Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 68 (2013)

Rubrik: Aufgaben

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Neue Aufgaben

Lösungen sind bis zum 10. Mai 2014 erbeten und können auf postalischem Weg an

Dr. Stefan Grieder, Im eisernen Zeit 55, CH-8057 Zürich

gesandt werden. Lösungen, die in einem gängigen Format abgefasst sind, können als Attachment auch über die E-Mail-Adresse stefan.grieder@hispeed.ch eingereicht werden.

Aufgabe 1320: Man setzt voraus, dass die Gleichung $z^2 + pz + q = 0$ mit reellen Koeffizienten p, q verschiedene reelle Lösungen x, y besitzt. Diese können bei gegebenem p, q aus dem nicht-linearen Gleichungssystem

$$x + y + p = 0$$
$$xy - q = 0$$

mit Hilfe des bekannten Newtonschen Verfahrens zur Nullstellenbestimmung für zwei Unbekannte iteriert werden.

Welche Iterationsgleichungen erhält man so, und bei welcher Lage der verschieden gewählten (reellen) Startwerte x_0 , y_0 bezüglich der exakten Lösungen x, y bricht das Verfahren ab?

Roland Wyss, Flumenthal, CH

Aufgabe 1321: Gegeben seien die Seiten eines konvexen Sehnen-n-Ecks ($n \ge 5$). Man berechne den Flächeninhalt desselben. Man führe die Rechnung explizit numerisch durch in den folgenden beiden Fällen:

- a) Sehnen-5-Eck mit den Seiten 18, 11, 6, 4, 3.
- b) Sehnen-7-Eck mit den Seiten 9, 8, 7, 6, 5, 4, 3.

Johannes M. Ebersold, St. Gallen, CH

Aufgabe 1322 (Die einfache dritte Aufgabe): Für feste ganzzahlige $m \geq 0$ betrachte man die Diagonalsummen

$$a_{n,m} = \sum_{j>0} \binom{n-jm}{j}$$

im Pascal-Dreieck. Welcher Rekursion genügt die Folge $a_{n,m}$ (n = 0, 1, 2, ...)?

Jany C. Binz, Bolligen, CH

Lösungen zu den Aufgaben in Heft 4, 2012

Aufgabe 1308. Seien a und b positive reelle Zahlen mit a + b = 1. Beweise, dass

$$\frac{83}{90} < a^{\tan\left(\frac{\pi b}{2}\right)} + b^{\tan\left(\frac{\pi a}{2}\right)} \le 1.$$

Albert Stadler, Herrliberg, CH

Auswertung der eingesandten Lösungen. Es sind Beiträge von folgenden 5 Lesern eingegangen: Hans Brandstetter (Wien, A), Friedhelm Götze (Jena, D), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A) und Paul Weisenhorn (Achern, D).

Alle Leser mussten sich mehr oder weniger auf numerische Berechnungen stützen. Wir folgen der Lösung von *Hans Brandstetter*.

Wir lösen die Aufgabe, indem wir Maximum und Minimum der (auf den Rand stetig fortgesetzten) Funktion

$$f(a,b) = a^{\tan\left(\frac{\pi}{2}b\right)} + b^{\tan\left(\frac{\pi}{2}a\right)}$$
 mit $a+b=1, a \ge 0, b \ge 0$

suchen. Im Funktionsterm von f können wir auf Grund der Nebenbedingung die Variable b durch b=1-a ersetzen. Dadurch bekommen wir eine Funktion in einer Variable. Von dieser Funktion müssen wir Maximum und Minimum auf dem Intervall [0, 1] bestimmen.

Ein Blick auf den Funktionsgraphen von g(a)=f(a,1-a) zeigt uns das Problem. Für Maxima kommen die Randpunkte und die Stelle $a=\frac{1}{2}$ in Frage. Es gilt:

$$\lim_{a \to 0^+} g(a) = g(\frac{1}{2}) = \lim_{a \to 1^-} g(a) = 1.$$

Dass der Hochpunkt tatsächlich genau an der Stelle $a=\frac{1}{2}$ liegt, kann man zeigen, indem man nachweist, dass $g'\left(\frac{1}{2}\right)=0$ und $g''\left(\frac{1}{2}\right)<0$ gilt.

Wegen $g(\frac{1}{2}+x)=g(\frac{1}{2}-x)$ ist die Funktion symmetrisch bezüglich $x=\frac{1}{2}$ und es reicht den Minimalwert in der Nähe von 0.25 genauer zu untersuchen. Mit dem Newtonschen Näherungsverfahren können wir die Minimalstelle mit beliebiger Genauigkeit bestimmen. Wir legen links vom Tiefpunkt und in dessen Nähe eine Tangente an die Kurve, wobei wir sowohl den Funktionswert als auch die negative Steigung der Tangente nach unten runden. Damit liegt die Tangente auf dem Intervall [0,1] auf jeden Fall unterhalb der Kurve. Dann

zeigen wir, dass alle Werte der Tangente grösser als $\frac{83}{90}$ sind. Als Stelle der Tangente wählen wir a=0.26175. Wir bekommen

$$g(0.26175) = 0.922291...$$
 und $g'(0.26175) = -0.0000339532...$

Die Gerade t(a) = 0.92229 - 0.0000336(a - 0.26175) liegt mit den vorgenommenen Rundungen sicher unterhalb der Kurve. Da die Gerade t(a) negative Steigung hat, ist ihr kleinster Wert auf dem Intervall [0, 1] an der Stelle a = 1. Der nach unten gerundete Wert der Gerade t(a) an der Stelle a = 1

$$t(1) = 0.922265 > \frac{83}{90} = 0.92222222...$$

ist somit immer noch grösser als die angegebene untere Grenze der Ungleichung.

