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Two statistical coverage problems in estimating
the variance of a population

Wiebe R. Pestman

Wiebe R. Pestman obtained his doctor’s degree in mathematics at the University of
Groningen. Currently he works as a visiting professor at the mathematics department
of the Federal University of Santa Catarina (Brasil). His interests are in functional
analysis, harmonic analysis, probability and statistics.

1 Formulating the problems and setting the notation

Suppose a researcher draws a sample X1, X2, ..., X, from some population, and com-
putes the corresponding variance in it. This in order to estimate the variance of the pop-
ulation from which the sample was drawn. Assume that the population in question has
a Gauflian probability distribution. A second researcher draws, independently, a sample
Y1, Y2, ..., Y, from the same population. He computes not only the corresponding vari-
ance in the sample, but also surrounds it by margins such as to get a 95% confidence
interval for the population variance. Then what is the probability that this 95% confidence
interval, generated by Y1, Y2, ..., Y, will cover the sample variance of X1, X», ..., X;;?
Below this probability will be denoted by P,". As a second coverage problem, what is the
probability that the 95% confidence interval generated by the X, X», ..., X,, and that by
the Y1, Y2, ..., Y, are disjoint? Below this probability will be denoted by Q}'. The aim

Zieht man zwei unabhiingige Stichproben aus einer Grundgesamtheit mit Varianz o2,

so kann man sich fragen, mit welcher Wahrscheinlichkeit das aus der zweiten Stichpro-
be gewonnene Vertrauensintervall fiir o> den Wert der empirischen Varianz der ersten
Stichprobe enthilt. In dhnlicher Weise lésst sich fragen, wie gross die Wahrscheinlich-
keit ist, dass die Vertrauensintervalle der beiden Stichproben fiir die Varianz disjunkt
sind. In der vorliegenden Arbeit werden diese Fragen beantwortet fiir den Fall einer
normalverteilten Grundgesamtheit. Insbesondere umfasst die Antwort jeden Stichpro-
benumfang und die entsprechende Asymptotik. Die Resultate werden angewandt auf
statistische Tests, bei welchen die Uberlappung der Vertrauensintervalle als Entschei-
dungskriterium dient.
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of this paper is to get expressions for the values that can be taken on by P;" and Q' and

to get insight in their asymptotic behaviour. Of course one could also think about similar
coverage problems when estimating the mean of a population rather than its variance. This
has been studied in some detail in [9]. In the following, as a kind of a surprise, it will
turn out that, asymptotically, the coverage probabilities P}' and Q) are the same as their
counterparts when estimating the mean.

2 Estimating the variance of a population
Let X1, X2, ..., X,, be a sample from a population with variance 2. This variance o2 i
then usually estimated through the so-called sample variance S*, which is defined as

S

@ X=X+ XX+ 4 Xy — X)?
N m—1 '
In the above the expression X stands for the sample mean, that is to say

Xi+Xat 4 Xn
- :

)_(:

When sampling from a GauBian population the random variables X and S are statisti-
cally independent (see for example [7], [8]). By exploiting this result it can be proved that
(m — 1)S?/o? has a so-called y -distribution with m — 1 degrees of freedom. Generally a
x 2-distribution with n degrees of freedom is defined as being the probability distribution
of a random variable of type
i+ 23+ + 2}

where the Z1, Z», ..., Z, are independent random variables having a Gaufian distribu-
tion with mean O and variance 1. The fact that (m — 1)S2/02 has a x 2-distribution with
m — 1 degrees of freedom may be exploited to construct interval estimates at a prescribed
coverage y. To be more explicit in this, denote the quantile function of a x 2-distribution
with m degrees of freedom by ¢,,. Then, when using intervals with endpoints

(m—1) 5> n (m—1) 82
qm—l[%(l'i'y)] C]m—l[%(l _V)]

the probability that they will cover the variance o2 of the population is precisely y. Note
that the number y is in this context often referred to as the confidence level of the interval
estimate. See for example [7] or [16] for more details in all this.

