Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 68 (2013)

Artikel: Tetrahedron classes based on edge lengths
Autor: Wirth, Karl / Dreiding, André S.

DOl: https://doi.org/10.5169/seals-515896

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-515896
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Elem. Math. 68 (2013) 56 — 64 © Swiss Mathematical Society, 2013
0013-6018/13/020056-9
DOI 10.4171/EM/221 | Elemente der Mathematik

Tetrahedron classes based on edge lengths

Karl Wirth and André S. Dreiding

Karl Wirth was a mathematics teacher in Ziirich. Since his retirement he is concerned
with mathematical problems in connection with chemical structures.

André S. Dreiding is professor emeritus for organic chemistry at the University of
Ziirich. He persues his interests in mathematically oriented aspects of chemistry.

1 Tetrahedron e-classes

Among triangles (the simplexes in 2-space) there are 3 kinds, the equilateral, the isosceles
and the scalene. Which analogous kinds of tetrahedrons (the simplexes in 3-space) can be
distinguished? Obviously, a regular tetrahedron (all edge lengths equal), at one extreme,
corresponds to the equilateral triangle and a completely irregular tetrahedron (all edge
lengths mutually different), at the other extreme, corresponds to the scalene. However,
while there is only 1 kind, the isosceles, between the 2 extreme triangle kinds, there are 23
kinds between the 2 extreme tetrahedron kinds, thus 25 in total.

How do we arrive at these 25 tetrahedron kinds? To explain, we replace the more colloquial
‘tetrahedron kind’ by the concept of ‘tetrahedron e-class’ based on vertex maps: If 7 and

Es gibt gleichseitige, gleichschenklige und ungleichseitige Dreiecke. Wie sieht die ent-
sprechende Klassifizierung bei Tetraedern aus? Am einen Ende der Skala befindet sich
das gleichseitige Tetraeder, am andern Ende Tetraeder mit lauter unterschiedlich langen
Kanten. Die Autoren der vorliegenden Arbeit finden dazwischen 23 Klassen von Tetra-
edern. Dabei sind nebst der Symmetriegruppe S auch die sogenannte Permetriegruppe
‘P und die resultierende Longometriegruppe £ := P /S Klasseninvarianten. Exempla-
risch wird dargelegt, wie diese Gruppen, die fiir beliebige Polytope definierbar sind,
algorithmisch ermittelt werden konnen. Aus der Ordnung der Kantenlidngen ergibt sich
sodann eine verfeinerte Klassifzierung von Tetraedern, deren Klassen sich mit Hil-
fe von L abzihlen lassen. Diese Klassen werden innerhalb von einfachen grosseren
Klassen hinsichtlich Reprisentierbarkeit mit kleinsten ganzahligen Kantenldngen un-
tersucht. Schliesslich geht es noch um die Anzahl entsprechender Simplexklassen in
hoheren Dimensionen.
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T’ are two tetrahedrons we call a bijection f which maps the vertexes of T onto the
vertexes of T’ a vertex map from T to T'.

Definition 1.1. Let 7 be a tetrahedron. A tetrahedron T’ belongs to the e-class represented
by T and denoted by [T if there exists a vertex map f from T to T’, so that f induces a
bijection between equal edge lengths of 7" and those of T’ or, in other words, so that both
edge maps induced by f and by f~! preserve the lengths equality. We call such a vertex
map f an e-metry from T to T'.

If f is an e-metry, the induced bijection of edge lengths is denoted by A( f). Fig. 1 shows
an example of an e-metry f from 7 to T’ and we have A(f) : 6 — 9,8 — 5,7 — 4.

Fig. 1

In the special case of an e-metry f where A(f) is the identity, we speak of an isometry
(this uniquely determines an ‘isometry’ in its ordinary sense, i.e., a length preserving map
of the whole space onto itself).