Aufgabe 1309. Einem Kreisringsektor mit den Radien r, R mit $0 \le r < R$ und dem Zentriwinkel α mit $0 < \alpha \le \pi/2$ soll ein Rechteck mit möglichst kleinem Flächeninhalt so umschrieben werden, dass mindestens eine Rechteckseite Tangente des äusseren Kreises ist. Man ist geneigt, dazu der symmetrischen Lage mit einer Rechteckseite als Scheitelpunktstangente des äusseren Kreises den Vorzug zu geben.

Wenn aber der innere Radius r (bezüglich R) genügend klein ist, stösst man auf eine günstigere Lösung.

Man finde dazu ohne Einsatz der Differentialrechnung eine Bedingung für r in Abhängigkeit von R und α .

Roland Wyss, Flumenthal, CH

Auswertung der eingesandten Lösungen. Von folgenden 10 Lesern sind Zusendungen eingegangen: Hans Brandstetter (Wien, A), Walter Burgherr (Rothenburg, CH), Hans Egli (Zürich, CH), Frieder Grupp (Schweinfurt, D), Walther Janous (Innsbruck, A), Joachim Klose (Bonn, D), Walter Nohl (Steffisburg, CH), Walter Vetsch (St. Gallen, CH), Paul Weisenhorn (Achern, D) und Lienhard Wimmer (Isny, D).

Alle Löser finden die Bedingung, indem sie die symmetrische Lösung mit derjenigen vergleichen bei welcher eine Seite des Sektors auf einer Rechteckseite liegt. Nur wenige Leser zeigten, dass es dann dazwischen kein weiteres Minimum mehr geben kann. Wir folgen der Lösung von *Frieder Grupp*.

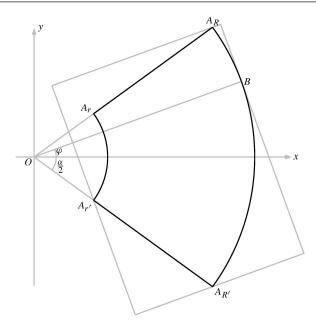
Wir legen den Kreisringsektor so in ein Koordinatensystem, dass der Mittelpunkt der Kreise der Ursprung ist und der Kreisringsektor achsensymmetrisch zur x-Achse liegt. Die "Eckpunkte" des Kreisringsektors sind dann

$$A_{R}\left(R\cos\left(\frac{\alpha}{2}\right), R\sin\left(\frac{\alpha}{2}\right)\right), \quad A_{R'}\left(R\cos\left(\frac{\alpha}{2}\right), -R\sin\left(\frac{\alpha}{2}\right)\right),$$

$$A_{r}\left(r\cos\left(\frac{\alpha}{2}\right), r\sin\left(\frac{\alpha}{2}\right)\right), \quad A_{r'}\left(r\cos\left(\frac{\alpha}{2}\right), -r\sin\left(\frac{\alpha}{2}\right)\right).$$

Weiterhin sei $B(R\cos(\varphi), R\sin(\varphi)), 0 \le \varphi \le \frac{\alpha}{2}$ der Berührungspunkt der Tangente.

Aufgaben Aufgaben



Dann ist die Länge einer Seite des Rechtecks die Länge L_1 des Projektionsvektors $\vec{b} := \overrightarrow{A_{R'}A_R} = \left(0, 2R\sin\left(\frac{\alpha}{2}\right)\right)^T$ auf den Richtungsvektor $\vec{a} := (-\sin(\varphi), \cos(\varphi))^T$ der Tangente, also

$$L_1 = \left| \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} \right| = 2R \sin\left(\frac{\alpha}{2}\right) \cos(\varphi).$$

Die Länge der anderen Seite des Rechtecks ist die Länge L_2 des Projektionsvektors $\vec{b} := \overrightarrow{A_{r'}B} = \left(R\cos(\varphi) - r\cos\left(\frac{\alpha}{2}\right), R\sin(\varphi) + r\sin\left(\frac{\alpha}{2}\right)\right)^T$ auf den Richtungsvektor $\vec{a} := (\cos(\varphi), \sin(\varphi))^T$ der Gerade OB, also

$$L_2 = \left| \frac{\vec{a} \cdot \vec{b}}{\vec{a} \cdot \vec{a}} \vec{a} \right| = R - r \cos(\frac{\alpha}{2} + \varphi).$$

Somit ist die Fläche $F(\varphi)$ des Rechtecks

$$F(\varphi) = 2R\sin\left(\frac{\alpha}{2}\right)\left(R - r\cos\left(\frac{\alpha}{2} + \varphi\right)\right)\cos(\varphi).$$