When drawing two samples X1, X2, ..., X, and Y1, Y2, ..., Y, one may compute their
variances Sf( and Sf, and compare them by computing their quotient Sf(/ S%,. If the sam-
ples are drawn from the same Gauf3ian population then this quotient S)z( / Sf, has a so-called
F-distribution with m — 1 and n — 1 degrees of freedom in the numerator and denominator
respectively. Generally an F-distribution with m and n degrees of freedom in the numera-
tor and denominator is defined as being the probability distribution of a random variable
of type

U/m

V/n
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where U and V are independent variables having a y >-distribution with m and n degrees
of freedom respectively. In the following such an F-distribution will be briefly referred
to as an F)'-distribution. Its cumulative distribution function will be denoted as F,". The
families of F-distributions and y2-distributions play an important role in mathematical
statistics (see for example [7]). In the following sections they will also play the central
part in capturing the coverage probabilities P, and Q7' in explicit expressions.

As a last notational convention, in the sections that follow the Greek capital ® will stand
for the cumulative distribution function of a standard Gauf3ian distribution, that is to say, a
GauBian distribution with mean 0 and variance 1. The quantile function of this distribution,
that is the inverse of ®, will be denoted by q.

3 A solution to the first coverage problem

Let X1, X2,..., X,y and Y1, Y2, ..., Y, be independent samples from the same Gaufian
population. As in the previous section, denote their corresponding sample variances by
S)z( and S)2, respectively. Then the endpoints of a confidence interval with coverage y,
generated by the sample Y1, Y2, ..., Y, are

(n—1)8; (n—1)8;

_— _— (1)
LA+ n] T e Ea -]

This interval will fail to cover the sample variance Sf( if either

(n—1)5; . (n—1)53

—_— O —_— < S2‘
a1 [30+ )] aa[fa-n] ¥

2
Sx<

These two events exclude each other. Exploiting the fact that S% /S )2, has an F’;’__ll -distribu-
tion, it is straightforward to derive that the probability that the interval given by (1) does
not cover S?Y is given by

1 — Pm()/) — Fm—l n—1 +1— Fm—l n—1 )
" "\ g [30+ )] "\ [30 = 1)]

It follows that

Pm+1()/) — FmM (;) — F™M (’;) . 2)
il "\alia-»]) " \a[ia+»)]

Table 1 below shows the probabilities P, for a couple of values for m and n in a scenario
where the coverage y is set to 0.95. The probabilities are presented as percentages.

As to the asymptotics of the P, (y), one has

lim P"(y)=y foralln and nlingo P"(y) =0 forallm.

m—00

These limits allow for easy intuitive explanations. The value of the left limit may be per-
ceived as follows. With increasing m the S)z( converge (strongly) to 0)2(. So the probability
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m — 3 5 10 20 50 100 | 500 | oo
n=3 76.2 | 852 | 90.7 | 93.1 | 94.3 | 94.7 | 94.9 | 95
n=>5 68.1 | 79.6 | 87.8 | 91.7 | 93.8 | 944 | 949 | 95
n=10 | 555 | 693 | 81.6 | 88.4 | 92.5 | 93.8 | 94.8 | 95
n=20 | 424 | 56.6 | 72.0 | 82.6 | 90.0 | 92.6 | 94.5 | 95
n=50 | 28.1 |395|551|694 | 831 | 889|938 |95
n =100 | 20.1 | 29.0 | 42.2 | 56.4 | 73.8 | 83.3 | 92.6 | 95
n=500| 9.0 | 133|202 |29.0| 44.1 | 574 | 83.4 | 95
n =00 0 0 0 0 0 0 0 *

Table 1

that the confidence interval, at coverage y, generated by the Y1, Y2, ..., Y,, will cover S)Z(
may be expected to converge to the probability that it will cover 0)2(. The latter probabil-
ity, however, is ¥ by construction. As to the limit on the right, note that with increasing
n the confidence intervals generated by the Y1, Y2, ..., Y, shrink to the singleton {a}%}.
So the probability that these intervals will cover Sf( may be expected to converge to the
probability that the singleton {03} will cover Sf(. The latter is precisely the probability that
S)z( = o)%, which is O because S)z( has a continuous distribution.

