrieben und mit deren Hilfe man die Kurven untersuchen konnte. An der

obigen Figur fällt auf, dass l'Höpital offenbar noch nicht in konsequenter Weise negative
Koordinaten verwendet. AP ist die v-Achse. Wenn die Zählerkurve oberhalb der v-Achse
verläuft und die Nennerkurve unterhalb, dann müsste die Kurve AMD eigentlich unterhalb
der v-Achse verlaufen. Die Koordinaten v und y sind für l'Höpital noch Streckenlängen,
die nur positive Werte besitzen.

3Zu deutsch: AMD sei eine Kurve (AP x, PM y, AB a) von der Art, dass der Wert der Ordinate y
durch einen Bruch dargestellt werden kann, dessen Zähler und Nenner für x a Null werden, d.h. wenn der
Punkt P mit dem gegebenen Punkt B zusammenfällt. Gesucht ist der Wert der Ordinate BD.

(p. 206):

Abbildung 3 Figur 130 der „Analyse des inüniment petits" von l'Höpital
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In der hier betrachteten Situation kann man die Ordmaten eines Punktes der Kurve AMD
durch einen Bruch beschreiben, der der Quotient zweier algebraischer Ausdrucke ist, nämlich

der Ordmaten der Punkte der Kurven ANB und COB. Die Zahlerkurve ANB und
die Nennerkurve COB schneiden sich im Punkt B, so dass der Bruch, der die Ordmaten-
werte der Punkte der Kurve AMD beschreibt m B „von der Form jj" ist, wie man spater
formulierte. Das Problem, das PHöpital stellt, lautet: Was ist die Ordinate des Punktes der
Kurve AMD mit Absizze B?

Beschreibt man die Zahler- und Nennerkurven durch Funktionen f(x) und g(v) und geht

- zurecht - davon aus, dass die von PHöpital betrachteten Kurven stetig sind, so kann man
das Problem wir folgt m moderner Sprache paraphrasieren: Was ist hm wenn vb

X^Xß ö W
die Abszisse des Punktes B ist? Diese Formulierung konnte PHöpital aber nicht wählen,
da der Funktionsbegriff erst ein halbes Jahrhundert spater von L. Euler m der Mathematik
etabliert wurde und der Grenzwertbegriff erst im 19. Jahrhundert eingeführt wurde.

In seinen Analyse des infiniment petits gibt PHöpital zwei Beispiele für die obige Regel:

/ V2a?x — x4 — a^/aax aa — ax
(0 y ^3 (") y -—-f=a — vaxJ a ~ vax

Für x a werden m beiden Fallen Zahler und Nenner 0.4 Setzt man im ersten Beispiel
a 1, so erhalt man als Kurven, die zu den drei Funktionen gehören, gerade die von
PHöpital m obiger Figur skizzierten, ohne dass PHöpital dies vermerkt - dabei ist A die
erste positive Nullstelle der Zahlerkurve; die zur Nennerfunktion gehörige Kurve musste

an der v-Achse, der Geraden durch die Punkte A und B, gespiegelt werden.

L'Höpital sagt nun, dass man den gesuchten Wert erhalt, indem man das Differential des

Zahlers durch das Differential des Nenners dividiert nachdem man x — a gesetzt hat. Mit
den Worten des Marquis:

partant que si l'on prend la difference du numerateur, et qu'on la divise par
la difference du denommateur, apres avoir fait x a l'on aura la valeur
cherchee de l'appliquee ...BD.5

Differentiale werden entsprechend dem Leibnizschen calculus gebildet. Nach Leibniz gibt
der Quotient der Differentiale dy und dx m einem Punkt mit Abszisse v und Ordinate

y die Steigung der Tangente m diesem Punkt an. Außer Differentialen 1. Ordnung wie
dx und dy betrachtet Leibniz auch Differentiale höherer Ordnung, etwa ddx, ddy.
Differentiale höherer Ordnung sind im folgenden ohne Bedeutung. Mit modernen Begriffen
kann man die Regel zur Bildung von Differentialen 1. Ordnung wie folgt beschreiben: Ist

y f(x) ein algebraischer Ausdruck (der mit Hilfe der Operationen Addition, Subtraktion,

