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Die Regel von I’Hdopital

Horst Struve und Ingo Witzke

Horst Struve unterrichtet seit 1992 an der Universitat zu Koln. Sein Hauptarbeitsgebiet
ist die Didaktik der Mathematik. Hier interessiert ihn insbesondere die Entwicklung
von mathematischem Wissen, sowohl bei Schiilem als auch in der Geschichte der
Mathematik.

Ingo Witzke promovierte 2008 bei Horst Struve mit einer Arbeit iiber die Entwicklung
des Leibnizschen Calculus. Seine Forschungsinteressen beziehen sich auf Theorie-,
Wissens- und Begriffsentwicklung bzgl. des Lehrens und Lernens von Mathematik.

Professor Dr. Hans Joachim Burscheid (Universitit zu Kéln) zum 75. Geburtstag

Einleitung

Ein klassisches Problem der Analysis ist die Berechnung von Grenzwerten. Hierfiir gibt es
einfache Regeln, etwa die folgende, die eine Aussage iiber die Quotientenfunktion zwei-

er reellwertiger Funktionen f und g macht: Ist ¢ € R und sind lim f(x) = « und
A—>a
lim g(x) = f mit § # 0, soist lim L8 _ & Diese Aussage ist nicht mehr in dem
i—a s—q &)
O«

Fall anwendbar, wenn der Grenzwert ,,vom Typ §* ist, d.h. wenn & = O und f = 0O sind.
In diesem Fall gilt jedoch unter gewissen Bedingungen, etwa der Differenzierbarkeit von f

Die Autoren bedanken sich bei Dr. Eva Miller-Hill fiir wertvolle Diskussionen und Hilfen beim Abfassen des
Artikels.

Klassische mathematische Theorien wie die Differential- und Integralrechnung besit-
zen einen kanonischen Aufbau: Nach der Einfithrung der reellen Zahlen werden zu-
nichst Grenzwerte, Stetigkeit, Folgen und Reihen behandelt, um dann zur Differen-
tiation und Integration zu kommen. In der Geschichte der Analysis hat sich die Theo-
rie aber langst nicht so geradlinig entwickelt. Der heutige kanonische Aufbau ist das
Ergebnis eines langen historischen Prozesses. Im vorliegenden Beitrag wird dies am
Beispiel der Regel von 1'Hopital gezeigt, die hinsichtlich ihrer Formulierung als auch
ihres Beweises eine bewegte Geschichte hinter sich hat.
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und g in einem Intervall um a und der Existenz von lim .@ ,dassauch lim L&) existiert
i—a &) r—a 80)

und die beiden Grenzwerte tibereinstimmen. Diese Aussage wird als Regel von I’Hépital

bezeichnet, weil — wie es in vielen Biichern zur Geschichte der Mathematik heift! — die-

se Regel sich in dem ersten gedruckten Lehrbuch zur Differential- und Integralrechung

findet, der 1696 erschienenen Analyse des infiniment petits von G.EA. de 1"Hopital.?

Abbildung 1 Zeitgentssisches Bild von 1"'Hopital

Historisch interessierte Mathematiker werden die Aussage, dass in einem 1696 verfassten
Lehrbuch eine Aussage iiber Grenzwerte enthalten ist, allerdings mit Skepsis aufnehmen —
wurde doch der Grenzwertbegriff zum ersten mal in der ersten Hilfte des 19. Jahrhunderts
von Cauchy in systematischer Weise zur Begriindung der Differential- und Integralrech-
nung eingefithrt. Was hat der Marquis de 1’"Hopital also wirklich formuliert und bewiesen?

In unserem Beitrag zeigen wir anhand von in der Geschichte der Mathematik einflussrei-
chen Lehrbiichern, dass die Regel von 1’"Hopital Unterschiedliches bedeutet hat und auf
verschiedene Arten bewiesen wurde. Nach den Analyse des infiniment petits von I’ Hopital
betrachten wir die Théorie des fonctions analytiques von 1. L. Lagrange aus dem Jahr 1797,
den Traité du calcul différentiel et du calcul intégral von S.F. Lacroix von 1797 und
schlieBlich Cours d’Analyse von A.l. Cauchy von 1821. Bei allen vier Werken handelt
es sich um Lehrbiicher, in denen die Autoren — alle exzellente Mathematiker — die Infi-
nitesimalrechnung auf systematische Art darstellen. Eine vollstindige Beschreibung ihres
Inhaltes findet man in dem Buch Landmark Writings in Western Mathematics 1640-1940
(I. Grattan-Guiness (2005)), in dem die einflussreichsten mathematischen Lehrbiicher der
Neuzeit dargestellt werden.