Besides these two limits there is a limit of the P} when walking along the diagonal of the
table given above. To be more precise, it will turn out that the limit

lim P/ (y)
n—>oo

exits and that it is equal to the limit of the P, in [9], where corresponding coverage prob-
lems were studied in the estimation of a population mean. In §6 this result will be proved
through analytic derivation.

4 A solution to the second coverage problem

In this section, for reasons that will become apparent in the last section, the second cov-
erage problem will be solved in a slightly more general setting than proposed earlier.
Namely, it will be assumed that the samples X, X2, ..., X;, and Y1, Y2, ..., Y, are drawn
from Gauflian populations with variances 0)2( and O’}% respectively. By assuming this the
endpoints of the confidence interval for the population variance generated by the Yi, Y2,

..., Yy are
(n—1)82 (n—1)582
——— = an —
qnfl[f(l‘ky)] (In~l[j(l —)/)]
Similarly, the endpoints of the interval generated by the X, X2, ..., X, are
—1)s2 —1)82
(m—1)8% and (m —1) Sy

an-1[ 11+ )] an—[51 =]
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The two intervals are disjoint if either
(m—1)82 (n—1)52
I < I
an-1[30 =] an-1[30+9)]

or
(n—1)83 (m—1)S%

< .
dn-1[3 =] amaa[30+ )]
It follows that, denoting the quotient oy /ox by p, the probability Q':j’ll (y, p) is given by
1 1
m| (1 — 1 (1 —
21 am[3( 7/)]) L (_n_1 an[ 5 V)])l -

m g3+ )] "\ pEn g[S+ )]

ot y.p) = F (p

Table 2 below shows the probabilities Q) for a couple of values for m and n in a scenario
where the coverage y is set to 0.95 and the ratio p equal to 1. As in the previous section,
the probabilities are presented as percentages.

m — 3 5 10 20 50 100 500 | oo
n=73 1.363 | 1.282 | 1.456 | 1.776 | 2.331 | 2.803 | 3.783 | 5
n=>5 1.282 | 1.012 | 1.015 | 1.252 | 1.765 | 2.251 | 3.386 | 5
n=10 | 1.456 | 1.015 | 0.768 | 0.811 | 1.154 | 1.576 | 2.800 | 5
n=20 | 1.776 | 1.252 | 0.811 | 0.657 | 0.774 | 1.056 | 2.186 | 5
n=>50 | 2331 | 1.765 | 1.154 | 0.774 | 0.596 | 0.664 | 1.427 | 5
n =100 | 2.803 | 2.251 | 1.576 | 1.056 | 0.664 | 0.577 | 0.980 | 5
n =500 | 3.783 | 3.386 | 2.800 | 2.186 | 1.427 | 0.980 | 0.561 | 5
n =00 5 5 5 5 5 5 5 *
Table 2
For the Q}', when p is set to 1, one has
lim Q) (y,1)=1—y foralln and nll)n;o on(y,1)=1—y forall m.

m—00

The two limits above allow for an easy intuitive explanation. Namely, with increasing m
the confidence intervals generated by the sample X, X2, ..., X,, shrink to the singleton
{0)2(}. The probability that a confidence interval at coverage y, generated by a sample
Y1, Ya, ..., Y,, will be disjoint from this singleton is the complement of the probability
that the interval will cover the number 0)2(. Thus one arrives at the value 1 — y for the two
limits above.

Besides these two intuitively clear limits it will turn out that there is a limit of the Q'
along the diagonal of the table given above. More precisely, the limit

lim Qj(y. 1)
n—00

exists and is equal to the limit of the Q, in [9], where the same coverage problem was
dealt with when estimating the mean of a population. This result will be proved in §7.
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S Some preparatory asymptotics

In order to study the behaviour of the probabilities P, and Q) for large n one needs to
know something about the asymptotic behaviour of the distribution functions F,’ and that
of the quantile functions ¢g,. The theorems in this section will prove to be useful in this.
In the derivations a special convergence feature of cumulative distribution functions will
be exploited several times. If, namely, a sequence Fi, F», F3, ... of cumulative distribu-
tions converges pointwise to a continuous distribution function F then the convergence is
automatically uniform. See for example [7] for a proof of this phenomenon.