Multiplikation, Division und Wurzelziehen gebildet wurde), so ist das Differential

4Es sei angemerkt, dass im zweiten Beispiel der Wert 2a der stetig ergänzten Funktion an der Stelle a mit Hilfe
der dritten binomischen Formel schneller gefunden werden kann als mit Hilfe der Regel von l'Höpital
5Zu deutsch wenn man das Differential des Zahlers bestimmt hat und dividiert dieses durch das Differential

des Nenners, so erhalt man nachdem man x a gesetzt hat, den Wert der gesuchten Ordinate BD



Die Regel von l'Höpital 123

dy f'{x)dx. Mit „fix)66 ist m dieser Gleichung natürlich nur der algebraischen
Ausdruck gemeint, welcher der modernen Ableitung fix) entspricht und nicht eine Ableitung

sfunktion. Ist beispielsweise y v3, so gilt nach Leibniz für die Differentiale dx und

dy, dass dy 3x2dx.

Wird die Zahlerkurve mit fix) bezeichnet und die Nennerkurve mit g(v) und ist 3^1

f{x) und y2 g(x), so ist gemäß dem Leibnizschen calculus der Quotient der Differentiale

dy\ f'{x)dx
dy2 g'(x)dx

und damit nach Kurzen des „remen Symbols" dx

dyi fjx)
dyi g'ix)

Der Quotient der Differentiale hat dann an der Stelle a den Wert

Die beiden oben genannten originalen Beispiele von l'Höpital mögen dieses Vorgehen
erläutern:

(1) Es ist

und dg dx
Afahc

und daher ist der Quotient f- an der Stelle a

~i4/3)adx 16

~(3/4)dx ~9Ü

(11) Es ist
a

df —adx und dg -=dx
2fax

und daher ist der Quotient ^ an der Stelle a gleich 2a.

Die Begründung der Regel ist für heutige Leser schwer nachzuvollziehen. L'Höpital
betrachtet einen Punkt d der Kurve, der „unendlich nahe" bei D hegt und die Abszisse b

besitzt (vgl. die obige Figur). Da d unendlich nahe bei D hegt, unterscheiden sich die
Ordmaten von D und d „nicht". Die Ordinate bd von d ist gleich dem Quotienten der

entsprechenden Werte der Zahler- und der Nennerkurve bd |£. Nach l'Höpital sind bf
und bg ebenfalls unendliche kleine Großen und zwar gerade die Differentiale der Zahlerund

der Nennerkurve im Punkt B. - Voilä!

Wenn man diese Argumentation liest, wird verständlich, dass über die unendlich kleinen
Großen, über deren Natur und Eigenschaften, leidenschaftlich gestritten wurde. Bischof
Berkeley bezeichnet m einer beißenden Polemik, die sieben Jahre nach Newtons Tod
erschien, infinitesimale Großen als „ghosts of departed quantities". Dieser Kritik wird auch
heute noch zugestimmt (vgl. Klemer (2001), der von „Berkeley's main and correct cnti-
cism" spricht).6

6Diese Vorwurfe sind ungerechtfertigt, der calculus lasst sich als eine konsistente Theorie rekonstruieren, vgl
H J Burscheid & H Struve (2001)
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So lobte die 1700 von Leibniz gegründete Berliner Akademie der Wissenschaften einen
Preis für denjenigen aus, der erklaren könne, „how so many correct theorems have
been deduced from a contradictory supposition [the existence of mfinitesimals]" (zitiert
nach I. Grattan-Gumness (1980)). Da kein Beitrag die geforderte klare und präzise Theorie
enthielt, versuchte sich der Vorsitzende der Berliner Akademie, Lagrange, selbst an einer
Losung. Diese betrachten wir am Beispiel der Regel von 1'Höpital im nächsten Abschnitt.

