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Let Fq be the finite field of characteristic p containing q pr elements. A polynomial
f(x) e Fq [x] is called a permutation polynomial of Fq if the induced map / Fq -> Fq is
one to one. The study of permutation polynomials goes back to Hermite [2] for Fp and to
Dickson [1] for Fq. One of the open problems proposed by Lidl and Mullen [3], is to find
new classes of permutation polynomials of Fq. We refer to [4] or [5] for the basic results on

permutation polynomials. Wan and Lidl [7], gave conditions on a polynomial of the form
xr to be a permutation polynomial. The conditions are not explicitely given
m terms of q and r, and may be difficult to verify m general. In the present note, without
using the characterization of Wan and Lidl [7], but using only an elementary method, we
exhibit a new class of permutation polynomials. We prove the following:

Theorem 1 Let q pr, where p is a prime number and r is a positive integer. Let u be a

positive integer and let

/w /(A+A +1) (i)

Unter einem Permutationspolynom des kommutativen Ringes R mit Emselement
versteht man ein Polynom p e R[x], fur welches die durch 7ta p(a) definierte
Abbildung von R nach R eine Permutation der Rmgelemente ist. Permutationspolynome
sind beliebte Studienobjekte der Zahlentheorie, der Algebra und der Kombinatorik.
Am besten untersucht ist wohl der Fall, wenn R ein endlicher Korper ist. Die Autoren

der vorliegenden Arbeit steuern zu dieser Theorie eine neue, einfache Klasse von
Permutationspolynomen bei.
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Assume that the following conditions hold:

(I) gcd{u, q — 1) 1

(II) q 1 (mod 8)
£ 1

(III) 3 4 =1 (mod p)

Then f(x) is a permutation polynomial of¥q.

Proof. We will prove that under the above conditions, the polynomial / induces a one-
to-one application on ¥q. Suppose that f{a) f{b) for some elements a and b of ¥q.

q 1 q 1

If one of them, say a, is 0, then bu\b 2 + b 4 + 1) 0. Suppose that b 7^ 0, then
q 1 q 1 q 1 rs

b 2 -\-b 4 +1=0. Set c b 4 then cL + c + 1 =0 and c is a cubic root of unity.
Condition (111) implies c ^ 1. We have c c4 bq~l 1, which is a contradiction. It
follows that b 0 a.

q 1 q 1

From now on we may suppose that ab 7^ 0. It is clear that a 2 =b 1 and b 2 =b 1. By
symmetry, we have to consider only the following three cases:

Case 1: If a^~ 1. If a~= Z?^ 1, then bu, hence (|)M 1.

q 1 q 1

Therefore a b by (1). To complete Case 1, we may suppose that a 4 =1 and b 4

— 1. From equation (1) we have Z?M or (|)M 3. We deduce that =3^4",

hence (— \)u lby (111). By (1), u is odd and we reached a contradiction.

q 1 q 1 _|_q 1 _|_q 1

Case 2: If a 2 b 2 — 1. From equation (1) we get: a + 4 b ^ 4 hence

(b/a)u+14~ 1. The order 8 of b/a m ¥q divides q — 1 and u + Let I be a prime
factor of 8. Because u is odd and by (11), we may exclude the case Z 2. It follows that I

is odd and I \ therefore I \u, which contradicts (1).

q 1 q 1 q 1 q 1

Case 3: If a 2 —b 2 =1. Here we have a 4 ±1 and b 4 where £ is a

primitive quartic root of unity.
q 1 q 1

• If a 4 — 1 and b 4 f then by equation (1), we have %bu. We deduce
that (a/b)u f, therefore (a/b)4u 1. Using (1), we conclude that (a/b)4 1. If

£ 1 £ 1 £ 1 £ 1

a/b —1, then a 2 (—1)2^2 Z? 2 which is a contradiction. Suppose

next that a/b =bf, then <2^2" (=bf )£2~Z>£2~. Hence 1 (^4)is~(—1) —1,

which is a contradiction. We conclude that a b.
q 1 £ 1

• Suppose now that a 4 =1 and b 4 f, then by equation (1) we have 3au

£ZA By condition (111), the characteristic of the field is 7^ 3, hence we may write
/ £_1 \ M £^J_

this equation m the form: (a/b)u f/3. It follows that I I hence
\b—J 3^

£ 1

3 2 =—1, contradicting (111).

Remark 1 The minimal example for Theorem 1 is when p 7 and q I2.



A new class of permutation polynomials of 55

Example 1 Let p be a prime number such that p 1 (mod 8) and p 1 (mod 3) and
let q pr where r is positive and even. It is clear that condition (11) of Theorem 1 is

p 1 O x P 1

satisfied. Euler criteria gives that 3 2 (^J 1 (see [6]). It follows that 3 4 ±1,

hence 3^4" (3^4_)(1+p+ +Pr x) \ and condition (m) of Theorem 1 is fulfilled. By
Dinchlet's theorem (see [6]), there exist infinitely many prime numbers p 1 (mod 8)
and p 1 (mod 3). The smallest such prime is 73. Any polynomial f(x) of the form (1)
such that u satisfies condition (i) of Theorem 1 induces a permutation of ¥q. We may put
u 1 for example.
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