1301, etwa Card B. Boyer: A History of Mathematics. New York 1968, p. 460.
2In der Literatur findet man verschiedene Schreibweisen des Namens des Marquis: I'Hospital (in der Original-
ausgabe der . Analyse...), 'Hopital (wie der Name modern geschrieben wird) und auch I"'Hopital (wie man

den Namen in der ,I’encyclopédie...™ von d’Alembert & Diderot finden kann). Wir schreiben im folgenden
1" Hopital .
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Abbildung 2 Titelblatt der Erstausgabe der ,.Analyse des infiniment petits”

Durch unseren Streifzug durch die Geschichte der Analysis mochten wir am Beispiel der
Regel von 1I'Hopital zeigen, dass sich die Auffassung von Analysis im Laufe der Zeit
geandert hat. Auch Mathematik ist eine Kulturwissenschaft, die Zeitstrdmungen kennt und
deren Gegenstinde, Begriffe und Methoden weiterentwickelt werden.

1 I’Hopital und Johann Bernoulli

Wer der Entdecker der nach 1’Hdpital benannten Regel ist, dariiber wurde lange Zeit ge-
ritselt. Die Regel wurde, wie gesagt, zum erstenmal 1696 in den Analyse des infiniment
petits verdtfentlicht, was fiir eine Urheberschaft von 1"Hépital spricht. Kaum war dieser al-
lerdings im Jahr 1704 gestorben, meldete sich Johann Bernoulli zu Wort und beanspruchte
die Entdeckung fiir sich. Uber 200 Jahre blieb die Frage offen. Einen ersten Hinweis er-
hielt man 1922 als P. Schatheitlein in Basel in J. Bernoullis Handschriften ein Manuskript
zur Differentialrechnung aus den Jahren 1691/92 entdeckte und eine betrichtliche Uber-
einstimmung mit den Analyse des infiniment petits feststellte. 1."Hopital hatte offenbar
erheblich von Bernoulli profitiert. Die Regel fiir % ist allerdings nicht in der Bernoulli-
schen Differentialrechnung enthalten. Im Jahr 1955 entdeckt man dann im Briefwechsel
von Bernoulli eine Abmachung zwischen diesem und 1"Hopital, in dem ersterer sich ver-
pflichtete, letzteren in den Leibnizschen calculus einzufithren und die Urheberschaft und
Entdeckungen dem Marquis zu iberlassen. Im Gegenzug erhielt Bernoulli eine jahrliche
Gratifikation — eine fiir heutige Verhiltnisse sittenwidrige Vereinbarung. Zo den Erkennt-
nissen, die Bernoulli dem Marquis mitteilte, gehorte auch die Regel fiir 9, wie ein Brief
aus dem Jahre 1694 belegt. L"Hopital verwendet in seinem Lehrbuch auch fast dieselben
Beispiele, an denen Bernoulli ihm die Regel erlautert hatte. Es bleibt festzuhalten, dass die
Regel eigentlich nach Johann Bernoulli benannt werden miisste — der allerdings Namen-
spatron fiir geniigend andere mathematische Aussagen ist (vgl. hierzu D.J. Struik (1963)).
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Die nach 1'Hopital benannte Regel findet man in seinen Analyse des infiniment petits zu
Beginn von ,.Section IX* in Abschnitt 163. Dort formuliert er das folgende ,,Probléme™
(p. 206):

Soit une ligne courbe AM D (Fig. 130 in Abbildung 2) (AP = x, PM =
vy, AB = a) telle que la valeur de I’appliquée y soit exprimée par une fraction,
dont le numérateur et le dénominateur deviennent chacun zero lorsque x = «,
¢’est-a-dire, lorsque le point P tombe sur le point donné B. On demande quelle
doit étre alors la valeur de I’appliquée BD?