2 Lagrange: ein erster Beweis

1797 erschien die Theorie des fortetions analytiques von Joseph Louis Lagrange, ein
bedeutendes Lehrbuch des 19. Jahrhunderts. Wir betrachten, wie er die Regel von 1'Höpital
behandelt. Dabei zitieren wir im folgenden aus der deutschen UberSetzung „Theorie der

analytischen Funktionen" von J.P. Gruson aus den Jahren 1797/98.

Zu Beginn von §39 heißt es:

wollen wir die Theorie von der Methode lehren, um den Werth eines
Bruchs, m dem Fall, wo Zahler und Nenner zu gleicher Zeit Null werden, zu
finden. Es sey ein solcher Bruch7, wo fx und Fx Funktionen von v sind,
und wo die Voraussetzung von x — a sie beyde zu gleicher Zeit zu Null macht.
Man verlangt den Werth dieses Bruchs, wenn x a.

Dies liest sich wie die moderne Formulierung des Problems, das zur Regel von 1'Höpital
fuhrt. Es geht nicht mehr - wie noch bei 1'Höpital -, um die Bestimmung der Ordinate
eines Kurvenpunktes, sondern um die Bestimmung des Wertes eines algebraischen
Ausdruckes, einer Quotientenfunktion.

Schaut man sich an, wie Lagrange dieses Problem lost, so sieht man aber, dass er noch

ein beträchtliches Stuck von der modernen Auffassung der Analysis entfernt ist. Lagrange
setzt

_ fix)
y Fix)

und formt diese Gleichung um zu yF(x) f(x). Mit Hilfe der Produktregel erhalt er
dann

y'F(x) + yF'(x) f'(x)

Nun setzt Lagrange x a und bekommt wegen F(a) 0 für den Wert der Quotientenfunktion

y an der Stelle a
f'ia)

y
F'ia)

Auch bei Lagrange treten noch keine Grenzwerte auf. Der Wert der Quotientenfunktion an
der Stelle a ist der Wert des Quotienten der Ableitungen der Zahler- und der Nennerfunktion

an der Stelle a, nicht etwa der Grenzwert der Quotientenfunktion der Ableitungen
für v gegen a. Die Existenz dieser Ableitungen werden vorausgesetzt. Aber was versteht

Lagrange unter den Ableitungen, wenn er noch keine Grenzwerte kennt?

7Lagrange schreibt noch fx statt f(x)
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Das Ziel, welches Lagrange m seiner Theorie verfolgt, geht aus dem vollständigen
Titel hervor:

Theorie der analytischen Funktionen, in welcher die Grundsatze der
Differentialrechnung vorgetragen werden, unabhängig von Betrachtung der unendlich
kleinen oder verschwindenden Grossen der Grenzen oder Fluxionen, und
zurückgeführt aufdie algebraische Analysis.

Lagrange wollte den calculus auf eine rem algebraische Basis stellen, um ihn von den
problematischen Begriffen der infinitesimalen oder unendlichklemen Großen (Leibniz) und
Fluxionen (Newton) zu befreien. Funktionen waren für ihn innerhalb dieser sog.
algebraischen Analysis analytische Ausdrucke, die mit Hilfe von Variablen, Konstanten und
den üblichen algebraischen und transzendenten Operationen gebildet wurden, aber auch
durch Differenzieren und Integrieren. Jede Funktion besitzt für Lagrange eine Potenzrei-
hendarStellung, wobei diese nicht die Funktion definiert sondern lediglich eine weitere
Darstellung ist - allerdings eine wichtige: Lagrange definiert die Ableitung einer Funktion
als zweiten Koeffizienten der entsprechenden Taylorreihe - also entsprechend dem Ziel
semer Arbeit, ohne Bezug auf infinitesimale und geometrische Großen, rem algebraisch.