Es ist

$$F\left(\frac{\alpha}{2}\right) - F(0) < 0 \Leftrightarrow (R - r\cos(\alpha))\cos\left(\frac{\alpha}{2}\right) < R - r\cos\left(\frac{\alpha}{2}\right) \Leftrightarrow r < \frac{R}{2\cos\left(\frac{\alpha}{2}\right)\left(1 + \cos\left(\frac{\alpha}{2}\right)\right)}.$$

Dass es genügt, F an der Stelle $\frac{\alpha}{2}$ zu betrachten, wird gerechtfertigt durch

$$\begin{split} F(\varphi) - F(0) &= 2R\sin\left(\frac{\alpha}{2}\right)\left(R(\cos(\varphi) - 1) + r\left(\cos\left(\frac{\alpha}{2}\right) - \cos(\varphi)\cos\left(\frac{\alpha}{2} + \varphi\right)\right)\right) \\ &= 2R\sin\left(\frac{\alpha}{2}\right)\sin(\varphi)\underbrace{\left(r\sin\left(\frac{\alpha}{2}\right)\cos(\varphi) - \tan\left(\frac{\varphi}{2}\right)\left(R - r\cos\left(\frac{\alpha}{2}\right)(1 + \cos(\varphi))\right)\right)}_{(*)}. \end{split}$$

Da die Funktion $\tan\left(\frac{\varphi}{2}\right)$ im offenen Intervall $\left(0,\frac{\pi}{2}\right)$ streng monoton wachsend und die Funktion $\cos(\varphi)$ streng monoton fallend ist, gibt es in diesem Intervall höchstens einen Wert φ mit $F(\varphi) = F(0)$, nämlich falls der Faktor (*) gleich Null ist.

Aufgabe 1310 (Die einfache dritte Aufgabe). Für wieviele natürliche Zahlen $n < 10^6$ ist die alternierende Ziffernsumme gleich 0?

Jany C. Binz, Bolligen, CH

Auswertung der eingesandten Lösungen. Es sind 17 Beiträge von folgenden Lesern eingegangen:

Hans Brandstetter (Wien, A), Walter Burgherr (Rothenburg, CH), André Calame (Saint-Aubin-Sauges, CH), Charles Delorme (Paris, F), Hans Egli (Zürich, CH), Alex Frei (Au (SG), CH), Daniel Fritze (Berlin, D), Frieder Grupp (Schweinfurt, D), Peter Hohler (Aarburg, CH), Walther Janous (Innsbruck, A), Dieter Koller (Zürich, CH), Walter Nohl (Steffisburg, CH), Beat Schweingruber (Zürich, CH), Michael Vowe (Therwil, CH), Paul Weisenhorn (Achern, D), Lienhard Wimmer (Isny, D) und Roland Wyss (Flumenthal, CH).

Die Anzahl lässt sich über eine Fallunterscheidung der Anzahl Ziffern bestimmen oder aber über die Summen der positiv zu zählenden Ziffern. Ein weiterer Ansatz besteht daraus, einen Koeffizienten eines geeigneten Polynoms zu bestimmen. Diesem Ansatz folgte auch *Charles Delorme*, der das Problem zugleich verallgemeinerte.

Wir stellen das Problem in einen allgemeineren Rahmen und arbeiten mit der Basis p. Dann gibt es p Ziffern $0,1,\ldots,p-1$. Die Anzahl Möglichkeiten einer (maximal) k-stelligen Zahl mit Quersumme q $(0 \le q \le k(p-1))$ ist gleich dem Koeffizienten f_q von X^q im Polynom $F_k = (1+X+\cdots+X^{p-1})^k = \sum_{q=0}^{k(p-1)} f_q X^q$.

Die Anzahl Möglichkeiten einer 2k-stelligen Zahl mit alternierender Ziffernsumme Null ist dann die Summe $\sum_{q=0}^{k(q-1)} f_q^2$. Da das Polynom F_k reziprok ist, ist diese Anzahl auch gleich dem Koeffizient von $X^{k(p-1)}$ im Polynom F_{2k} . Um diesen Koeffizienten am einfachsten zu bestimmen, schreibt man

$$F_{2k} = (1 - X^p)^{2k} (1 - X)^{-2k}$$

und entwickelt. Es ergibt sich dann

$$(1 - X^p)^{2k} = \sum_{i=0}^{2k} {2k \choose i} (-X^p)^i \quad \text{und} \quad (1 - X)^{-2k} = \sum_{i=0}^{\infty} {2k - 1 + i \choose 2k - 1} X^i$$

mit einer für |X| < 1 konvergenten Potenzreihe.

Der uns interessierende Koeffizient ist dann

$$s(p,2k) = \sum_{i=0}^{k-1} (-1)^i {2k \choose i} {(k-i)p+k-1 \choose 2k-1}.$$

Für 2k = 6 ergibt sich $s(p, 6) = \frac{11p^5 + 5p^3 + 4p}{20}$, welcher für p = 10 den Wert 55 252 hat.