S

Abbildung 3 Figur 130 der ., Analyse des infiniment petits™ von 1"Hdpital

Bemerkenswert ist, dass 1"Hopital ein Problem iber Kurven formuliert und nicht eines —
wie in der modemen Formulierung der Regel — iiber Funktionen: Gesucht ist die Ordinate
eines Punktes einer gegebenen Kurve. Kurven wurden zu Zeiten von 1’'Hopital nicht etwa
durch Funktionsgleichungen definiert sondern in der Descarteschen und griechischen Tra-
dition durch Konstruktionen. Diesen so definierten Kurven wurden dann im nachhinein
Gleichungen zugeordnet, die die Werte x der Abszissen und y der Ordinaten der Kui-
venpunkte beschrieben und mit deren Hilfe man die Kurven untersuchen konnte. An der
obigen Figur fallt auf, dass 1"Hopital offenbar noch nicht in konsequenter Weise negative
Koordinaten verwendet. AP ist die x-Achse. Wenn die Z#hlerkurve oberhalb der x-Achse
verlauftund die Nennerkurve unterhalb, dann miisste die Kurve AM D eigentlich unterhalb
der x-Achse verlaufen. Die Koordinaten x und y sind fiir 1"Hopital noch Streckenldngen,
die nur positive Werte besitzen.

37u deutsch: AMD sei eine Kurve (AP =x,PM = y, AR = a) von der Art, dass der Wert der Ordinate y
durch einen Bruch dargestellt werden kann, dessen Zahler und Nenner fiir x = « Null werden, d.h. wenn der
Punkt P mit dem gegebenen Punkt B zusammenfallt. Gesucht ist der Wert der Ordinate B D.
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In der hier betrachteten Situation kann man die Ordinaten eines Punktes der Kurve AM D
durch einen Bruch beschreiben, der der Quotient zweier algebraischer Ausdriicke ist, ndm-
lich der Ordinaten der Punkte der Kurven AN B und C O B. Die Zahlerkurve ANB und
die Nennerkurve C O B schneiden sich im Punkt B, so dass der Bruch, der die Ordinaten-
werte der Punkte der Kurve AM D beschreibt in B ,,von der Form %“ ist, wie man spiter
formulierte. Das Problem, das 1’ Hopital stellt, lautet: Was ist die Ordinate des Punktes der
Kurve AM D mit Absizze B?

Beschreibt man die Zahler- und Nennerkurven durch Funktionen f(x) und g(x) und geht
—zurecht — davon aus, dass die von 1’Hopital betrachteten Kurven stetig sind, so kann man

das Problem wir folgt in moderner Sprache paraphrasieren: Was ist lim ag%), wenn xp
X—>Xp

die Abszisse des Punktes B ist? Diese Formulierung konnte 1"Hopital aber nicht wihlen,
da der Funktionsbegriff erst ein halbes Jahrhundert spéater von L. Euler in der Mathematik
etabliert wurde und der Grenzwertbegriff erst im 19. Jahrhundert eingefithrt wurde.

In seinen Analyse des infiniment petits gibt 1’ Hopital zwei Beispiele fiir die obige Regel:

V2a3x — x* — a¥aax aa — ax

i y= (i) y=——"

a— vax3 a— \Jax
Fiir x = a werden in beiden Fillen Zihler und Nenner 0. Setzt man im ersten Beispiel
a = 1, so erhdlt man als Kurven, die zu den drei Funktionen gehoren, gerade die von

I"Hopital in obiger Figur skizzierten, ohne dass 1"'Hépital dies vermerkt — dabei ist A die
erste positive Nullstelle der Zihlerkurve; die zur Nennerfunktion gehorige Kurve miisste
an der x-Achse, der Geraden durch die Punkte A und B, gespiegelt werden.