The asymptotics needed will be derived by starting from so-called infinite samples
X1, X2, X3, ...

from a population with a standard Gaufian probability distribution. This is to say that the
X1, X2, X3, ... form a statistically independent system and that they all have a standard
GaubBian probability distribution. Note that for such X; the expectation value and variance
of X f is 1 and 2 respectively (see for example [7]). It follows from this that for all n =
1,2, 3,...the sums Z,, defined as

_X{4+ X34+ Xi—n
n — k)

2n

have an expectation value equal to 0 and a variance equal to 1. In the following the cumu-
lative distribution function of Z,, will be denoted by @, and its quantile function by g,,.
Recall that the cumulative distribution function of the standard Gaufian distribution was
convened to be denoted by ® and its quantile function by ¢. In these notations one has:

Lemma 1. The ®,, converge on R uniformly to ® and the g, on the interval (0, 1) point-
wise to q.

Proof. By the central limit theorem (see [2], [7]) the ®, converge on R pointwise to .
The latter distribution function being continuous, this convergence is uniform. Exploiting
the uniform convergence, together with the fact that ® has a positive derivative that is
locally bounded away from zero, one derives that the g, converge pointwise to g. The
necessary mathematical tools in this can be found for example in [11]. g

The following theorem describes an asymptotic feature of F-distributions by connecting
them to a standard GauBian distribution.

Theorem 2. For all x € R one has

tim Fr(1+-==)=0(3)
n—oo N ﬁ - 2/
The convergence is uniform in x.

Proof. Let
X1, X2, X3, ... and Y, Y2, Y3,...
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be two independent infinite samples from a standard GauBian distribution. Define the ran-
dom variables Z,(X) and Z,(Y) as

X+ X34+ -+X2—n
V2n

Zp(X) =

and 5 i 5
Yr+Ys+---+ Y —n

V2n
Now the Z,(X) and Z,(Y) are identically distributed; they both have ®,, as their cumula-

tive distribution function. Denote their probability density by ¢,. Then, in these notations,
applying the law of total probability (see for example [7]), one has

Fr(14y/2x)

X1+ X3+ + X2
1 2 n 2
:Pr<Y2+Y2+---+YZSlJr nt

Zy(Y) =

too [XTH X34+ X2
<1—|—\/zx Z,(Y) =y s)ds
/OO <Y2+Y2 . 2x | Zu(¥) =5 ) u(s)
too XTI 4 X344 X2
<l+\/zx on(s)ds
foo ( svV2n+n " "
oo X} +X ~+X2—n
:/ ( 1 <x+s+ %xs on(s)ds
o0
+oo
:/ Pr(Z,,(X)<x+s+[xs><p,,(s)ds

=f Oocl>,1(x+s+\/7x3)§0n(5)d5

—00

Now define the functions ¢, as

+00
ep(x) = / |:<I>,1 (x + s+ @xs) - D, (x —l—s)] On(s)ds .

—0Q

By exploiting the fact that ®,, — ® uniformly one derives that

lim &,(x) =0 forallx e R.
n—o0

In terms of the &, one may write

F(1+/2%)

400
en(x) +/ D, (x +5) @u(s)ds
—0

+o00 (4)
= sn(x)+/ D, (x —5) gu(—s)ds.

—00
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The last integral on the right side is the convolution product of the function ®,, and the
function s — ¢,(—s), the latter being the probability density of the random variable
—Z,(Y). Thus, regarding it as a function of x, the integral presents the cumulative distri-
bution function of a random variable of type

Zn(X) — Zn(Y).

See for example one of the references [2], [4], [7], [14] for the underlying theory in this.
Both the Z,(X) and the Z,(Y) converge in distribution to a standard GaufBian distribution.
The sequences being independent, it follows that the sequence Z,(X) — Z,(Y) converges
to a GauBian distribution with mean 0 and variance 2. Now, when taking the limit in (4)
and replacing x by x/+/2, one arrives at the conclusion that

tim Fi(14+ =) =2 (3)
n—oo N ﬁ B 2/
The limit function being continuous, the convergence above is uniform in x. 0

The combination of the previous theorem with the theorem below will make the derivations
in the next two sections straightforward. The theorem below describes the asymptotic be-
haviour of the quantile functions g,, belonging to the family of x >-distributions, in terms
of the quantile function ¢ of the standard GaufBian distribution.

