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Frobenius conjugacy classes associated to
g-linear polynomials over a finite field

Richard Pink

Richard Pink ist Professor fiir Mathematik an der ETH Ziirich. Sein Spezialgebiet ist
die arithmetische Geometrie, wobei er insbesondere verschiedene wissenschaftliche
Beitrige zur Arithmetik von Funktionenkdrpern positiver Charakteristik geleistet hat.
Seine mathematische Ausbildung erhielt er vor allem an der Universitit Bonn.

Let ¢ be a power of a prime number p. Many of the wonders of algebra in characteristic
p are based on the fact that the binomial coefficients (,‘j,) are divisible by p for all integers
0 < m < q. As a consequence, the map x — x? on any unitary commutative ring R
with p - 1 = O satisfies not only the multiplicativity relation (xy)? = x?y?, but also
the additivity relation (x + y)¢ = x9 + y9, and is therefore a ring homomorphism. This
homomorphism, called Frobenius, is an important tool for all questions concerning finite
fields of characteristic p.

In this short note we answer an elementary question about the action of Frobenius on the
zeros of a polynomial over a finite field that seems not to have been raised before. The
necessary prerequisites are nothing more than a standard two semester course in algebra.

Throughout this note we fix a finite field Fy of cardinality g, a finite field extension k/F,
of degree n, and an algebraic closure k of k. Let o, : x > x? denote the Frobenius map

on k. Recall that o4t x > x4" acts trivially on k and that the Galois group Gal(k/k) is
the free pro-cyclic group topologically generated by it.

Ein Grundproblem der Algebra ist die Bestimmung der Galoisgruppe eines separablen
Polynoms in einer Variablen. Liegen die Koeffizienten des Polynoms in einem endli-
chen Korper der Kardinalitit ¢”, so ist diese Galoisgruppe erzeugt von dem Bild des
Frobenius-Automorphismus x — x4 . Hat das Polynom zusiitzlich die spezielle Form
aoX + a1 X9+ ... + adX‘/d mit ag, ag # 0, so wird die Operation von Frobenius
durch eine Matrix in GL,(IF) représentiert. Der vorliegende Artikel beantwortet die
Frage, welche Matrizen auf diese Weise auftreten konnen fiir gegebene ¢, n und d. In
gewissem Sinn 10st dies eine Variante des “Umkehrproblems der Galoistheorie” iiber
endlichen Korpern.
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Fix an integer d > 0, and consider a separable q-linear polynomial of degree q¢ over k,
that is, a polynomial in one variable of the form

d .
FX) =Y aix? = aoX + a1 X% + ...+ agX?
i=0
with coefficients a; € k, for_which ap and ay are non-zero. Since o, : x > x? is the
identity on IF;, the map k — k induced by f is IF;-linear, and so its kernel

Vii=lackl| fla)=0)

is an F,-subspace of k. On the other hand the formal derivative of f is the non-zero
constant polynomial ag; hence f has no multiple roots in k. Thus Vy has cardinality q?
and therefore dimension dimg, Vy = d. Moreover, the fact that o acts trivially on k
implies that V¢ is mapped to itself under 0. Again the linearity of o implies that o/
induces an automorphism of the [F,-vector space V. In any basis of V¢ over I, this
automorphism is represented by a matrix ¢ € GL4(IF), and the conjugacy class of ¢ ¢
depends only on the data (g, k, f).

The question we are interested in is whether anything else can be said about ¢ if f is
arbitrary. In precise terms we mean:

Question 1. Which conjugacy classes in GLy(IFy) arise as ¢y for fixed ¥y, k, d, and
arbitrary f?

An answer to this question helps in constructing polynomials with given Galois groups, as
in Ziegler’s bachelor thesis on the so-called inverse Galois problem [3].

To help the reader develop a feeling for the situation we suggest the following special cases
as warmup exercises:

Exercise 2. Fork = F, and f(X) = X + X + X‘Iz, show that Vy is contained in an
extension of k of degree 3 and that the associated matrix ¢y is conjugate to (? :} )
Exercise 3. Show that f(X) = X1 — aX with a € k™ has the associated “matrix”
¢r = a € GL1(Fy) =F; ifand only if Normyr, (a) = a.

Exercise 4. Show that the identity matrix in GLy(IFy) arises as ¢y if and only if d < n.

(For the last exercise observe that ¢ is the identity matrix if and only if V¢ C k, and
apply Lemma 13. Note that the last exercise also shows that the question is non-trivial.)

Now we state our general answer to Question 1. For any matrix ¢ € GLy(IF,) we let[F,[¢]
denote the F;-subalgebra of the ring of d x d-matrices over IF, that is generated by ¢.

Theorem 5. Forany ¢ € GLy(IFy) and any k /I, of degree n the following are equivalent:

(a) FZ as a module over IF[¢] is generated by < n elements.

(b) Every eigenvalue of ¢ in k has geometric multiplicity < n.

