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Zurich 1940

Frangois Sigrist

Frangois Sigrist a étudié les mathématiques a I’EPFZ, ot il a obtenu le doctorat en
1967 sous la direction de Beno Eckmann. Il a enseigné a UBC Vancouver avant d’étre
nommé a I’Université de Neuchétel, ou il a enseigné jusqu’en 2006. Il a consacré sa
recherche a la topologie algébrique (H-espaces, K-théorie, homotopie) pendant une
vingtaine d’années, puis aux formes quadratiques réelles, aux empilements de spheres
et aux codes correcteurs d’erreurs.

1 Introduction

Nous sommes a Zurich, en 1940, a I’Ecole polytechnique fédérale (EPF, en allemand ETH,
devenue en 1971 EPFZ-ETHZ lors de la création de ’EPFL a Lausanne). Depuis sa créa-
tion en 1855, I’institution est connue sous le nom de «Poly».

Les trois protagonistes de cette histoire sont Heinz Hopf, Eduard Stiefel, et Beno Eckmann.

Hopf est professeur au Poly. Il est au sommet de son art, et au firmament des mathéma-
tiques. Stiefel est un de ses collaborateurs, il a publi€é une remarquable these, sous sa
direction, en 1935. Eckmann termine sa these, également dirigée par Hopf, et tout aussi
remarquable (il a 23 ans).

Ces trois mathématiciens ont aujourd’hui leur place parmi les grands. Leurs travaux de
I’époque, et a venir, sont justement célebres.

J’ai sélectionné pour chacun d’eux un article qui, de leur point de vue, a ce moment-
la, n’avait peut-&tre pas I’importance qu’il a acquise plus tard. Mais dans chaque cas, on
trouve une extraordinaire étincelle de clairvoyance qui force I’admiration.

Meistens wird Eulers Polyedersatz als Ursprung der algebraischen Topologie betrach-
tet. Als einer der Griindungstexte darf Poincarés Analysis Situs von 1895 gelten. In den
30er Jahren des 20. Jahrhunderts hat die algebraische Topologie eine ausserordentliche
Entwicklungsphase durchgemacht. Einer der kreativsten Protagonisten jener Zeit war
Heinz Hopf. Er hat damals mehrere Forschungsrichtungen initiiert, die sich in der Fol-
ge als dusserst fruchtbar erweisen sollten. Der Autor hat den Jahrgang seiner Geburt
zum Anlass genommen, um die damalige Stimmung am Poly Ziirich zu beschreiben,
als man, mitten im Krieg, mathematisch zu neuen Ufern aufbrach.
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Mon choix est en bonne partie dicté par des raisons personnelles. J’ai eu la chance, au
cours de mes études au Poly, de bénéficier de 1’enseignement de ces trois professeurs, et
j’en conserve un souvenir durable. Eckmann a ét€ mon directeur de these. Je suis né en
1940.

2 Heinz Hopf (1894-1971)

Hopf fait paraitre dans une revue locale (Bulletin de la société zurichoise des sciences natu-
relles) un article intitulé ,,Systeme symmetrischer Bilinearformen und euklidische Modelle
der projektiven Raume*. Il commence par énoncer une propriété en apparence tout a fait
élémentaire :

Quatre coniques dans le plan ont toujours une paire commune de points conjugués.

Tout en laissant entendre que ce résultat est bien connu, il met en bas de page, dans
son style caractéristique, et avec une pointe d’humour, la note suivante (traduire serait
un crime) :

,Bei dem Versuch, diese Sétze mit den iiblichen Methoden der projektiven-

algebraischen Geometrie zu beweisen — gewiss ist ein solcher Beweis moglich

— macht, soviel ich sehe, die notwendige Realititsbetrachtung einige Schwie-
N TS|

rigkeit.

Appelons N (r) le nombre minimal nécessaire de quadriques, dans 1’espace projectif réel
de dimension (r — 1), permettant de garantir qu’il n’y ait aucune paire commune de points
conjugués. Avec cette notation, la propriété s’énonce N (3) > 4.

Hopf s’appréte alors a démontrer :
Pour r>2, r+2<N@F)=<2r-—1.

Voici la démonstration de N(3) = 5 donnée par Hopf. Elle a la vertu d’étre élémentaire,
tout en renseignant valablement sur le cas général traité. Mais au préalable, quelques re-
marques sur la géométrie projective, qui a peu a peu disparu de I’enseignement, a tous les
niveaux de formation, alors qu’elle joue un rdle important, en géométrie algébrique par
exemple. Je prendrai I’exemple de la dimension 2, puisque c’est le contexte de 1’énoncé
de départ.

Le plan projectif réel RP? est défini comme I’espace des droites par I’origine dans R3.
On introduit les coordonnées homogenes pour le décrire : un point du plan projectif
est un triple de nombres réels [x1, x2, x3], différent de [0, O, O], avec I’identification de
[x1, x2, x3] avec [Axy, Ax2, Ax3]. La géométrie projective plane consiste donc a adjoindre
au plan euclidien R? une droite a Iinfini. Chaque droite du plan a un seul point a Iin-
fini, ce qui rend 1’espace projectif non-orientable : un «ruban» du plan, avec ses points a
I’infini, est un ruban de Mobius !

