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Frobenius conjugacy classes associated to
q-linear polynomials over a finite field

Richard Pink

Richard Pmk ist Professor fur Mathematik an der ETH Zurich Sem Spezialgebiet ist
die arithmetische Geometrie, wobei er insbesondere verschiedene wissenschaftliche

Beitrage zur Arithmetik von Funktionenkorpern positiver Charakteristik geleistet hat
Seme mathematische Ausbildung erhielt er vor allem an der Universität Bonn

Let q be a power of a prime number p. Many of the wonders of algebra m characteristic

p are based on the fact that the binomial coefficients (^) are divisible by p for all integers
0 < m < q. As a consequence, the map v i-> xq on any unitary commutative ring R

with p 1r Or satisfies not only the multiplicativity relation (xy)q xqyq, but also
the additivity relation (x + y)q xq + yq, and is therefore a ring homomorphism. This
homomorphism, called Frobenius, is an important tool for all questions concerning finite
fields of characteristic p.

In this short note we answer an elementary question about the action of Frobenius on the

zeros of a polynomial over a finite field that seems not to have been raised before. The

necessary prerequisites are nothing more than a standard two semester course m algebra.

Throughout this note we fix a finite field ¥q of cardinality q, a finite field extension k/¥q
of degree n, and an algebraic closure k of k. Let oq x i-> xq denote the Frobenius map
on k. Recall that crq x i-> xq acts trivially on k and that the Galois group Gal(k/k) is
the free pro-cyclic group topologically generated by it.

Em Grundproblem der Algebra ist die Bestimmung der Galoisgruppe eines separablen
Polynoms m einer Variablen. Liegen die Koeffizienten des Polynoms m einem endlichen

Korper der Kardmalitat qn, so ist diese Galoisgruppe erzeugt von dem Bild des

Frobenius-Automorphismus x \-^ xq Hat das Polynom zusätzlich die spezielle Form

aoX + a\Xq + + adXq mit ao, ad ^ 0, so wird die Operation von Frobenius
durch eine Matrix m GLd(¥q) repräsentiert. Der vorliegende Artikel beantwortet die

Frage, welche Matrizen auf diese Weise auftreten können fur gegebene q, n und d. In

gewissem Sinn lost dies eine Variante des "Umkehrproblems der Galoistheone" über
endlichen Korpern.
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Fix an integer d ^ 0, and consider a separable q -linear polynomial of degree qd over k,
that is, a polynomial in one variable of the form

d

f(X) y2a'XQ' aoX + a\Xq + + adXqä

1=0

with coefficients at e k, for which ao and ad are non-zero. Since oq \ x i-> xq is the

identity on ¥q, the map k -> k induced by / is ¥q-linear, and so its kernel

Vf := {a e k | f{a) 0}

is an F^-subspace of k. On the other hand the formal derivative of / is the non-zero
constant polynomial ao; hence / has no multiple roots in k. Thus Vf has cardinality qd
and therefore dimension dim^ Vf d. Moreover, the fact that crq acts trivially on k
implies that Vf is mapped to itself under crq. Again the linearity of o^ implies that o^
induces an automorphism of the F^-vector space Vf. In any basis of Vf over F^ this
automorphism is represented by a matrix cpf e GLj(F^), and the conjugacy class of cpf
depends only on the data (q,k, /).
The question we are interested in is whether anything else can be said about cpf if / is

arbitrary. In precise terms we mean:

Question 1. Which conjugacy classes in GLj(F^) arise as cpf for fixed ¥q, k, d, and
arbitrary f?
An answer to this question helps in constructing polynomials with given Galois groups, as

in Ziegler's bachelor thesis on the so-called inverse Galois problem [3].

To help the reader develop a feeling for the situation we suggest the following special cases

as warmup exercises:

2
Exercise 2. For k ¥q and f(X) X + Xq + Xq show that Vf is contained in an

extension ofk ofdegree 3 and that the associated matrix (py is conjugate to (J

Exercise 3. Show that f{X) Xq — aX with a e kx has the associated "matrix"
(py a G GLi(Fg) F^ ifand only z/Norm^/^ (a) a.

Exercise 4. Show that the identity matrix in GLd(¥q) arises as cpf ifand only ifd f n.

(For the last exercise observe that cpf is the identity matrix if and only if Vf C &, and

apply Lemma 13. Note that the last exercise also shows that the question is non-trivial.)

Now we state our general answer to Question 1. For any matrix <p e GLd (F^) we let F^ [cp]

denote the F^-subalgebra of the ring of d x d-matrices over F^ that is generated by (p.

Theorem 5. For any cp e GLd(¥q) and any k/¥q ofdegree n the following are equivalent:

(a) F^ as a module over F^ [cp] is generated by ^ n elements.

(b) Every eigenvalue of cp in k has geometric multiplicity f n.