1"Hbpital sagt nun, dass man den gesuchten Wert erhalt, indem man das Differential des
Zihlers durch das Differential des Nenners dividiert nachdem man x = « gesetzt hat. Mit
den Worten des Marquis:

... partant que si I’on prend la différence du numérateur, et qu’on la divise par
la différence du dénominateur, aprés avoir fait x = « ..., 1’on aura la valeur
cherchée de I"appliquée ... BD >

Differentiale werden entsprechend dem Leibnizschen calculus gebildet. Nach Leibniz gibt
der Quotient der Differentiale dy und dx in einem Punkt mit Abszisse x und Ordinate
v die Steigung der Tangente in diesem Punkt an. Aufer Differentialen 1. Ordnung wie
dx und dy betrachtet Leibniz auch Differentiale hoherer Ordnung, etwa ddx, ddy. Dif-
ferentiale hoherer Ordnung sind im folgenden ohne Bedeutung. Mit modernen Begriffen
kann man die Regel zur Bildung von Differentialen 1. Ordnung wie folgt beschreiben: Ist
¥ = f(x) ein algebraischer Ausdruck (der mit Hilfe der Operationen Addition, Subtrak-
tion, Multiplikation, Division und Wurzelziehen gebildet wurde), so ist das Differential

4Es sei angemerkt, dass im zweiten Beispiel der Wert 2« der stetig ergéinzten Funktion an der Stelle & mit Hilfe
der dritten binomischen Formel schneller gefunden werden kann als mit Hilfe der Regel von I"'Hopital.

37u deutsch: . .. wenn man das Differential des Zahlers bestimmt hat und dividiert dieses durch das Differential
des Nenners, so erhilt man nachdem man x = « gesetzt hat, ... den Wert der gesuchten Ordinate ... BD.
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dy = f/(x)dx. Mit . f'(x)“ ist in dieser Gleichung natiirlich nur der algebraischen Aus-
druck gemeint, welcher der modernen Ableitung f/(x) entspricht und nicht eine Ablei-
tungsfunktion. Ist beispielsweise y = x3, so gilt nach Leibniz fiir die Differentiale dx und
dy, dass dy = 3x%dx.

Wird die Zihlerkurve mit f (x) bezeichnet und die Nennerkurve mit g(x) und ist y; =
fx)und yo = g(x), so ist gemal dem Leibnizschen calculus der Quotient der Differen-

tiale
dyi _ f "(x)dx
dy:  g'(x)dx
und damit nach Kiirzen des ..reinen Symbols™ dx
dyr _ f'(x)
dyy  g'(x)
Der Quotient der Differentiale hat dann an der Stelle ¢ den Wert -g((;‘)) :
Die beiden oben genannten originalen Beispiele von 1"Hopital mdgen dieses Vorgehen
erldutern:

(i) Esist
A 3
a’ —2x aa 3a
df = dx — dx und dg = — dx
4 J2a3x — x? 3V axx 4\/4 a3x

und daher ist der Quotient %ﬁ an der Stelle a
£

—(4/3)adx 16

—@/4dx 9
(ii) Esist
a
dx,
ax

2 Jax

und daher ist der Quotient %g an der Stelle a gleich 2a4.

df = —adx und dg = —

Die Begriindung der Regel ist fiir heutige Leser schwer nachzuvollziehen. L"Hopital be-
trachtet einen Punkt ¢ der Kurve, der ,,unendlich nahe” bei D liegt und die Abszisse b
besitzt (vgl. die obige Figur). Da d unendlich nahe bei D liegt, unterscheiden sich die
Ordinaten von D und & ,,nicht”. Die Ordinate bd von d ist gleich dem Quotienten der
entsprechenden Werte der Zahler- und der Nennerkurve bd = b7 Nach I’Hopital sind bf
und bg ebenfalls unendliche kleine GroBen und zwar gerade dieg Differentiale der Zihler-
und der Nennerkurve im Punkt B. — Voila!