Of course, the e-classes form a (set) partition of all tetrahedrons. By constructive com-
binatorics we now generate the e-classes in showing how Tab. 1 is obtained: In the first
column, the number n of different edge lengths, called lengths number, varies from 1 to 6.
In the second column, the distributions of the edge lengths correspond to the 11 (number)
partitions of 6,1.e.,6,5+1, ..., 1+ 141414 1+1, for short written as 6, 51, ..., 111111,
denoted by m and named lengths partition. In each row with a given lengths partition m,
the different arrangements of the edges are elaborated. This leads to a total of 25 cells
where each cell contains a drawing of a tetrahedron (edge lengths differentiated by line
formats) representing one of the 25 e-classes: [T ]e, [T2]e, - - -, [ T25]e; this classification is
also found in [2]. The further information within the cells will be explained in the follow-
ing Section 2.

Remark. So far, we have tacitly assumed that the tetrahedrons under consideration actu-
ally exist. But if one admits any six lengths there are those that are not the edge lengths of a
tetrahedron, a circumstance which was originally treated by Menger, Blumenthal, Herzog
and others and was elaborated in a survey article [5]. In this paper, given edge lengths will
always define a tetrahedron.

2 Symmetry and permetry groups

Based on e-metries, we consider what we call permetries as a conceptual extension of the
well known symmetries of a tetrahedron:

Definition 2.1. An e-metry of a tetrahedron 7 onto itself is called a permetry. If p is a
permetry of 7', the induced bijection A(p) is said to be a longometry of T.
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n| m
6 Tl SIET(I
P1=Ta
2| 51 [T S2=Cay
Po=Cay
2 |Ts S3=Cs | T4 S4=Dad
P3=Cs P1=D2a
33 |Ts S5=Cay | Te Se=Cs
Ps=Cay P6=S4
3| a1 (T S7=1 Ts Sg=Cay
P1=Cs Ps=Dad
321 | Ty S9=Cs |Tho Sw=l |Tn S1=Cz | T2 S12=Cs
z& P9=Cs .y Pro=l d» P11=Cz db P12=Cs
222 T3 Si3=l | Tha S14=Cs |T15 . Si5=D2
W~ P13=Cs - Pra=Cay | ™ P15=Ta
4| 3111 |The S16=I T S17=1 Ts Sig=I
'"'".'. P16=Cay ‘""1: P17=Cz [+ P1g=Cay
2211 | Tho Sig=l | Tso S2=1 |Ta Au, S21=Cs Taz A= S22=C:
[ Pro=l [+ Pog=Cs o ” P21=Cay = Paz=Dad
5| 21111 Soz=l  |T24 Aw, Su=l
=" Po3=Cs L Pau=Du
6111111 | T25 g, S25=I1
KL Pas=Ta
Tab. 1

The expression ‘permetry’ p is used, because p permutes the edge lengths of a tetrahedron
T, i.e., the longometry A(p) is an edge lengths permutation. A permetry p where A(p) is
the identity, is called a symmetry (again, this uniquely determines a ‘symmetry’ in its
ordinary sense).

Just as the symmetries of a tetrahedron 7" form a group, so do the permetries and the
longometries of 7. The groups are called symmetry, permetry and longometry group and
denoted by S, P and L, respectively. The map A which assigns to each permetry p of T
the longometry A(p) is a group homomorphism from P to £ with the kernel S and, as is
well known from group theory, £ and the factor group P /S are isomorphic.

We use Schoenfliess symbols (common for symmetry groups in chemistry) to designate
both groups S and P of a tetrahedron 7. They are explained in Tab. 2 as subgroups of the
full symmetry group of a regular tetrahedron Tieg: Consider a vertex map from 7' to Tieg,
where the edges of Tieg have been colored in such a way that there is induced a bijection
between equal edge lengths of 7 and equal edge color of Tieg. The groups S and P of T’
are then isomorphic with the ‘color preserving’ and with the ‘color equality preserving’
symmetry group of Treg, respectively.