(c) There exists a separable q-linear polynomial f over k with ¢ conjugate to .
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It may be worthwhile to give yet another equivalent condition in a special case:

Corollary 6. Ifk =TF,, the conditions in Theorem 5 are also equivalent to:

(d) @ is conjugate to a matrix of the following form:

Proof. We prove that (d) is equivalent to condition (a) of Theorem 5. Since k = [F, we
have n = 1; hence condition (a) means that ]Fz = Zizo F, - (pi(v) for some vector v. If
this holds, let e be the smallest integer > 0 such that ¢¢(v) is an IF;-linear combination of
the vectors v, ¢(v), ..., "' (v). Then the subspace Zf;(; F, - @' (v) is mapped to itself
under ¢, so it actually contains the elements ¢ (v) for all i > 0. On the other hand the
vectors v, ¢(v), ..., (pe_l (v) are IF;-linearly independent by construction; hence the stated
condition is equivalent to saying that these vectors form an IF,-basis of IFZ . Of course this
requires that e = d. To show that the condition is equivalent to (d), it remains to observe
that the matrix of ¢ associated to any basis of IFZ has the indicated form if and only if that

basis is v, (v), ..., (pd_' (v) for some vector v. O

By Theorem 5 the matrices of the form in Corollary 6 (d) actually arise for any value of n.
Furthermore:

Corollary 7. For any k/F of degree n the following are equivalent:

(a)d <n.
(b) For every ¢ € GL4(Fy) there exists a separable q-linear polynomial f over k with
@f conjugate to ¢.

Proof. By Theorem 5 the condition d < n is sufficient for (b). As the identity matrix in
GLy(IFy) satisfies condition 5 (a) if and only if d < n, the condition is also necessary. [

Now we begin with the preparations for the proof of Theorem 5. For any positive integer r
we let k, denote the finite subextension of k of degree r over k. Then &,/ k is Galois, and
its Galois group I', := Gal(k,/ k) is cyclic of order r with generator y, := o(;’|kr. We are
interested in the structure of k, as a representation of I, over IF,. By general principles
this is equivalent to describing k, as a module over the group ring Fy [T, ].

Lemma 8. As an IF,[T';]-module k; is free of rank n.

Proof. Since k,/ k is a finite Galois extension, it possesses a normal basis, i.e., there exists
an element y € k, such that the elements y (y) for all y € I', form a basis of k, over k.
Let x1, ..., x, be a basis of k over IF,. Then the elements y(y) - x; for all y € I, and
1 <i < nform a basis of k, over IF,. Since the elements y € I'; form a basis of F,[I', ]
over [F, it follows that x1, ..., x, is a basis of k; as a free module over IF, [T, ]. O
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Next, for any finite-dimensional representation W of T, over I, let W* := Homg, (W, Fy)
denote the dual vector space endowed with the contragredient representation of I',- defined
by I, x W* — W*, (y,£) — £oy~!.In the special case of the regular representation
F,[T";] we obtain:

Lemma 9. The dual representation IFy[T'1* is isomorphic to F [T, ].

Proof. This is a general fact about group rings of finite groups. Indeed, by direct calcula-
tion one can show that the element £ € F,[I",]* defined by Zy o,y > « is a basis of
Fy[T'r]* as a free module of rank 1 over Fy[I',]. O

Lemma 10. For any finite-dimensional F4[T";]-module W the following are equivalent:

(a) W is generated by < n elements.

(b) Every eigenvalue of v, on W ®y k has geometric multiplicity < n.
(¢) Every eigenvalue of v, on W* ®y k has geometric multiplicity < n.
(d) W* is generated by < n elements.

Proof. These equivalences are special properties of representations of cyclic groups. We
deduce them from properties of the Jordan normal form in the guise of modules over the
polynomial ring F, [ X].

First, we view W as a module over the polynomial ring R := Fy[X] such that ), a; X!
acts as Y_; a;y, . By the elementary divisor theorem there exist a non-negative integer m
and non-constant monic polynomials P; € R for all 1 < i < m such that P; divides
Piyy forall 1 <i < m and that W = @}., R/RP;. Clearly W is then generated by m
elements. Conversely, any irreducible factor P of P; divides every P;; hence there exists
a surjection W — @/, R/RP = (R/RP)™. The latter is a vector space of dimension
m over the residue field R/R P; hence it cannot be generated by fewer than m elements.
Together it follows that m is the minimal number of generators of W as an R-module, or
equivalently as a module over IF, [T, ]. Thus (a) is equivalent to m < n.

Secondly, every P; divides Py,; hence the minimal polynomial of y, as an endomorphism
of W is P,; and so the eigenvalues of ¥, on W & k are precisely the roots of P,,. Write
Py (X) = ]_[“/1:1(X — aj)!mi with distinct oty ..., 05 € k and multiplicities p, ; > 1.
Since each P; divides P,,, we can also write P;(X) = H‘}:l (X —a ;)i with multiplicities
wi,j = 0. By the Chinese remainder theorem we then have

m m s

W ek = EDKIXI/KIXIP = €D EPAIXI/AIXIX —aj)is
i=1

i=1 j=1

as a module over k[ X]. For any 1 < j < s, the geometric multiplicity of the eigenvalue aj
on k[X1/k[X1(X — aj)eiis 1if p; ; > 1, and O otherwise. The geometric multiplicity
of j on W ® k is therefore the number of indices 1 < i < m with wij > 0. Of
course this number is always < m. Conversely, at least one of the eigenvalues is a root
of the non-constant polynomial P; and hence of every P;. The geometric multiplicity of
this eigenvalue is therefore equal to m, and together it follows that m is the maximum of
the geometric multiplicities of all eigenvalues of y, on W ®; k. Thus (b) is equivalent
tom < n.
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Thirdly, the above decomposition of W ®; k induces a decomposition