Wenn man diese Argumentation liest, wird verstindlich, dass iiber die unendlich kleinen
GroBen, iber deren Natur und Eigenschaften, leidenschaftlich gestritten wurde. Bischof
Berkeley bezeichnet in einer beienden Polemik, die sieben Jahre nach Newtons Tod er-
schien, infinitesimale GroRen als ,,ghosts of departed quantities™. Dieser Kritik wird auch
heute noch zugestimmt (vgl. Kleiner (2001), der von ,.Berkeley’s main and correct criti-
cism* spricht).®

6Diese Vorwiirfe sind ungerechtfertigt, der calculus lasst sich als eine konsistente Theorie rekonstruieren, vgl.
H.J. Burscheid & H. Struve (2001}
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So lobte die 1700 von Leibniz gegriindete Berliner Akademie der Wissenschaften einen
Preis fir denjenigen aus, der erkliren konne, ,how ... so many correct theorems have
been deduced from a contradictory supposition [the existence of infinitesimals]™ (zitiert
nach I. Grattan-Guinness (1980)). Da kein Beitrag die geforderte klare und prézise Theorie
enthielt, versuchte sich der Vorsitzende der Berliner Akademie, Lagrange, selbst an einer
Losung. Diese betrachten wir am Beispiel der Regel von 1’'Hopital im nachsten Abschnitt.

2 Lagrange: ein erster Beweis

1797 erschien die Théorie des fonctions analytiques von Joseph Louis Lagrange, ein be-
deutendes Lehrbuch des 19. Jahrhunderts. Wir betrachten, wie er die Regel von 1’Hopital
behandelt. Dabei zitieren wir im folgenden aus der deutschen Ubersetzung ,.Theorie der
analytischen Funktionen® von J.P. Gruson aus den Jahren 1797/98.

Zu Beginn von §39 heilit es:

. wollen wir die Theorie von der Methode lehren, um den Werth eines
Bruchs, in dem Fall, wo Z#hler und Nenner zu gleicher Zeit Null werden, zu
finden. Es sey % ein solcher Bruch’, wo fx und Fx Funktionen von x sind,
und wo die Voraussetzung von x = a sie beyde zu gleicher Zeit zu Null macht.

Man verlangt den Werth dieses Bruchs, wenn x = a.

Dies liest sich wie die moderne Formulierung des Problems, das zur Regel von I"Hdpital
fithrt. Es geht nicht mehr — wie noch bei 1"Hopital —, um die Bestimmung der Ordinate
eines Kurvenpunktes, sondern um die Bestimmung des Wertes eines algebraischen Aus-
druckes, einer Quotientenfunktion.

Schaut man sich an, wie Lagrange dieses Problem 16st, so sieht man aber, dass er noch
ein betrichtliches Stiick von der modernen Auffassung der Analysis entfernt ist. Lagrange

setzt
_f®
gaey
und formt diese Gleichung um zu y F(x) = f(x). Mit Hilfe der Produktregel erhilt er
dann

YFxy+yF (x)= f'(x).

Nun setzt Lagrange x = a und bekommt wegen F(a) = 0 fiir den Wert der Quotienten-
funktion y an der Stelle a
_ f@)
TP

Auch bei Lagrange treten noch keine Grenzwerte auf. Der Wert der Quotientenfunktion an
der Stelle a ist der Wert des Quotienten der Ableitungen der Zihler- und der Nennerfunk-
tion an der Stelle «, nicht etwa der Grenzwert der Quotientenfunktion der Ableitungen
fiir x gegen a. Die Existenz dieser Ableitungen werden vorausgesetzt. Aber was versteht
Lagrange unter den Ableitungen, wenn er noch keine Grenzwerte kennt?

7Lagrange schreibt noch [x statt f(x).
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Das Ziel, welches Lagrange in seiner Théorie ... verfolgt, geht aus dem vollstandigen
Titel hervor:

Theorie der analytischen Funktionen, in welcher die Grundsiéitze der Differen-
tialrechnung vorgetragen werden, unabhingig von Betrachtung der unendlich
kleinen oder verschwindenden Gréssen der Grenzen oder Fluxionen, und zu-
riickgefiihrt auf die algebraische Analysis.