The Schoenfliess symbols of the symmetry groups S; and permetry groups P; of the e-class
representatives 7; (1 < i < 25) are shown in the previous Tab. 1. Clearly, all tetrahedrons
of [T;]e have isomorphic symmetry and isomorphic permetry groups, so that S; and P;
can be considered to be e-class properties. The elements of this groups are derivable by
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X 7
i W
+120°

two-fold rotation three-fold rotation mirror reflection four-fold rotation
reflection

Subgroups of 7, (group orders in parantheses, € denotes the identity element):

I (1) &(the group is also named C;)

C, (2) e¢and I two-fold rotation

C; (3) e€and 2 three-fold rotations (around the same axis)

D, (4) ¢€and 3 two-fold rotations (around different axes)

C, (2) ¢€and I mirror reflection

C,, (4) ¢€and I two-fold rotation and 2 mirror reflections (in planes intersecting at the
rotation axis)

C;, (6) ¢€and 2 three-fold rotations (around the same axis) and 3 mirror reflections (in
planes intersecting at the rotation axis)

S; (4) e€and 1 two-fold rotation and 2 four-fold rotation reflections (all around the
same axis)

D,y (8) €and 3 two-fold rotations (around different axes) and 2 mirror reflections (in
planes intersecting at one of the rotation axes) and 2 four-fold rotation reflec-
tions (around this axis)

Ty (24) all 24 symmetries

Tab. 2

‘visual coincidence operations’ with their representatives 7;, but can also be generated by
a canonizing procedure, which will be summarized here briefly.

The canonizing procedure is based on relational descriptions, or for short descriptions,
of the given tetrahedron and an appropriate canonizing algorithm. Since the one we use
operates with a minimizing process it will be called minimizing algorithm (see [3], [4],
[6]). We explain with an example, namely with the tetrahedron 7 of the e-class [T22]c as
shown in Fig. 2 having lengths number n = 4 and lengths partition m = 2211; T exists
according to Tab. 4 (see Section 4).

Fig. 2

A first description of 7', denoted by Desci(T'), looks as follows:

Desci(T) = ({a, b, c,d}, {ad,da, be, cb}s, {cd,dcls, {ac,ca,bd, db}y, {ab, ba}g).
N —— e, e\, e e e’
= X = Rl = R2 = R3 = R4

This description comprises the vertex set X followed by n = 4 so-called metric relations
R1, R2, R3, and R4, each of which contains symmetric pairs of vertexes (written without
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brackets and commas) representing equal edge lengths; the metric relations are ordered
according to increasing lengths (identified by the indices). The minimizing algorithm now
searches for those numberings i : X — {1, 2, 3, 4} which, after lexicographic ordering
within each of the numbered X, Ry, Ra, R3, and R4, lead to a lexicographically smallest
sequence, called the minimal canonization of T and denoted by Min(7T). In this way,
Min(T) results from each of the two numberings i1 and p»; they are named minimal
numberings:

Min(T) = ((1,2,3,4), (12,21, 34,43)s, (13,31)6, (14,23,32,41)7, (24,42)5) !

from a2, b4, c—3,d—lor ur:a—4,br—2,c—1,dw— 3.

The two symmetries of Syy = C, are ufl 1 and /,L;l 1. How does one arrive at the eight
permetries of P2> = Dog? The answer is given by the fact that, in addition to Desc((T) =
(X, R1, R2, R3, Ry), one can create further descriptions of 7', all transformable by the
minimizing algorithm to the same Min(7') as already achieved from Desc(7T'). They are
obtained by certain permutations of the metric relations Ry, R2, R3, and R4. We find three
of them, Desca(T'), Desc3(T), and Descsa(T), each leading to Min(7') by two minimal
numberings (not shown explicitly):

Desco(T) = (X, Ry, R4, R3, R2) = Min(T) from p3 or pa,
Desc3(T) = (X, R3, Ry, Ry, Ry) = Min(T) from us or ue,
Desc4(T) = (X, R3, R4, R1, R2) = Min(T) from p7 or ug.