,2
f(x + i) f{x) + if\x) + y/"O) +

Aber auch hier ist noch Vorsicht geboten: Funktionen f(x) und deren Ableitungen fix)
sind für Lagrange algebraische Ausdrucke, deren Referenzobjekte nicht der Graph der
Funktionen im modernen Sinne sind (also die Menge alle Paare ix, fix)), sondern die

eine eigenständige Bedeutung besitzen - mit den Worten von C.G. Fräser (1980, S. 263):

To prove a theorem was to establish lts validity on the basis of the general
formal properties of the relations, functions, and formulae m question. The
essence of the result was contamed m lts general correctness, rather than m

any considerations what might happen at particular numerical values of the
variables.

Man kann dies auch so interpretieren, dass Lagrange unterstellt, dass algebraische
Ausdrucke Kurven mit vernunftigen Eigenschaften bezeichnen - so wie das m den von
l'Höpital gegebenen Beispielen aus Abschnitt 1 auch der Fall ist: Zahlerfunktion,
Nennerfunktion und die Quotientenfunktion sind fast uberall differenzierbar im modernen Sinne.
Fräser (1980, S. 262) bringt dies wie folgt zum Ausdruck:

For the 18th-century analyst, functions are thmgs that are 'out there', m the

same way that the natural scientist studies plants, msects or mmerals, given m
nature. As a general rule, such functions are very well-behaved, except possibly
at a few isolated exceptional values.

Setzt man dies voraus, was hat Lagrange dann bewiesen? Man kann seine Version der

l'Höpitalschen Regel m etwa wie folgt m moderner Sprache paraphrasieren:

Sind die Funktionen fix), Fix) m einem Intervall I um den Punkt a differenzierbar

(und als Taylorreihen darstellbar) und ist fia) 0 und Fia) 0 und

besitzt die Funktiony an der Stelle a eine stetige Ergänzung, so dass
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die ergänzte Funktion y im Intervall I differenzierbar ist, so gilt an der Stelle

a,dass y fr@j.

Für diesen Satz gilt der Lagrangesche Beweis (mit y statt y an den entsprechenden Stellen).

Bemerkung. Die Differenzierbarkeit der auftretenden Funktionen im Intervall I soll zum
Ausdruck bringen, dass die Funktionen „vernunftige44 Eigenschaften besitzen bzw. Namen

von Kurven mit „vernunftigen44 Eigenschaften sind. Man kann diese abschwachen, wie der

folgende moderne Beweis der Lagrangeschen Version der Regel von FHöpital zeigt:

fix) f(x)-f(a) f(x)xZH(a) f'(a) e—> Tnr t —> n
F(x) F{x) - F(a) F{xlZFa{a)

Es genügen also die Voraussetzungen, dass die m einer Umgebung von a definierten
Funktionen / und F an der Stelle a den Wert 0 annehmen, dass die Ableitungen f'(x) und

F'(x) lediglich an der Stelle x — a existieren und F'(a) ^ 0 ist (vgl. Heuser (1988,
S. 286)).

3 Lacroix: ein modifizierter Beweis

Wir kommen zum nächsten von uns betrachteten Autor, Sylvestre Frangois Lacroix. In
den Jahren 1797-1800 erschien sein dreibändiges Werk Tratte du calcul differentiel et
du calcul integral. Der Autor versucht m diesem Werk eine umfassende, enzyklopädische
Darstellung des calculus, der diesen für das nächste Jahrhundert zugänglich machen sollte.
Wir zitieren im folgenden aus der deutschen UberSetzung „Lehrbegriff des Differential-
und Integralcalculs44 von J.R Gruson aus den Jahren 1799/1800.

Die Grundlagen des calculus sind für Lacroix dieselben wie für Lagrange. Funktionen sind

für ihn algebraische Ausdrucke, die sich als Reihen darstellen lassen, dessen erster
Koeffizient mit f'(x) symbolisiert wird und gelegentlich von Lacroix als „denved function44

bezeichnet wird. Lacroix widmet immerhin 23 Seiten dem Thema „Von den Ausdrucken,
die m gewissen besonderen Fallen § werden44. Er spricht auch, wie Lagrange, von „dem
wahren Werthe einer Function, die § wird44.

