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I Elemente der Mathematik

Bishop curves and orthogonal trajectories

Clark Kimberlmg and Peter Moses
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department at the University of Evansville, m Evansville, Indiana

Peter Moses is an engineer who owns and runs a small company based m the UK
The company specializes m chaplets and rivets composed of mild steel, stainless steel,

aluminium, etc and serves various industries

1 Introduction
In a geometry seminar at the University of Illinois m March 2010, we presented the cubic
quadrarc as the intersection of the cylinders x2 + y2 1 and x2 + z2 1, and also as the

intersection of the sphere v2 + y2 + z2 2 and the cube having vertices (=bl, =bl, =bl).
During the discussion, Professor Richard Bishop pointed out that this curve, consisting of
four arcs, is only 1-smooth at the joints of arcs. He suggested an intersection of elliptic
cylinders, and by varying them we obtain a family of Bishop curves which are everywhere
infinitely smooth.

By an "elliptic cylinder" we mean a cylinder whose base is an ellipse. Figures 2 and 3

indicate that for each pair of intersecting elliptic cylinders, one is parallel to the v-axis,
and the other, to the y-axis. In order to tell more about these cylinders (at the end of this
section) we begin with the parametric equations given by Professor Bishop. Let S denote
the sphere v2 + y2 + z2 2. The T-Bishop curve on S, for any T m [—1, 1], is the union
of four arcs, the first given by

*(/) ZV+m-T2t), y{t) 7(1 — 0(1 + T2t), z{t) a/277,

Der vorliegende Beitrag ist eine hübsche Ausarbeitung einer Fragestellung aus dem
Bereich der Differentialgeometrie von Kurven und Flachen. Die Autoren untersuchen

glatte Kurven, die als Durchschnitt von elliptischen Zylindern und einer Sphäre entstehen.

Fur diese sogenannten Bishop-Kurven werden mit Hilfe der Mercator-Projektion
die orthogonalen Trajektorien explizit berechnet. Die Ergebnisse der Arbeit werden
durch ansprechende Graphiken illustriert.
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Fig. 1 Cubic quadrarc Fig. 2 Bishop curve

where — 1 < t < 1. The arcs are then given by

arc 1: (x, y, z), arc 2 : (y, —v, —z), arc 3 :(—v,—y,z), arc 4 :(—y,x,—z).

Using U V2 — 272, endpoints and midpoints are shown in Table 1.

Table 1. Eight special points on arcs 1-4

t -1 t 0 t 1

arc 1 (0, U, -V2T) (1,1.0) (U, 0, V2T)

arc 2 (u, o, v^r) (1,-1,0) (0, -U, -J2T)

arc 3 (0, -U, -V2T) (-1,-1,0) (-U, 0, V2T)

arc 4 (-U, 0, V2T) (-1,1,0) (0, U, -V^T)

The four points for which t 0 lie on the equator, z 0. If T >0, then arc 1 rises through
the equator at (1, 1,0), up to (U, 0, V27), where it meets arc 2. The curve continues
around the sphere, returning to arc 1.

Ten Bishop curves, obtained by taking T 0.09, 0.19, 0.99, are represented in Figure

3, where they indicate that as T increases, certain angles associated with the T-Bishop
curves increase, in accord with a one-to-one correspondence with T. Let a be the maximal-
sized angle, from the origin, between the curve and the equator, so that a is the directed

angle between the segments (0, 0, 0)-to-(V2, 0, 0) and (0, 0, 0)-to-(U, 0, <s/2T). Let ß be
the directed acute angle that the curve makes wherever it crosses the equator. The
correspondence between T and the two angles is then given by

T sin of tan(/3/2).

It is easy to show that each of the intersecting cylinders has minor axis of length (1 +
T2)/\T\ 21 cscß| and major axis of length 2^2| csc/3|, and that the distance from
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Z

Fig. 3 Ten Bishop curves

either cylindrical axis to the vy-plane is

1 — T2 r- cos of cot of
——— v 2 cot ß —
V2T \fl

2 Another parametrization
In this section, assume that T > 0 and project arcs 1 and 2 orthogonally onto the yz-plane.
The resulting curve is a portion of the ellipse

2
z2 1 - T2

y + 2T —F—z — i-
2 y^2T

Completing the square and putting y —k\ sin t gives z — cos t — A-i), where

1 + T2 1 -T2
k\ and K2IT IT

Then x yjl — y2 — z2. Using both (x,y,z) and (—x, — y, z), the portion of the Bishop
curve thus far accounted for comprises the top half, corresponding to z > 0, which is to
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say that — arccosfe/^i) < t < arccosFor the bottom half, project arcs 3 and 4

onto the vz-plane, and proceed as before. Regarding (x,y,z) as the first of four new arcs
that comprise the curve, the final results are as shown here:

arc 1 ':(x,y,z), arc 2r\ (—y, x, —z), arc 3': (—v,—y,z), arc 4r: (y, —x, — z)

Using these arcs, we have, m Table 2, the same eight points as m Table 1. Here, however,
the joints of neighboring arcs are midpoints m Table 1, and midpoints m Table 2 are joints
m Table 1.