Un point p = ( 5,’; ) du plan euclidien correspond au point [ p1, p2, 1] dans le plan projectif.
Il est commode d’utiliser les mémes notations, j’écrirai donc p = <£1é> dans le plan
projectif. Remarque : la droite a I’infini est I’ensemble des points [x1, x2, 0].

1. Malgré mes bons souvenirs, je ne sais absolument pas démontrer ce résultat avec les méthodes tradition-
nelles de la géométrie projective.
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Dans le plan euclidien, une conique est un polyndme de degré 2 en x et y. Il lui corres-

pond dans le plan projectif un polyndme homogene de degré 2 en x, y et z, de matrice
(symétrique réelle) 3 x 3. En notant A la matrice de la conique, X = ()»C) le point du plan

projectif, I’équation de la conique est donc
X'AX =0.

La polaire d’un point P par rapport a la conique de matrice A est la droite d’équation
P'AX = 0. Cette dualité est I’'un des outils standard de la géométrie projective, elle
permet de transcrire les résultats pour les points en résultats pour les droites. Echantillon :
Par 5 points, il passe une et une seule conique. Par conséquent, une conique est aussi
caractérisée par 5 tangentes.

Deux points P et Q sont conjugués par rapport a la conique de matrice A si P est situé sur
la polairede Q : P'AQ = 0.

Avec ces notations, voici comment Hopf proceéde :

Il commence par calculer le produit de deux polyndmes (en 7)

(1 + vt + 21t (2 + yar + z21%) = (x1x2) + (x1y2 + X201)1
+(x1z2 + X221 + y1y)1* + (viz2 + yaz)ed + izt
Le produit de deux polyndmes non-nuls n’étant jamais le polyndme nul, les points du
plan projectif [x1, y1, z1] et [x2, ¥2, z2] ne peuvent pas annuler simultanément les cinq

coefficients du produit. Ils ne peuvent donc pas former une paire de points conjugués pour
les cinqg coniques correspondantes dont les équations sont

x2=0, 2xy=0, 2xz+y*=0, 2yz=0, z>=0.

Il en déduit évidemment que N(3) < 5.2

Il suppose ensuite que N(3) = 4. Il existe alors quatre matrices 3 x 3, Ay, A2, A3, As,
réelles, symétriques, telles que

X'AiY =0 (i=1,2,34=X=0o0uY=0.
On exploite cette propriété en construisant une application ¢ : R3 — {0} — R* donnée par

(XTA1X, X"AxX, X"A3X, X" AsX)

X) = .
i VXTAIX)? + (XTA2X)2 + (XTA3X)2 + (XTAgX)?

On constate alors avec ravissement que 1’application ¢ est constante sur les droites par
I’origine de R3, qu’elle a son image sur la sphére S et qu’elle n’est pas surjective sur
S* pour raison dimensionnelle (¢ est différentiable). Autrement dit, ¢ est une application
du plan projectif RP?> dans R3. Mais 2 ce titre, ¢ est injective. En effet, ¢p(X) = ¢(Y)
implique qu’il existe . # 0 avec (X'A;X) = A2(YTA;Y), i = 1,2,3,4. Les matrices
étant symétriques, il vient (X — AY) A;(X + 1Y) = 0,i = 1,2, 3, 4. Par conséquent
X = £AY, ou encore X = Y dans RP2.

2. L’argument général donne N(r) < 2r — 1. De plus, en prenant des polyndmes a coefficients complexes,
on obtient N(2¢q) < 4q — 2.
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Dans le langage forgé par Hopf, le plan projectif RP? posséde un modeéle euclidien de
dimension 3. Or, il est bien connu que c’est impossible, puisque le plan projectif n’est
pas orientable. Pour le cas général, Hopf utilise la dualité d’ Alexander et obtient N (r) >
r 4+ 2. C’est donc une démonstration «clandestinement cohomologique», alors que le mot
«cohomologie» n’a jamais fait partie de son vocabulaire.

Le probleme topologique sous-jacent est donc : Trouver la dimension D(m) du plus petit
espace euclidien dans lequel on puisse plonger I’espace projectif RIP”*. La contribution de
Hopfestdoncm +2 < D(m) < 2m.

Le probléme est resté d’actualité. Des centaines d’articles ont été écrits sur la borne inféri-
eure. Les distinctions de cas sont innombrables, les démonstrations sont souvent tres ar-
dues. Pour la borne supérieure, je ne connais qu’un résultat général, spectaculaire, di a
Brian Steer (1970) : D(m) < 2m — «a(m) + 1. La fonction e(m) compte le nombres de
1’s dans ’écriture de m en base deux. Sa pertinence dans le probléme vient du fait que la
borne inférieure conjecturale est D(m) > 2m — 2cc(m). Il y a bien des années, j’ai assisté,
et un peu participé, aux efforts de Brian Steer et d’Ueli Suter pour rétablir une démonstra-
tion incorrecte qui venait de paraitre de cette conjecture, sans succes. Mais il est probable
qu’on puisse la confirmer aujourd’hui, simplement en compilant la masse de données a
disposition. Le probleme est remarquablement tenu a jour sur

www.lehigh.edu/~dmdl/immtable.