Theorem 3. There exists a sequence of functions ¢, : (0, 1) — R, converging pointwise
to 0, such that

qn(n) 2
P — 14\ 2 (gt + e )]

foralln =1,2,3...and for all 0 < n < 1. Similarly there exists a sequence of functions
8n 1 (0, 1) — R, converging pointwise to 0, such that

n —
qn(m) B

1 - % [61(77) + 8!1(77)]

foralln =1,2,3...and forall0 < n < 1.

Proof. Let
X1, X2, X3, ...

be an infinite sample from a standard GauBian distribution and let the associated Z,, and
qn be as defined before. Define the functions g, as

en(m) = qn(m) —q().

Then, by Lemma 1, the &, will converge pointwise to 0. Expressing the g, in terms of the
qn, the £,(n7) may be written as:

_ qn(n) —n _
en(n) = Vi q(n).
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This may be rewritten as

qn(n) - 2 2
. —1+\/:q(n)+\/:£n(n)

from which the first statement in the theorem follows.
The second statement can be derived from the first by defining the functions §, by

p (n) - f [g(m) + 8. ()]

Then the §,, are algebraically related to the ¢, as

en(n) — \/:q(n)[q(n) - sn(n)]
L+ 2 [a) + ea)]

For fixed n the right side converges to 0 if n — o0, thus completing the proof of the
theorem. 0

8n(n) =

6 The asymptotic behaviour of the probabilities P;,

Exploiting the asymptotics in the previous section it is easy to describe the asymptotic
behaviour of the probabilities P, .

Theorem 4. For all 0 < y < 1 one has

L —
lim Pl(y)=1-2@ (—"[2% M) :

Proof. By (2) in §3 the probability P':Ill () may be expressed as

Pn+1 . n — F" _n 5
w1 1) = Fo (qn(m)) " (qn(nz) ®

b4 and 1ty
m= 5 n = 5

By Theorem 3 there exists a sequence of functions §, : (0, 1) — R, converging pointwise

to 0, such that
7 (n) - f [g(m) + 8, ()]

Using this, one derives through Theorem 2 that

llm Pn-l—ll( ) < 6](771))

= ("F) (

where

)
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o("F)= e (%)

the theorem follows. O

Observing that

So, as was already announced at the end of §3, the P! (y) are asymptotically the same as
their counterparts P, in [9], where similar coverage problems were studied in the process
of estimating the mean of a population.

7 The asymptotic behaviour of the probabilities O,

The asymptotics in §5 can also be used to derive in a straightforward way the asymptotic
behaviour of the probabilities Q7 (y), where Q) (y) stands for QO (y, 1).

Theorem 5. For all 0 < y < 1 one has

lim 0n(y) =2 (V2q[10 - »)]).

Proof. By (3) in §4 the probability o'l (y) may be expressed as

n+1
Qll+l (y) ) Fn qn (n]) (6)
nt " dn (772)
where
I1—vy I+vy
ny = T- and n = T .

From Theorem 3 it can be derived that there exists a sequence of functions 6, : (0, 1) — R,
converging pointwise to 0, such that
Aqn (7]1 ) _
qn(n2)
By symmetry in the standard Gaufian distribution one has

1+ \/é[qom —q(m) + 6, (¥)].

qg(m) = —q(n2).
Hence one may write
(/11(771)

qn(m2)
Using this and Theorem 2 one derives that

lim F" (q"(m)> = («/Eq(m)) :

=00 Adn (772)

=1+ @[261(771) —+—0,1(J/)]-

In virtue of (6) this proves the statement in theorem. O

Similar to the situation in the previous section, the Q) (y) are asymptotically the same as
their counterparts Q, in [9] where the corresponding coverage problem was studied in the
estimation of the mean of a population.
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8 Using interval overlap as a decision criterion