Thus we have eight permetries: the already mentioned le_l w1 and s Ly (symmetries)
together with i3 . 1 and u;l 1 (coset permetries), fig ! /1 and ugl (1 (coset permetries),
ny ! w1 and g ! i1 (coset permetries). The involved permutations of the metric relations,
namely (R1)(R2)(R3)(R4), (R1)(R3)(R2R4), (R2)(R4)(R1 R3), and (R1 R3)(R2R4), form
a group of order 4 which is isomorphic with the longometry group of 7.

Remarks.

(1) It is possible to extend the concepts symmetry, permetry and longometry group to
polyhedrons or even to polytopes. These groups may be achieved by the canonizing
procedure just illustrated. Such a symmetry group of a d-dimensional polytope was
in [4] named automorphism group (the elements, being vertex permutations, are the
automorphisms of the description). The automorphism group is isomorphic with the
‘ordinary symmetry group’ (where the elements are the isometries of the whole d-
dimensional embedding space which map the polytope onto itself). But note that for
polytopes, being different from simplexes, the automorphism group alone does not,
in general, uniquely determine the kind of the isometries assigned by the isomor-
phism (for details see [4]).

(2) It should also be mentioned that the canonizing procedure has been applied to gen-
erate the symmetry groups of non-rigid figures, which are not easily obtainable by
‘visual coincidence operations’, but which are of prime importance as models, for
instance, of molecular structures (see [1]).

1. It would be sufficient to write only the lexicographically smaller of each symmetric pair.
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3 Tetrahedron o-classes

We start again with triangles (the simplexes in 2-space): Isosceles triangles can be subdi-
vided into two classes, the one where the laterals are larger than the base and the one in
which they are smaller. By analogy, we consider subdivisions of the e-classes of tetrahe-
drons:

Definition 3.1. A tetrahedron T’ belongs to the o-class represented by the tetrahedron T
and denoted by [T, if there exists an e-metry f from 7 to T’, so that A(f) preserves the
order. We call such an e-metry f an o-metry from T to T'.

Clearly, the o-classes form a partition of all tetrahedrons and make up a refinement of the
e-classes. What is the number of o-classes within an e-class [T']¢?

Theorem 3.1. Let T be a tetrahedron with lengths number n and longometry group L.
Then the number w of o-classes within the e-class [T | is given by w = n!/|L|.

Proof. We use a finite completely tetrahedral set W (see [5]) with |W| = n. This assures
that all o-classes within [T ]. can be represented by tetrahedrons with edge lengths from W
which is achieved as follows: Consider e-metries f; with | < k < n! from a tetrahedron
Ti € [T]e to tetrahedrons 7 such that (a) all T have edge lengths from W and (b) all A(f%)
are mutually different. Clearly, to a fixed 7 and to each e-metry g from 7; to 7 there is
assigned a permetry p of 7i, such that p = ¢! f; and thus (¢): AM(p) = A(g™' fy) =
A(g~HA(fr). Now, when does Tx belong to the o-class [71],? By Definition 3.1, there
must exist an o-metry g from 7] to T; which, according to (a) and since A(g) preserves the
order, is exactly the case if g will be an isometry. But such an isometry g is given if and
only if A(g_') is the identity which, because of (c), is equivalent to A(fx) = A(p) or, in
other words, to A(fz) being equal to a longometry of 7. From (b) and since the longom-
etry group L is an e-class property follows that the o-class [7]], contains |£| tetrahedrons
Tr and this, of course, is true for each other o-class within [T]e. Hence, w = n!/|L]. O

Tab. 3 shows the numbers w; of o-classes within the e-classes [7;].. By summation over
all w; one obtains the total number of o-classes, which is 225.

i 1[2]314[5]6|7[8[9]10]11]12]13[14|15]16|17|18[19[20|21]22(23|24|25
wi|1]2[2|2]|2|1(3]|3[6[6|6|6]|2|3|1[4]|12]4(24[12]12|6 |60(15|30

Tab. 3

There are, for instance, wyy = 6 o-classes within [722]c represented by the tetrahedrons as
shown in Fig. 3, all of which exist according to Tab. 4 (see next Section 4). Note that the
2nd tetrahedron from the right is the tetrahedron 7 of Fig. 2.
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Remarks.