(c) There exists a separable q-linear polynomial f over k with (py conjugate to (p.
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It may be worthwhile to give yet another equivalent condition in a special case:

Corollary 6. Ifk Fq, the conditions in Theorem 5 are also equivalent to:

(d) (p is conjugate to a matrix of the following form:

/ 0 0 * \
1

0

0

\ 0 0 1*/
Proof We prove that (d) is equivalent to condition (a) of Theorem 5. Since k ¥q, we
have n 1; hence condition (a) means that F^ ' (Pl^v) f°r some vector v. If
this holds, let e be the smallest integer > 0 such that <pe(v) is an F^-linear combination of
the vectors v, <p(v), <pe~l(v). Then the subspace ^q ' *s mapped to itself
under <p, so it actually contains the elements (pl(v) for all i > 0. On the other hand the

vectors v,<p(v), (pe~l (v) are F^-linearly independent by construction; hence the stated

condition is equivalent to saying that these vectors form an F^-basis of ¥d. Of course this

requires that e d. To show that the condition is equivalent to (d), it remains to observe
that the matrix of cp associated to any basis of F^ has the indicated form if and only if that

basis is v, <p(v), cpd~l(v) for some vector v.

By Theorem 5 the matrices of the form in Corollary 6 (d) actually arise for any value of n.
Furthermore:

Corollary 7. For any k/¥q ofdegree n the following are equivalent:

(a) d ^ n.

(b) For every (p e GLj(F^) there exists a separable q-linear polynomial f over k with

(pf conjugate to (p.

Proof By Theorem 5 the condition d ^ n is sufficient for (b). As the identity matrix in
GLd(¥q) satisfies condition 5 (a) if and only if d < n, the condition is also necessary.

Now we begin with the preparations for the proof of Theorem 5. For any positive integer r
we let kr denote the finite subextension of k of degree r over k. Then kr/k is Galois, and
its Galois group Vr := Gal(£r/&) is cyclic of order r with generator yr := crq\kr. We are
interested in the structure of kr as a representation of Vr over F^. By general principles
this is equivalent to describing kr as a module over the group ring F^[rr].

Lemma 8. As an Fq[Fr]-module kr is free of rank n.

Proof Since kr/k is a finite Galois extension, it possesses a normal basis, i.e., there exists

an element y e kr such that the elements y(y) for all y e Tr form a basis of kr over k.
Let x\,..., xn be a basis of k over F^. Then the elements y(y) • xi for all y e Tr and
1 < i < n form a basis of kr over F^. Since the elements y e Tr form a basis of F^[rr]
over ¥q, it follows that x\, xn is a basis of kr as a free module over F^ [Tr].
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Next, for any finite-dimensional representation W of Vr over ¥q let W* := Hom^ (W,Wq)
denote the dual vector space endowed with the contragredient representation of Fr defined

by rr x W* -> W*, (y, I) i-> I o y~K In the special case of the regular representation
Fg[Tr] we obtain:

Lemma 9. The dual representation F^[Tr]* is isomorphic to F^[Tr].

Proof. This is a general fact about group rings of finite groups. Indeed, by direct calculation

one can show that the element i e F^[rr]* defined by ay y i-> ot\ is a basis of
¥q[rr]* as a free module of rank 1 over F^[Tr].

Lemma 10. For any finite-dimensional Fq[Tr\-module W the following are equivalent:

(a) W is generated by ^ n elements.

(b) Every eigenvalue ofyr on W <g>k k has geometric multiplicity f n.

(c) Every eigenvalue ofyr on W* <g>k k has geometric multiplicity f n.

(d) W* is generated by ^ n elements.

Proof. These equivalences are special properties of representations of cyclic groups. We
deduce them from properties of the Jordan normal form in the guise of modules over the

polynomial ring F^[X].
First, we view W as a module over the polynomial ring R := F^[X] such that atXl
acts as at ylr. By the elementary divisor theorem there exist a non-negative integer m
and non-constant monic polynomials Pt e R for all 1 < i < m such that Pt divides
Pl+1 for all 1 ^ i < m and that W R/RPt. Clearly W is then generated by m
elements. Conversely, any irreducible factor P of P\ divides every Pt; hence there exists

a surjection W -» R/RP (R/RP)m. The latter is a vector space of dimension
m over the residue field R/RP; hence it cannot be generated by fewer than m elements.

Together it follows that m is the minimal number of generators of W as an R-module, or
equivalently as a module over F^[rr]. Thus (a) is equivalent torn < n.

Secondly, every Pt divides Pm; hence the minimal polynomial of yr as an endomorphism
of W is Pm; and so the eigenvalues of yr on W <S>k k are precisely the roots of Pm. Write
Pm(X) ]~[j=i(^ ~~ ctj)ßm J with distinct ,as e k and multiplicities ßmj f 1.