Die Regel von l'Höpital formuliert er wie folgt (Nr. 136):

Um den wahren Werth einer Function zu erhalten, die § wird, wenn man x
einen besonderen Werth giebt, so muß man ihren Zahler und Nenner differen-
tnren, bis dass man für den einen oder für den anderen ein Resultat findet,
welches nicht verschwindet; die vorgegebene Function wird im ersten Falle
unendlich seyn, Null im zweyten, und wenn sie einen endlichen Werth hat, so

wird man zu gleicher Zeit zwey nicht verschwindende Resultate begegnen.

Diese Aussage unterscheidet sich von der Lagrangeschen nicht m den verwandten Begriffen

sondern im Umfang der Regel: Lacroix betrachtet auch den Fall, dass man mehrfach
differenzieren muss, um zu einem Ergebnis zu gelangen. Interessant ist sein Beweis, der
sich von dem Lagrangeschen darin unterscheidet, das er von den Taylorreihen entscheidend

Gebrauch macht. Den allgemeinen Beweis, der aufgrund semer Notationen mühsam

zu lesen ist, erläutert er zunächst an dem Beispiel aX~b%. Für v 0 erhalt man einen
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Bruch vom Typ jj. Aufgrund der Taylorreihenentwicklung der Exponentialfunktion an der
Stelle v 0

JC _ 1
ln(°) (ln(«))2 2

ü — 1 ~h x T~ x T~
1 1 2

ergibt die Anwendung der obigen Regel den Quotienten (wobei für Lacroix die erste
Ableitung f'(x) der zweite Koeffizient der Reihenentwicklung ist)

In (a) — In(b)
1

Soweit unterscheidet sich das Vorgehen von Lacroix noch nicht von dem Lagrangeschen.
Die Begründung der Korrektheit des Ergebnisses ist aber neu. Lacroix argumentiert mit
der Reihenentwicklung der Lunktion ax — bx. Es ist

In(a) — In(b) + (In(a)2 — In(b)2) b
X

V 7 V / V V / v / 2

Setzt man x 0, so erhalt man den Wert In(a) — In(b).
Diesen Ansatz formuliert Lacroix dann mit Variablen und hat - modern formuliert -
folgende Version der Regel von l'Höpital bewiesen:

Sind die Lunktionen f(x) und g(v) um den Punkt a m Taylorreihen entwickelbar

(d.h. insbesondere unendlich oft differenzierbar) und ist f(a) g(a) 0

und sind die ersten k — 1 Ableitungen von / und g an der Stelle a alle gleich
Null, so ist

f(a)
_

/(*>(a)

g(a) g{k)(a)

4 Cauchy: der moderne Ansatz
1821 erschien das erste Lehrbuch der Analysis, m dem die Differential- und Integralrechnung

systematisch auf dem Grenzwertbegriff gegründet wurde, die Cours d'analyse von
A.-L. Cauchy. Wir zitieren im folgenden aus der deutschen Ubersetzung von C.H. Schnuse.

Der Beweis der Regel von l'Höpital, den Lacroix fuhrt, beruht wesentlich auf der
Voraussetzung, dass die betrachteten Lunktionen m eine Taylorreihe entwickelt werden können.

Cauchy entdeckte, dass dies nicht immer der Lall ist: Es gibt Lunktionen, deren Taylorreihe

nicht die Lunktion darstellt. Das von Cauchy angegebene Beispiel, das man noch heute

m fast allen Lehrbuchern zur Differential- und Integralrechnung findet, lautet (S. 103)

F(x) exp(— l/x2) für x 0

und

F(x) 0 für x=0
Die Taylorreihe m 0 verschwindet identisch, die Lunktion F aber nicht.