Givenan N(uy, a%)-distributed and an N (uy, o%)-distributed population, the hypothesis
Hy:ox = oy

is sometimes tested in the following way: Two samples X1, X2, ..., X, and Yy, Y2, .. .,
Y, are drawn from both populations and their corresponding 95 % confidence intervals
for the variance are computed. Conclusive in the decision procedure is then whether the
intervals intersect or not. If they intersect, then the hypothesis Hy is maintained and if they
are disjoint, then H is rejected. When computing the confidence intervals at a coverage
equal to y, then, by Theorem 5, one arrives in this hypothesis test (for equal sample sizes)
at an asymptotic significance level of

20 (V24[30 - 1))

where, as before, ¢ stands for the quantile function of a standard GauBian distribution.
For y = 0.95 this leads to an asymptotic significance level of 0.5574597 % (compare
this to the results in [3], [6], [9], [13]). In order to arrive in this decision procedure at an
asymptotic significance level of «, the coverage y of the two interval estimates must be
adapted such as to have

20 (V2q[31 - )]) =«

Solving this equation towards y leads to

y:l_m(q[“/z])

V2

If the coverage y is set in this particular way then the asymptotic significance level of the
decision procedure is equal to «. If the sample sizes are finite or unequal, however, then the
significance levels will deviate from «. For arbitrary sample sizes m and n the significance
level can be computed through (3), thereby taking p = 1. From now on, just to illustrate
one thing and another, the asymptotic significance level « will be pinned down to 0.05.
The two interval estimates must have a coverage of 0.8342315 to bring this about. Table 3,
on the next page, shows the significance levels for a few (finite) values for m and n for this
specific value of y.

How does the decision procedure sketched above perform relative to Fisher’s 2-sample
variance test, when testing at the sample sizes and significance levels listed in the field of
the table above? It seems natural to compare the two decision procedures then as to their
power. As to this, denote, as before, the quotient oy /ox by p. The hypothesis that is to be
tested can then be formulated as

Hy:p=1.

The power of the method of disjoint intervals is presented by the probability Q7 (y, p).
For equal sample sizes, that is for m = n, computations suggest that the difference in
power, relative to Fisher’s test, is in all cases less than 0.0001. For m # n, however, the
difference in power can be considerable. For example, when taking the sample sizesm = 5
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m — 3 5 10 20 50 100 500 00
n=3 6.716 | 6.639 | 7.418 | 8.711 | 10.65 | 12.00 | 14.28 | 16.58
n= 6.639 | 5972 | 6.151 | 7.115 | 8.989 | 10.50 | 13.37 | 16.58

n=10 | 7418 | 6.151 | 5.457 | 5.724 | 7.104 | 8.580 | 12.00 | 16.58
=20 | 8711 | 7.115 | 5.724 | 5.221 | 5.773 | 6.903 | 10.46 | 16.58
n =50 10.65 | 8.989 | 7.104 | 5.773 | 5.086 | 5.413 | 8.273 | 16.58
n =100 | 12.00 | 10.50 | 8.580 | 6.903 | 5.413 | 5.043 | 6.749 | 16.58
n =500 | 14.28 | 13.37 | 12.00 | 10.46 | 8.273 | 6.749 | 5.001 | 16.58
n =00 16.58 | 16.58 | 16.58 | 16.58 | 16.58 | 16.58 | 16.58 *

Table 3

S

and n = 10, the power of the method of disjoint intervals in p = 3 exceeds the power in
Fisher’s test by more than 0.04. This particular evaluation shows that, when fixing some
significance level, Fisher’s 2-sample variance test does not automatically realize maximum
power. Fisher’s test is in some cases outperformed by the method of disjoint intervals. In
other cases, however, it is the other way round. Fisher’s test is an example of a maximum
likelihood test. It is known that such tests do not automatically maximize power at fixed
significance levels. See for example [7] for more details in this. As a closing remark, in the
above Fisher’s test was carried out in the way it is carried out in the powerful open-source
statistical package R (see [10]). That is to say, the left and right critical regions in the test
are taken to be of equal probabilistic size. Otherwise formulated, in Fisher’s variance test
the two-sided p-values are chosen to be twice the right-sided p-values.
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