Lagrange wollte den calculus auf eine rein algebraische Basis stellen, um ihn von den pro-
blematischen Begriffen der infinitesimalen oder unendlichkleinen Groflen (Ieibniz) und
Fluxionen (Newton) zu befreien. Funktionen waren fiir ihn innerhalb dieser sog. alge-
braischen Analysis analytische Ausdriicke, die mit Hilfe von Variablen, Konstanten und
den iiblichen algebraischen und transzendenten Operationen gebildet wurden, aber auch
durch Differenzieren und Integrieren. Jede Funktion besitzt fiir LLagrange eine Potenzrei-
hendarstellung, wobei diese nicht die Funktion definiert sondern lediglich eine weitere
Darstellung ist — allerdings eine wichtige: Lagrange definiert die Ableitung einer Funktion
als zweiten Koeffizienten der entsprechenden Taylorreihe — also entsprechend dem Ziel
seiner Arbeit, ohne Bezug auf infinitesimale und geometrische GroBen, rein algebraisch.

i2
D = SO+ @+ W+

Aber auch hier ist noch Vorsicht geboten: Funktionen f(x) und deren Ableitungen f/(x)
sind fir Lagrange algebraische Ausdriicke, deren Referenzobjekte nicht der Graph der
Funktionen im modernen Sinne sind (also die Menge alle Paare (x, f(x)), sondern die
eine eigenstindige Bedeutung besitzen — mit den Worten von C.G. Fraser (1980, S. 263):

To prove a theorem was to establish its validity on the basis of the general
formal properties of the relations, functions, and formulae in question. The
essence of the result was contained in its general correctness, rather than in
any considerations what might happen at particular numerical values of the
variables.

Man kann dies auch so interpretieren, dass lLagrange unterstellt, dass algebraische
Ausdriicke Kurven mit verniinftigen Eigenschaften bezeichnen — so wie das in den von
I’Hbpital gegebenen Beispielen aus Abschnitt 1 auch der Fall ist: Zahlerfunktion, Nenner-
funktion und die Quotientenfunktion sind fast iiberall differenzierbar im modernen Sinne.
Fraser (1980, S. 262) bringt dies wie folgt zum Ausdruck:

For the 18th-century analyst, functions are things that are ‘out there’, in the
same way that the natural scientist studies plants, insects or minerals, given in
nature. As a general rule, such functions are very well-behaved, except possibly
at a few isolated exceptional values.

Setzt man dies voraus, was hat Lagrange dann bewiesen? Man kann seine Version der
1"Hopitalschen Regel in etwa wie folgt in moderner Sprache paraphrasieren:

Sind die Funktionen f(x), F(x) in einem Intervall 7 um den Punkt a differen-
zierbar (und als Taylorreihen darstellbar) und ist f(a) = Ound #(a) = O und
besitzt die Funktiony = '}% an der Stelle a eine stetige Erganzung, so dass
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die ergiinzte Funktion ¥ im Intervall I differenzierbar ist, so gilt an der Stelle

a,dass ¥ = %

Fiir diesen Satz gilt der Lagrangesche Beweis (mit ¥ statt y an den entsprechenden Stellen).

Bemerkung. Die Differenzierbarkeit der auftretenden Funktionen im Intervall 7 soll zum
Ausdruck bringen, dass die Funktionen ,,verniinftige™ Eigenschaften besitzen bzw. Namen
von Kurven mit ,.verniinftigen” Eigenschaften sind. Man kann diese abschwichen, wie der
folgende moderne Beweis der Lagrangeschen Version der Regel von 1’'Hbpital zeigt:

o _fo-sf@ S @
F(x) F(x)—Fla) %f“ F'(a)

fir x> a.

Es geniigen also die Voraussetzungen, dass die in einer Umgebung von a definierten Funk-
tionen f und F an der Stelle a den Wert 0 annehmen, dass die Ableitungen f”(x) und
F’(x) lediglich an der Stelle x = a existieren und F'(a) # O ist (vgl. Heuser (1988,
S. 286)).

3 Lacroix: ein modifizierter Beweis

Wir kommen zum nichsten von uns betrachteten Autor, Sylvestre Frangois Lacroix. In
den Jahren 1797-1800 erschien sein dreibindiges Werk Traité du calcul différentiel et
du calcul intégral. Der Autor versucht in diesem Werk eine umfassende, enzyklopidische
Darstellung des calculus, der diesen fiir das nachste Jahrhundert zuganglich machen sollte.
Wir zitieren im folgenden aus der deutschen Ubersetzung , Lehrbegriff des Differential-
und Integralcalculs* von J.P. Gruson aus den Jahren 1799/1800.