W* @k = @GIXIAIXIP)* = D E@DKIXIAIXIX — )iy,

i=l i=1 j=I

where the dual vector spaces in the middle and on the right hand side are taken over k. This
decomposition is invariant under the natural endomorphism induced by y*: W* — W*,
£ +— £ o y,. But each non-zero summand E[X]/E[X](X — «j)*J corresponds to a sin-
gle indecomposable Jordan block of y, on W ®; k with eigenvalue o i3 hence its dual
corresponds to an indecomposable Jordan block of y* on W* ®; k with the same eigen-
value «j. Moreover, since the contragredient representation on W* is defined by letting y;
act through (J/r*)gl, it follows that each non-zero (IE[X]//E[X](X — )i )* corresponds
to an indecomposable Jordan block of the contragredient action of ¥, on W* ®; k with
the eigenvalue ozj_l. Thus m is also the maximum of the geometric multiplicities of all

eigenvalues of y, in its contragredient action on W* ®j k. Thus (c) is equivalent to m < n.

The above three characterizations of m already prove the equivalences (a)< (b)<(c). Ap-
plying the equivalence (a)<(b) to W* in place of W also shows (c)<>(d). This finishes the
proof of Lemma 10. O

Lemma 11. The conditions in Lemma 10 are also equivalent to:
(€) There exists an injective homomorphism of F [Ty ]-modules W — k;.
Proof. The condition (d) of Lemma 10 is equivalent to saying that there exists a surjec-

tive homomorphism of I, [I";]-modules F,[T",]" — W*. Since Lemmas 8 and 9 provide
isomorphisms of F, [T, ]-modules

ki = (FyTD" = [T 9" = FylT]",

this amounts to giving a surjective homomorphism of F,[I',]-modules k; — W*. By
duality any such homomorphism corresponds to an injective homomorphism of I [T, ]-
modules W < k,, and vice versa. Thus (d) is equivalent to (e), as desired. O

To prove Theorem 5 we will apply the above results in the special case that r is the order
of the finite group GL,(IF;). With this choice we have:

Lemma 12. Any 0[7 -invariant B g-subspace U C k of dimension d is contained in k.

Proof. By Lagrange the rth power of any element of GL(IF) is the identity matrix. Thus
the power o acts trivially on U. But by Galois theory the field of fixed points of o;" on

k is just k,; hence we have U C k,, as desired. |

As a final ingredient, the following lemma concerns the passage back from V¢ to f:

Lemma 13. For every finite-dimensional o,/ -invariant F 4-subspace U C k there exists a

separable q-linear polynomial f over k with Vy = U.
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Proof. Since U is a finite set, we can form the polynomial f(X) := ]_[ueu(X —u) € k[X],
which by construction is separable with set of zeros U. Moreover, as U is invariant under
0"’;, so is f; hence f already lies in k[X]. That f is g-linear follows from its explicit
description in terms of the Moore determinant from [2, Statement III] or [1, Lemma 1.3.6].

O

Proof of Theorem 5. Consider any matrix ¢ € GLy4(IF,). Then by the choice of r and
Lagrange’s theorem the rth power ¢ is the identity matrix. Thus W := IF;’ carries a unique
representation of the cyclic group I', such that y, acts as ¢. The equivalence (a)<(b)
in Theorem 5 thus follows from the equivalence (a)<(b) in Lemma 10. By Lemma 11
these conditions are also equivalent to the existence of an injective homomorphism of
Fy[T'r]-modules W < k,. Giving such a homomorphism amounts to giving a y,-invariant
F,-subspace U C k, and an isomorphism of F,-vector spaces i: W = U satisfying
i oy = yr oi. By the definition of the actions of y, the last relation is equivalent to

iop = a‘;’ oi. By Lemma 12 such data is therefore the same as giving a ac;'-invariant

F,-subspace U C k and an isomorphism of [F,-vector spaces i: W = U satisfying
iop=o040i.

As explained above, the set of zeros V¢ of any separable g-linear polynomial f over k
is a finite-dimensional o/ -invariant I, -subspace of k. Lemma 13 asserts that, conversely,
every finite-dimensional o(;’-invariant [F,-subspace of k arises in this way. Giving the above
data is therefore equivalent to giving a separable g-linear polynomial f over k and an
isomorphism of IF,-vector spacesi: W = V satisfyingiogp = o, oi. But the existence of
such an isomorphism i means that dimg, V¢ = d and that ¢ represents the conjugacy class
of Frobenius associated to f, in other words, that ¢ ¢ is conjugate to ¢. Thus altogether we
find that the conditions (a) and (b) of Theorem 5 are also equivalent to condition (c), and

we are done. O
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