(1) The minimum value is w; = wg = w15 = 1 and, in these cases, the e-classes
and o-classes coincide: [T1]e = [T1]o (regular tetrahedrons), [Tsle = [Ts]o (golden
tetrahedrons) and [715]c = [T15]o (isosceles tetrahedrons).

(2) The maximum value is w23 = 60 which is bigger than w25 = 30, even though the
tetrahedrons of [7>5]e have mutually different edge lengths (scalene tetrahedrons).

4 Smallest p- and q-sets

In this section we consider o-classes within two simple further classifications which can
immediately be recognized by inspecting the first and second column of Tab. 1:

Definition 4.1. A p-class [T]p or a g-class [T ]q, where T is a representative, consists of all
tetrahedrons with the same lengths partition m as T or the same lengths number (quantity)
n as T, respectively.

There are 11 p-classes and 6 g-classes, both forming a partition of all tetrahedrons. Of
course, the p-classes make up a refinement of the g-classes. Including the e-classes and
o-classes we have: [T']q 2 [T]p, 2 [T]e 2 [T, for any tetrahedron T'.

First, let us consider the p-class [T ], where T has lengths partition m and lengths number
n. We define a smallest p-set Py, as the set of the n smallest successive integers, such that
for each o-class within [T'],, there exists a representative with edge lengths from P,,. How
can P, be determined?

For this purpose we make use of spawning
tetrahedrons and digress for a short summary
of their features (see also [5]). By definition,
a spawning tetrahedron is given according to
Fig.4witha>b>c>d>e> f. Fig. 4

The attribute ‘spawning’ is justified by the following remarkable property: All (anisomet-
ric) tetrahedrons conceivable by rearranging the edges of a spawning tetrahedron exist.
But when do given edge lengths with the ordera > b > ¢ > d > e > f determine a
spawning tetrahedron? A necessary and sufficient condition is given by D > 0 where

0 a*> ¢* 1
a> 0 f2 4% 1
D=|¢* f2 0 b 1 (Cayley-Menger determinant).
d 4 p 0 1
1 1 1 1 0

Of course, the attribute ‘spawning’, being based on the order of edge lengths, describes an
o-class property. There are 32 spawning o-classes sincea > b > ¢ > d > e > f is ful-
filled exactly if one of the 25 = 32 possible conditions, resulting from the replacement of
‘>’by ‘>’ or by ‘=", is fulfilled; in the following we speak of the 32 spawning conditions.

Returning to the problem of detecting the smallest p-set P,,, we explain by means of an
example: Let [T ], be the p-class represented by a tetrahedron 7' with lengths partition m =
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2211. The determination of P11 is now based on the 4!/(2!2!) = 6 spawning o-classes
within [T], corresponding to the 6 arrangements of the partition numbers, namely 2211,
2121,2112,1221, 1212, and 1122, or to the following 6 spawning conditions, respectively:

a=b>c=d>e>f, a=b>c>d=e>f, a=b>c>d>e=f,

a>b=c>d=e>f, a>b=c>d>e=f, a>b>c=d>e=f.

In each of these spawning conditions we replace the 4 unequal variables with u, u + 1,
u + 2, and u + 3 (while adhering to the order) and form the respective Cayley-Menger de-
terminants, being denoted by Dy, D3, D3, D4, Ds, and Dg. We then calculate the smallest
positive solution ug of the following system of diophantine inequalities:

D >0 A Dy>0 A D3y>0 A Dy>0 A Ds>0 A Dg>0.