Table 2. Eight special points on arcs 1 '-4'

t — — arccos(&2/&i) t 0 t — arccos(k2/k\)

arc 1' (1,-1,0) (U, 0, V2T) (1,1,0)

arc 2' (1,1,0) (0, U, -V2T) (-1,1,0)

arc 3' (-1,1,0) (-U, 0, V2T) (-1,-1,0)
arc 4' (-1,-1,0) (0, -U,-V2T) (1,-1,0)

The first parametrization shows that for T < 1, the T-Bishop curve is analytically smooth

except possibly at the four joints, shown m column 3 of Table 1. The second parametrization

shows that the same curve is analytically smooth at those four points. (Analytically
smooth means that at every w, there is a neighborhood of N(u) of values t for which there

is a parametrization x(t), y(t), z(t) such that each of these has a convergent Maclaurm
series; analytic smoothness implies infinite smoothness, m the sense that x^n\ y^n\ z^
exist and are continuous m N(u).)

3 Orthogonal trajectories
Among of the most charming objects m elementary differential equations are orthogonal
trajectories - curves m a plane with the remarkable property that wherever one of them
meets a curve m a prescribed family, the angle of intersection is tt/2. In this section, we
shall determine families of orthogonal trajectories on a sphere: v2 + y2 + z2 R2, on
which longitude O arcsm(z/R) and latitude A arctan y/x. For the 7-Bishop curve,

r- /(I - 7)(1 +tT2)
R V2, O arcsm(7r), A arctan J r—

V (i + 0(i-*r2)
Now apply the Mercator angle-preservmg mapping to uv-plane, using u A and v

arctanh(sm O). Eliminating t leaves

v (l/2)arcsmh^2r cos ^2)'

so that

dv/du —2Ty/1 + T4 + 2T2 cos(4u) sm(2u)
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Fig. 4 Bishop curves and orthogonal trajectories

Eliminating T leaves

dv/du =b tan 2u tanh 2v,

so that the orthogonal trajectories are given by

dv/du =f cotlu coth2p,

with general solution v =b arcsech(£csc2w), where 0 < k < 1 and 0 < u < tt/2.
Next, apply inverse Mercator projection with O arctan(sinh v) and A u. Writing t for
A, we then have parametric equations for the spherical curves which are the orthogonal
trajectories of the Bishop curves:

x(t) 2J ; cos E
k sin 21

y(t) 2a/,
i 0 sinf,

k + sin 21

z(t) ±
—2k + 2 sin2f

k + sin 2f

where 0 < & < 1 and (1/2) arcsin& < t < (1/2)(tt — arcsin&).

An interesting spinoff is yet another parametrization of the T-Bishop curve, found as

orthogonal trajectories of orthogonal trajectories:

2t
x(t) —

y(t)

/i + yi + *2(i -2tW
2Vl -t2

/\ + J\+k2{\ -2pj^
2k (2t2 - 1)

z(0

/l +71+^2(1 -2f2)2
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Fig. 5 Elliptic cylinders intersecting sphere in orthogonal trajectories
of Bishop curves

where k 27/(1 — 72), — 1 < T < 1, — 1 < t < 1. This is one of 2 arcs - instead
of 4 - so that there are only 2 joints to be examined for infinite smoothness; indeed, by
symmetry, we have infinite smoothness at those 2 joints.

Note that, with a small number of exceptions, every point on the sphere lies on exactly one
Bishop curve and on exactly one of the orthogonal trajectories.

At an October 2010 session of the aforementioned seminar, Professor John Wetzel, upon
viewing Figure 4, suggested that the orthogonal trajectories may be intersections of elliptic
cylinders with the sphere. Indeed, the family is given by

where —it < 0 < it. Figure 5 shows two of these cylinders. Be sure to visit the related
animation ([2], item 26).

The orthogonal trajectories of Bishop curves are also intersections of hyperbolic cylinders
with a sphere. These cylinders are given by

x2 + 2xy/k + y2 =4

and are typified by the animation ([2], item 28).
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4 Complementary cylinders

What others pairs of cylinders intersect in smooth curves on a sphere? We begin with an

example: the intersection of a parabolic cylinder and a circular cylinder. Let

where (1 — \/5)/2 < t < 1, so that v, y, z are all > 0. Define four arcs by

arc 1 :(v,y,z), arc 2 :(—v,y,z), arc 3 :(x,—y—z), arc 4 :(—x,—y,z).

The curve G consisting of the four arcs has the following properties:

(1) G lies on the sphere x2 + y2 + z2 2;

(2) the orthogonal projection of G onto the yz-plane is the part of the parabola given by
z 1 — y2 and z > (1 — \/5)/2; and

(3) the orthogonal projection of G onto the vz-plane is the part of the circle given by
v2 + (z - 1/2)2 5/4 and (1 - V5)/2 < z < 1;

that is, letting cp (1 + V5)/2 be the golden ratio, all of the points of the circle except
those satisfying 1 < z < (p. The curve G is shown in Figure 6.

x/1 +t — t2, y x/1 — t2, z t,

Fig. 6 The curve G as the intersection of the cylinders x2 1+z—z2
and y2 1 - zand y2
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As the example suggests, one can start with an arbitrary cylinder C parallel to the y-axis
and, by intersecting with a sphere v2 + y2 + z2 7?2, create a second cylinder, parallel to
the v-axis We shall call this second cylinder the complement of C and denote it by C1- If
C is given by y /(z), then C1- is given by

x2 R2- [f(z)]2 - z2

This equation shows that if the yz-trace of C is a conic, then the vz-trace of C1- is also a

conic Picture 9 m [2] shows intersecting horizontal hyperbolic and elliptic cylinders
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