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Euclid's theorem: a bit more
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1 Introduction

Euclid's theorem asserts that there are infinitely many prime numbers. It has numerous
proofs; for example [1] describes the most elegant ones, while [4] gives a more exhaustive

bibliography. We propose a new proof based on the observation that, substantially, the
infinitude of prime numbers depends on how fast the result of the product grows when its
operands increase. More specifically, we provide an explicit criterion to check the infinitude

of primes for a class of operations on N, which verifies such growth by computing a

limit (see Theorem 4 and Corollary 5). Then we prove that the criterion is also necessary
under certain conditions (Theorem 6).

2 Over the product
To define a set of operations on N we need to generalize a few notions and to introduce
some terminology (see for example [3]). The set of natural numbers endowed with the

product is a monoid. Moreover such monoid is reduced, atomic and factorial because 1 is

Mit der Addition und der Multiplikation natürlicher Zahlen sind wir von Kindesbeinen
an vertraut. N erhalt durch das gewöhnliche Produkt die Struktur eines Monoids mit
unendlich vielen Atomen, den Primzahlen. Der Autor des vorliegenden Artikels geht
der Frage nach, ob man N mit einer anderen Produktstruktur ausstatten kann, so dass

ebenfalls ein Monoid mit unendliche vielen Atomen entsteht. Uberraschenderweise
existieren unendlich viele derartige Monoidstrukturen auf N. Die Frage ob unendlich
viele Atome existieren wird dabei auf die Berechnung eines Firnes reduziert. Dies lasst

den Satz von Euklid über die nicht abbrechende Folge der Primzahlen m neuem Ficht
erscheinen.
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the only mvertible element, each natural number > 1 is the product of primes and such

factorizations are unique.
More formally, by a monoid we mean a set M with an associative and commutative operation

which has the unit element e and satisfies the cancelation law (if ac be, then a b

for all a,b,c m M).
Let Mx be the group of mvertible elements of M, then M is reduced if Mx {e}. An
element a e M is an atom if a f. Mx and a be (with b,c e M) implies b e Mx or
c e Mx. The monoid M is called atomic if every element of M\MX is a finite product
of atoms, while M is factorial if each factorization is unique (up to units and the order of
the factors). An example of an atomic but not factorial monoid is illustrated m the Table 4:

each natural number is a product of the atoms a and b, although the factorizations are not

unique. If M is factorial then we will say that thefundamental theorem ofarithmetic holds
for AT.

Our aim is to define an infinite class of atomic monoids on N and to provide a condition to

guarantee that a specific monoid has infinitely many atomic elements (Theorem 4). Moreover,

we show that the condition is also necessary if the monoid is factorial (Theorem 6).

Now, let us define a set of operations on natural numbers.

Definition 1. Let 0 (or 0-product) denote an operation on N such that:

(PI) 0 is associative and commutative;

(P2) 0 has unit element e\

(P3) if a < b, then a 0 c < b 0 c for any a,b,c e N.

Notice that the usual product is a 0-product.
Let / =00 0 a (« times) and a0 e. From now on we will use underlined bases

to represent 0-powers, otherwise the powers are computed by the normal product.

Let (N, 0) denote the set N endowed with the operation 0.
Proposition 2. For any 0-product, (N, 0) is a reduced atomic monoid and e 1.

Proof According to properties (PI), (P2) and (P3), (N, 0) is a monoid. Let us suppose

by contradiction that Ice. Then I2 1 0 1 <£01 1<£ and there should exist a

strictly decreasing sequence 1,12,13, of natural numbers less than e\ thus e 1. The
monoid is reduced because a(£)b > a,b if a,b> 1 (by property (P3)).

Finally, to see that the monoid is atomic it suffices to apply the last inequality and to imitate
the usual proof for the standard product (as m [2]).

3 An infinite class of operations
To prove that there are infinitely many 0-products, below we illustrate an algorithm to
build a generic 0-product. The operation is described by showing how to compute a 0 b

for any pair of natural numbers a and b (Table 7), and how to represent each natural
number as a 0-product of atoms (Table N).
Notice that the Table T must be symmetric because 0 is commutative, so it is sufficient
to fill only the entries a 0 b with a < b.
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To build a 0-product proceed as follows.

Step 1. Fix the atoms, which are written m the Table A, and set n equal to 2.

Step 2. Associate a result & to 2 0 n. The number k is selected by picking a number from
the Table N so that the rows and the columns of the Table T remain increasing
sequences (according to property (P3)).

Step 3. The same number k must be the result of all the expressions equivalent to 2

with respect to the associative and the commutative properties. Fill the
corresponding entries m the Tables T and N.

Step 4. Increase n by 1 and go back to Step 2.

For example, let a 2 and b 4 be the atoms. Then a and b are inserted m the Table N:
see Table 1 and Table 2 (where the atoms are m boldface).

Let us set 2 0 2 3, and thus a2 3. Then we set 2 0 3 5 (which gives a2 5)
and 204 6 (a 0 Z? 6). Next 2 05 7, so a 0a3 7; but a 0a3 a2 0a2
and therefore also 3 03 7. In the same way we obtain 206 304 8, since
a 0(a 0 b) a2 0 b, and 207 305 9 by ß0a4 a2 0 a3. For the next
step we have 208 306 504 because a 0(a2 0 Z?) a2 0(a 0 Z?) a3 0 &.