Since each Pt divides Pm, we can also write Pt (X) ]~[j=i —aj )ßl 3 multiplicities
> 0. By the Chinese remainder theorem we then have

m m s

k[X]/k[X]P,
1 1 1 1 J 1

as a module over k[X]. For any the geometric multiplicity of the eigenvalue aj
on k[X]/ic[X](X -ocj)^i is 1 if ^ 1, and 0 otherwise. The geometric multiplicity
of aj on W k is therefore the number of indices 1 < i < m with > 0. Of
course this number is always < m. Conversely, at least one of the eigenvalues is a root
of the non-constant polynomial P\ and hence of every Pt. The geometric multiplicity of
this eigenvalue is therefore equal to m, and together it follows that m is the maximum of
the geometric multiplicities of all eigenvalues of yr on W <&k k. Thus (b) is equivalent
to m ^ n.
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Thirdly, the above decomposition of W k induces a decomposition

m m s

W*®kk 0(£[X]/£[X]P,r 00räÄ[X](X-aJ)'1'O*,
1 1 1 1 7 1

where the dual vector spaces in the middle and on the right hand side are taken over k. This
decomposition is invariant under the natural endomorphism induced by y * : IT* -> IT*,
t i-> t o yr. But each non-zero summand k[X]/k[X](X — aj)ßlJ corresponds to a single

indecomposable Jordan block of yr on W <g>k k with eigenvalue otj; hence its dual

corresponds to an indecomposable Jordan block of y * on IT* <S>k k with the same eigenvalue

aj. Moreover, since the contragredient representation on IT* is defined by letting yr
act through (y*)-1, it follows that each non-zero (k[X]/k[X](X — cij)ßl J )* corresponds
to an indecomposable Jordan block of the contragredient action of yr on IT* k with
the eigenvalue otj1. Thus m is also the maximum of the geometric multiplicities of all

eigenvalues of yr in its contragredient action on IT* k. Thus (c) is equivalent to m < n.

The above three characterizations of m already prove the equivalences (a)<^(b)<^(c).
Applying the equivalence (a)<^(b) to IT* in place of W also shows (c)<^(d). This finishes the

proof of Lemma 10.

Lemma 11. The conditions in Lemma 10 are also equivalent to:

(e) There exists an injective homomorphism of¥q[rr]-modules W kr.

Proof. The condition (d) of Lemma 10 is equivalent to saying that there exists a surjec-
tive homomorphism of F^[Tr]-modules ¥q[rr]n IT*. Since Lemmas 8 and 9 provide
isomorphisms of F^[Tr]-modules

K (F,[rrf)* (F,[rr]*r F,[rrf,
this amounts to giving a surjective homomorphism of F^[Tr]-modules k* IT*. By
duality any such homomorphism corresponds to an injective homomorphism of F^[rr]-
modules W kr, and vice versa. Thus (d) is equivalent to (e), as desired.

To prove Theorem 5 we will apply the above results in the special case that r is the order
of the finite group GLj(F^). With this choice we have:

Lemma 12. Any -invariant Fq-subspace U C k ofdimension d is contained in kr.

Proof By Lagrange the rth power of any element of GLj(F^) is the identity matrix. Thus
the power o^r acts trivially on U. But by Galois theory the field of fixed points of o^r on

k is just kr; hence we have U C kr, as desired.

As a final ingredient, the following lemma concerns the passage back from Vf to /:
Lemma 13. For every finite-dimensional -invariant ¥q-subspace U C k there exists a

separable q-linear polynomial f over k with Vf — U.
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Proof. Since U is a finite set, we can form the polynomial f{X) ]~[MGt/(X — w) e k[X],
which by construction is separable with set of zeros U. Moreover, as U is invariant under

Oq, so is /; hence / already lies m k[X]. That / is g-linear follows from its explicit
description m terms of the Moore determinant from [2, Statement III] or [1, Lemma 1.3.6].

Proofof Theorem 5. Consider any matrix cp e GLj(F^). Then by the choice of r and

Lagrange's theorem the rth power <pr is the identity matrix. Thus W ¥dq carries a unique
representation of the cyclic group Vr such that yr acts as (p. The equivalence (a)<^(b)
m Theorem 5 thus follows from the equivalence (a)<^(b) m Lemma 10. By Lemma 11

these conditions are also equivalent to the existence of an mjective homomorphism of
F^[rr]-modules W kr. Giving such a homomorphism amounts to giving a yr -invariant
F^-subspace U C kr and an isomorphism of F^-vector spaces i W ^ U satisfying
i o yr yr o i. By the definition of the actions of yr the last relation is equivalent to
i o cp Gq o i. By Lemma 12 such data is therefore the same as giving a -invariant

F^-subspace U C k and an isomorphism of F^-vector spaces i W ^ U satisfying
l o (p CTq o i.
As explained above, the set of zeros V/ of any separable g-linear polynomial / over k
is a finite-dimensional a-invariant F^-subspace of k. Lemma 13 asserts that, conversely,

every finite-dimensional -invariant F^-subspace of k arises m this way. Giving the above
data is therefore equivalent to giving a separable g-linear polynomial / over k and an

isomorphism of F^ -vector spaces i W Vf satisfying i o cp o o i. But the existence of
such an isomorphism i means that dim^ Vf d and that cp represents the conjugacy class

of Frobenius associated to /, m other words, that <pf is conjugate to cp. Thus altogether we
find that the conditions (a) and (b) of Theorem 5 are also equivalent to condition (c), and

we are done.
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