The result us = 5 leads to the smallest p-set P11 = {5, 6, 7, 8} as shown in Tab. 4a.

Clearly, each of the w19 + w20 + w21 + w22 = 54 o-classes within [T'];, can be represented
by exactly one tetrahedron with edge lengths from Pa211. The 54 tetrahedrons include all
anisometric tetrahedrons of [T], conceivable with edge lengths from P2211. Among these
54 tetrahedrons, 6 are spawning each generating 9 tetrahedrons by rearranging the edges.
In general: Within a p-class, the number of spawning o-classes is a divisor of the number of
o-classes because the quotient stands for the number of possible anisometric tetrahedrons
with given edge lengths (see third column of Tab. 4a and also [5]).

Tab. 4a Tab. 4b
lengths elasses: | lengths porenh
partitionm | smallest p-set P,, |all (spawning) [ numbern | smallest g-set O, |all (spawning)
6 {1} 1 (1) 1 {1} 1 (1)
51 {2,3} 2 (2)
42 {3,4} 4 (2) 2 {3,4} 9 (5)
33 {2,3} 3 (1)
411 {4,5,6} 6 (3)
321 {5,6,7} 24 (6) 3 {5,6,7} 36 (10)
222, {4,5,6} 6 (1)
3111 {6,7,8,9} 20 (4) 4 (6.7.8.9] 74.(10)
2211 | {5,6,7,8} 54 (6)
21111 {7,8,9,10,11} 75 (5) 5 {7,8,9,10,11} 75 (5)
11l | {7,8,9,10,11,12} 30 (1) 6 {7,8,9,10,11,12} 30 (1)
total of o-classes: all (spawning) 225(32) | total of o-classes: all (spawning) 225(32)
Tab. 4

We now turn to Tab. 4b. Let [T']q be the g-class where T has lengths number . By anal-
ogy to a smallest p-set P, we define a smallest g-set Q, as the set of the n smallest

successive integers such that for each o-class within [T']q there exists a representative with

edge lengths from Q,,. There are (”il) spawning o-classes within [T']q corresponding to

the spawning conditions with n — 1 signs ‘>’ and 6 — n signs ‘=". A smallest g-set Q,, in

Tab. 4b is obtained by determining the smallest positive solution of the system of the (nfl)
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respective diophantine inequalities. The number of o-classes within [T |q results from sum-
mation over the appropriate w;. For n = 4, for instance, we have 74 o-classes and each of
them can be represented by exactly one tetrahedron with the property that only the 4 edge
lengths of Q4 occur. And again, these 74 tetrahedrons make up all conceivable anisometric
tetrahedrons with this property.

Remark. The reader may see that the calculation of the smallest p- and g-sets could
be simplified should the following conjecture be true: If in a tetrahedron all 6 edges are
extended by the same length t (in our case by t = 1), then the resulting edges, being
arranged in the same way, again determine a tetrahedron.

S Higher dimensions

A generalization in d-dimensional spaces may be considered. We counted the numbers of
the simplex q-, p-, e- and o-classes denoted by q(d), p(d), e(d), and o(d), respectively.
These numbers can be calculated as follows: q(d) = ( 42'1) and p(d) (partitions of a natu-
ral number) is obtained from a generating function well-known in combinatorics; for the
determination of e(d) we used DeBruijn’s generalization of Polya’s theory of counting and

for o(d) Polya’s theory itself. In Tab. 5 these numbers are given for 1 <d < 7.

d|q(d)| p(d) e(d) o(d)

11 |1 1 1

2(3 [3 |3 4

3 1|25 225

4010 [42 [1299 856'608

5|15 [176 [ 1974452 319'872'163'585

6| 21 [792 |94345468975 16/096'217'596/356'372'660

7| 28 |3718 | 1521799292'695935'115 | 156'189'537'129'127'582'7481089'210443

Tab. 5
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