Die Grundlagen des calculus sind fiir Lacroix dieselben wie fiir Lagrange. Funktionen sind
fiir ihn algebraische Ausdriicke, die sich als Reihen darstellen lassen, dessen erster Koef-
fizient mit f’(x) symbolisiert wird und gelegentlich von Lacroix als ..derived function*
bezeichnet wird. Lacroix widmet immerhin 23 Seiten dem Thema ,,Von den Ausdriicken,
die in gewissen besonderen Fillen % werden®. Er spricht auch, wie Lagrange, von ,,dem

wahren Werthe einer Function, die g wird®.
Die Regel von I’Hopital formuliert er wie folgt (Nr. 136):

Um den wahren Werth einer Function zu erhalten, die % wird, wenn man x
einen besonderen Werth giebt, so muf3 man ihren Zéhler und Nenner differen-
tiiren, bis dass man fiir den einen oder fiir den anderen ein Resultat findet,
welches nicht verschwindet; die vorgegebene Function wird im ersten Falle
unendlich seyn, Null im zweyten, und wenn sie einen endlichen Werth hat, so

wird man zu gleicher Zeit zwey nicht verschwindende Resultate begegnen.

Diese Aussage unterscheidet sich von der Lagrangeschen nicht in den verwandten Begrif-
fen sondern im Umfang der Regel: Lacroix betrachtet auch den Fall, dass man mehrfach
differenzieren muss, um zu einem Ergebnis zu gelangen. Interessant ist sein Beweis, der
sich von dem Lagrangeschen darin unterscheidet, das er von den Taylorreihen entschei-
dend Gebrauch macht. Den allgemeinen Beweis, der aufgrund seiner Notationen mithsam
zu lesen ist, erlautert er zundchst an dem Beispiel #. Fir x = 0 erhilt man einen
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Bruch vom Typ g. Aufgrund der Taylorreihenentwicklung der Exponentialfunktion an der

Stellex =0 5
In(a) (nfe)y= ,

Aty v
ergibt die Anwendung der obigen Regel den Quotienten (wobei fiir Lacroix die erste Ab-
leitung f'(x) der zweite Koeffizient der Reihenentwicklung ist)

In(a) — In(b)
1 .

Soweit unterscheidet sich das Vorgehen von Lacroix noch nicht von dem Lagrangeschen.
Die Begriindung der Korrektheit des Ergebnisses ist aber neu. Lacroix argumentiert mit
der Reihenentwicklung der Funktion a* — b*. Es ist

a* —b*

a* =1+

=1In(a) — In(b} + (In(a)? — ln(b)Q)% oo

Setzt man x = 0, so erhiilt man den Wert In(a) — In(%).
Diesen Ansatz formuliert Lacroix dann mit Variablen und hat — modern formuliert — fol-
gende Version der Regel von 1"Hopital bewiesen:

Sind die Funktionen f(x)und g(x)um den Punkt a in Taylorreihen entwickel-
bar (d.h. insbesondere unendlich oft differenzierbar) und ist f(a) = g(a) =0
und sind die ersten £ — 1 Ableitungen von f und g an der Stelle a alle gleich
Null, so ist

f@) 0@

glay  ¢®(a)

4 Cauchy: der moderne Ansatz

1821 erschien das erste Lehrbuch der Analysis, in dem die Differential- und Integralrech-
nung systematisch auf dem Grenzwertbegriff gegriindet wurde, die Cours d’analyse von
A.-L. Cauchy. Wir zitieren im folgenden aus der deutschen Ubersetzung von C.H. Schnuse.
Der Beweis der Regel von 1"Hopital, den Lacroix fithrt, beruht wesentlich auf der Voraus-
setzung, dass die betrachteten Funktionen in eine Taylorreihe entwickelt werden konnen.
Cauchy entdeckte, dass dies nicht immer der Fall ist: Es gibt Funktionen, deren Taylorrei-
he nicht die Funktion darstellt. Das von Cauchy angegebene Beispiel, das man noch heute
in fast allen Lehrbiichern zur Differential- und Integralrechnung findet, lautet (S. 103)

F(x)=exp(—1/x?) fir x#0
und
F(x):O fir x=0.
Die Taylorreihe in O verschwindet identisch, die Funktion F aber nicht.