Cauchy brauchte daher einen anderen Beweis der Regel von l'Höpital als Lacroix. Die
Regel formuliert Cauchy wie folgt (Lehrsatz 1 der fünften Vorlesung, S. 42):

Wenn ein besonderer Werth des Verhältnisses unter der Lorm erscheint,

so fallt dieser Werth mit dem correspondirenden Werthe des Verhältnisses

zusammen.



128 H Struve und I Witzke

Den „wahren Werth" des Bruches (Cauchy, S. 41) bestimmt Cauchy mit Hilfe der heute als

„verallgemeinerter Mittelwertsatz der Differentialrechnung" bezeichneten und wie folgt
formulierten Aussage (vgl. etwa Walter, S. 256)

Die Funktionen /, F seien m [a, b] stetig und m (a, b) differenzierbar. Außerdem

sei F' /Om (a,b). Dann existiert ein e (a,b) mit

f(b) - f (a)
_F(b) - F(a) F'(0

Ist nun f(c) F(c) 0 für ein c e (a, b), so gibt es zu jedem e (a, c) ein v e (x, c)
mit

f(x) - f(c)
_

f'(0
F{x) - F(c) F'(0

Die Regel von l'Hopital folgt damit für v ^ c (falls der entsprechende Grenzwert
existiert).

Durch eine wiederholte Anwendung der obigen Regel beweist Cauchy dann auch die

allgemeinere oben angegebene Regel von Lacroix.

Das ist der heutige Standardbeweis der Regel. - Es sei angemerkt, dass die Regel von
l'Höpital auf zahlreiche Arten modifiziert werden kann, nicht nur hinsichtlich der

Voraussetzungen der betrachteten Funktionen (vgl. etwa Rickert, N.W. (1968) und Boas, R.R
(1986)), sondern auch hinsichtlich der betrachteten Limites - einseitige und uneigentliche.
Noch m den Jahren 1879/80 erschienen m den Mathematischen Annalen zwei Artikel von
O. Stolz (1879/80) mit dem Titel „Uber die Grenzwerthe der Quotienten", m denen er den

Typ ^ diskutiert.

Schlussbemerkung
Mathematik wird m Lehrbuchern (und Vorlesungen) m der Regel auf eine systematische
Art dargestellt, so dass beim Leser den Eindruck entstehen kann, die Mathematik kenne
keine Zeitstromungen. Das Beispiel der historischen Entwicklung der Regel von l'Hopital
soll zeigen, dass dieser Eindruck tauscht. Gegenstande, Begriffe und Methoden der Ana-
lysis sind im Laufe der Zeit geändert und weiterentwickelt worden.

Zu den Gegenständen. Wahrend l'Hopital Kurven untersucht, stehen bei Lagrange und
Lacroix Funktionen im Zentrum des Interesses, allerdings noch nicht im modernen Sinne.
Erst bei Cauchy findet man den modernen Funktionsbegriff.8

Zu den Begriffen. Der Ableitungsbegriff- für die Regel von l'Hopital m heutiger Formulierung

zentral - tritt bei l'Hopital noch nicht auf. Er spricht über Differentiale im Sinne

von unendlich kleinen Großen. Lagrange und Lacroix verwenden Koeffizienten von
Reihenentwicklungen und erst bei Cauchy findet man den modernen Ableitungsbegriff.

Zu den Methoden. Die Regel von l'Hopital wurde verschieden „bewiesen". L'Hopital
stellt lediglich eine Plausibilitatsuberlegung an. Lagrange formt algebraische Ausdrucke

8Vgl hierzu D Spalt (1996)
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um, die er auf eine spezielle Weise interpretiert. Erst die Beweise von Lacroix und Cauchy

genügen m etwa modernen Maßstaben.

Auch Mathematik ist eine Wissenschaft, die Zeitstromungen kennt und entsprechend den

jeweiligen Zeitumstanden weiterentwickelt wird. Diese Erkenntnis sollte insbesondere
jeder Lehrer besitzen - und hierzu einen Beitrag zu leisten, ist das Ziel der vorliegenden
Arbeit.
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