But the entry 4 04 (which corresponds to b2) still does not have a value. So, to respect
property (P3), we set 4 0 4 10 and 2 08=11.
Then the process begins again associating a value to 2 0 9.

T 2 3 4 5 6 7 8 9 10

2 3 5 6 7 8 9 11 12 13

3 7 8 9 11 12

4 10 11 13

Table 1 T gives the results of the (X)-product

N 2 3 4 5 6 1 8 9 10 11

a a2 b a3 a 0 b aA a2 0 Z? a5 z>2 a3 (g)b

Table 2 N represents each natural number as a (X)-product of atoms

Some remarks.

1. The operation (partially) described m Table 1 and Table 2 is a 0-product and the

corresponding monoid is factorial.

2. Different 0-products can have the same atoms. In fact, if we exchange two numbers

m the Table T (maintaining the rows and the columns increasing) we obtain a new
operation. For example, exchanging 9 with 10 we get another 0-product such that
a5 10 and b2 9.
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3. The limit lim log < lim log (n + l)2 is finite (because each element less than
n —oo n —oo

an has a factorization ar 0 ZF with r, s < n). This confirms that the monoid has a

finite number of atoms (see Theorem 6).

4. As observed, the above 0-product respects the fundamental theorem of arithmetic.
Otherwise the theorem does not hold if, for example, we set 2 0 3 204 5 (the
new operation is described m Tables 3 and 4). Notice that m any case the sequence
an is strictly monotone for every atom a (because an am and n > m would imply
an~m 1, by the cancelation law).

T 2 3 4 5 6 7 8 9 10 11

2 3 5 5 6 8 8 9 11 11 12

3 6 6 8 9 9 11 12 12

4 7 8 9 10 11 12

Table 3 The fundamental theorem of arithmetic does not hold

N 2 3 4 5 6 1 8 9 10

a a2 b a3 a4 b2 a5 a6 b3

a 0 b a1 0 b a2 0 b a4 0 Z?

Table 4 Same numbers may have more distinct factorizations

For any integer k > 1 we can define a 0-product with atoms 2, 3, k — 1 and setting
2 02 k. Therefore all these operations have different operation-tables T and so they
are distinct. Still, a 0-product satisfies the fundamental theorem of arithmetic (that is

(N, 0) is factorial) if m the Table N different expressions are always associated to distinct
numbers. This occurs if we always choose different results for different expressions 20«,
and therefore the rows and the columns of T are strictly increasing sequences.

Summarizing we have the following.

Proposition 3. There exist infinitely manyfactorial monoids (N, 0).

4 When are there infinitely many atoms?

Fixed a 0-product, to establish if the corresponding monoid has infinitely many atoms

we just need to evaluate a limit.

We will denote by |X\ the cardinality of the set X and by [a, b] the natural numbers > a
and < b.
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Theorem 4. If lim log 2,? oo, then (N, 0) contains infinitely many atoms.
n —oo v 7

Proof. Let A {/i e N : /i > 1}. It suffices to show that no finite subset Z?

{b\, b2, &r} of A can generate A, that is A\ (5) 7^ 0 if (5) denotes the infinite set

of all the products of elements in B, that is

(B) {bfl 0 • • • 0&rOr : a, > 0 Vi, a, > 0 3j}.

For any positive integer m let us consider the powers with bounded exponent, so let

Bm [bl1 0' " 0 V*r : 0 < a, < m Vi, a, >0 3./}

and set max{n e N : 2n < 10*}. Then

(B) p|[2, 10*] Bmk p|[2, 10*]

for every positive k. Indeed Bm c {B), Z?m^+1 > 2m^+1 > 10* for each b e B, and

according to property (P3).

The claim is proved if lim log 10* oo. In fact, in this case, for any positive integer
k^OQ

r there exists a k such that 2+ l)r < mf" < 10* when k > k, because m^ oo as

k oo.So \Bmk \ < (mk + l)r < ^ < |[2, 10*]| and[2,10*]\(B) [2,10k]\Bmk ± 0,
that is A\{B) j=- 0.

What remains is to verify that lim log 10* oo.

If lim log, 2n oo, then lim log, 2mk oo and therefore lim log, 10* oo
n —oo n - mk^oo k ~ k—>00 k

(because lim oo and2m^ < 10*).
k^oo

Corollary 5 (Euclid's theorem). 77ie usual product has infinitely many primes.

Proof. In fact lim log 2n oo.
n —oo

The sufficient condition of Theorem 4 is also necessary if the fundamental theorem of
arithmetic holds.

Theorem 6. If the monoid (N, is factorial and contains infinitely many atoms, then

lim log, 2n oo.
n—>oo

Proof. Let p\, p2, pm be pairwise distinct atoms. If pt < 2fl for every i, then

Pla 0 P2a 0 • • • 0 Em" < when a? is any positive integer and w ni • Applying

the fundamental theorem of arithmetic and the property (P3), we see that am < 2au.
2

So \ogau 2au > logau am 1+]^g u, and setting a u we get logM2 2U > ^- for each m.

This completes the proof because the sequence {2f} is a strictly increasing sequence (it is

seen by induction and applying property (P3)).
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