Cauchy brauchte daher einen anderen Beweis der Regel von 1"Hbpital als Lacroix. Die
Regel formuliert Cauchy wie folgt (Iehrsatz 1 der fiinften Vorlesung, S. 42):

Wenn ein besonderer Werth des Verhiltnisses }% unter der Form % erscheint,

so fallt dieser Werth mit dem correspondirenden Werthe des Verhiltnisses F:L(g
zusammen.
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Den ,,wahren Werth* des Bruches (Cauchy, S. 41) bestimmt Cauchy mit Hilfe der heute als
.verallgemeinerter Mittelwertsatz der Differentialrechnung™ bezeichneten und wie folgt
formulierten Aussage (vgl. etwa Walter, S. 256)

Die Funktionen f. F seien in [a, b] stetig und in (a, b) differenzierbar. AuBer-
dem sei ' # 0Qin (&, b). Dann existiert ein & € (a, b) mit

O - f@
Fo) - Fla)  F(©

Ist nun f(¢) = F(c) = O fiirein ¢ € (e, b), so gibt es zu jedem & € (@, ¢) ein x € (x, ¢)

miut ,

[0 = [©) _ ['©)

Flx}-Flc) F(&)
Die Regel von 1"Hopital folgt damit fiir x — ¢ (falls der entsprechende Grenzwert exi-
stiert).

Durch eine wiederholte Anwendung der obigen Regel beweist Cauchy dann auch die all-
gemeinere oben angegebene Regel von Lacroix.

Das ist der heutige Standardbeweis der Regel. — Es sei angemerkt, dass die Regel von
I’Hbpital auf zahlreiche Arten modifiziert werden kann, nicht nur hinsichtlich der Vor-
aussetzungen der betrachteten Funktionen (vgl. etwa Rickert, N.-W. (1968)und Boas, R.P.
{(1986)), sondern auch hinsichtlich der betrachteten Limites — einseitige und uneigentliche.
Noch in den Jahren 1879/80 erschienen in den Mathematischen Annalen zwei Artikel von
O. Stolz (1879/80) mit dem Titel ,.Uber die Grenzwerthe der Quotienten, in denen er den
Typ & diskutiert.

Schlussbemerkung

Mathematik wird in Lehrbiichern (und Vorlesungen) in der Regel auf eine systematische
Art dargestellt, so dass beim Leser den Eindruck entstehen kann, die Mathematik kenne
keine Zeitstromungen. Das Beispiel der historischen Entwicklung der Regel von 1"Hopital
soll zeigen, dass dieser Eindruck tauscht. Gegenstande, Begriffe und Methoden der Ana-
lysis sind im Laufe der Zeit geindert und weiterentwickelt worden.

Zu den Gegenstinden. Wihrend 1"Hopital Kurven untersucht, stehen bei Lagrange und
Lacroix Funktionen im Zentrum des Interesses, allerdings noch nicht im modemen Sinne.
Erst bei Cauchy findet man den modernen Funktionsbegriff.

Zu den Begriffen. Der Ableitungsbegriff — fiir die Regel von 1’"Hopital in heutiger Formu-
lierung zentral — tritt bei 1"'Hopital noch nicht auf. Er spricht iiber Differentiale im Sinne
von unendlich kleinen Grofen. Lagrange und Lacroix verwenden Koeffizienten von Rei-
henentwicklungen und erst bei Cauchy findet man den modernen Ableitungsbegriff.

Zu den Methoden. Die Regel von 1I’"Hopital wurde verschieden ,.bewiesen®. L"Hdopital
stellt lediglich eine Plausibilititsiiberlegung an. Lagrange formt algebraische Ausdriicke

8Vl hierzu D. Spalt (1996).
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um, die er auf eine spezielle Weise interpretiert. Erst die Beweise von Lacroix und Cauchy
genligen in etwa modernen Mafstiben.

Auch Mathematik ist eine Wissenschaft, die Zeitstromungen kennt und entsprechend den
jeweiligen Zeitumstinden weiterentwickelt wird. Diese Erkenntnis sollte insbesondere je-
der Lehrer besitzen — und hierzu einen Beitrag zu leisten, ist das Ziel der vorliegenden
Arbeit.
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