3 Eduard Stiefel (1909-1978)

L’article dont je vais parler s’intitule ,,Uber Richtungsfelder in den projektiven Rdaumen
und einen Satz aus der reellen Algebra®. L’auteur est bien Stiefel, mais une note en bas de
la premiere page mérite attention.

Il y a bien des disciplines scientifiques ou les patrons signent simplement les articles des
chercheurs. Ce n’est pratiquement jamais le cas en mathématiques. Malgré cela, il est tout
de méme rare que le patron écrive I’article du chercheur. Voici le texte intégral, qui illustre
bien le climat de I’époque :

,.Herr Prof. Dr. H. Hopf war so freundlich, mein urspriinglich vorliegendes Ma-
nuskript wihrend meiner lingeren Abwesenheit im Militardienst fiir den Druck
auszuarbeiten. Er hat bei dieser Gelegenheit einige Hilfsmittel, die ich als Spe-
zialfille der allgemeinen Theorie dargestellt hatte, fiir die projektiven Rdume
direkt hergeleitet. Ferner hat er einen Beweis, der bei mir noch nicht ganz pri-
zis war, durch Benutzung eines Satzes von Wasewski in Ordnung gebracht. Ich
danke ihm herzlich fiir seine Hilfe, ohne die das Erscheinen der Arbeit zum
mindesten stark verzogert worden wire.*

Il est fascinant de lire cet article avec le recul que donnent les années, car il montre la
genese de notions qui ont completement envahi la topologie algébrique. Les résultats se
sont «banalisés» au point d’apparaitre comme exercices dans les livres sur le sujet.

Au préalable, et pour lier les problémes envisagés ici, une petite parenthese sur le théoréme
du hérisson (Igelsatz) me semble utile. Il est impossible de peigner un hérisson : il n’existe
pas de champ de vecteurs tangents a la sphére S et non-nuls en tout point de S?. Ce résultat
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de Poincaré (démontré pour toute sphere de dimension paire) est le point de départ de toute
la topologie algébrique du siecle précédent.

Hopf, apres avoir démontré le théoréme du hérisson, aimait en présenter la conséquence
suivante, qui est un cas particulier des résultats de Stiefel que nous verrons ci-apres :

S’il existe deux matrices réelles (n x n) telles que toutes leurs combinaisons linéaires
non-triviales aient le rang n, alors n est pair.

Preuve. On peut supposer que 1’une des deux matrices est la matrice-unité. Appelons A
’autre. Pour tout vecteur-unité v de R”, les vecteurs v et Av sont linéairement indépen-
dants. En projetant Av sur le plant tangent a la sphére-unité, on obtient un champ de
vecteurs tangents non-nuls.

Eckmann préférait, par principe, énoncer les résultats sous forme positive. Sa version était
donc :

S’il existe 2m + 1 fonctions réelles de 2m + 1 variables

Sl oo xomat), oo a1 (X1 e Xomt1)
telles que
xlfl + x2f2 +...+ x2m+1f2m+l =0
alors les fonctions (fi, ..., fam+1) ont un zéro commun autre que ’origine.
Preuve. A contrario, le vecteur (f1, f2, ..., fam+1), orthogonal au vecteur-unité (xp, x2,

... X2m+1), ne s’annule pas en dehors de 1’origine, il constitue donc un champ de vecteurs
tangents a la spheére de dimension 2m.

Voici maintenant un des résultats de I’article de Stiefel, dans sa version originale :

Théoreéme. S’il existe s matrices (r x n) telles que toute combinaison linéaire non-triviale
ait le rang r, il est nécessaire que les coefficients binomiaux (;‘) soient pairs pourn —r <
Jj<s.

Remarque : La condition donnée est équivalente a
(x+y)"=0 dans Ta[x,y]/(x", y%).

Le cas r = n fournit s — 1 champs de vecteurs tangents a la sphere S"!, linéairement
indépendants en tout point. Par exemple, s = 2 demande que (’11 ) soit pair, donc que n soit
pair, c’est la conséquence décrite ci-dessus du théoreme du hérisson. C’est pourtant le cas
s = r = n qui est le plus intéressant. Il existe alors n — 1 champs de vecteurs tangents
A la sphere S"~!, linéairement indépendants en chaque point. On dit alors que la sphére
S"=1 est parallélisable : on peut employer les mémes coordonnées dans tous les espaces
tangents. Il est donc nécessaire que ('j’) soit pair pour 0 < j < n, ou encore que n soit
une puissance de 2. Ce résultat était probablement déja déductible de la these de Stiefel en
1935, il est d’une importance historique considérable.

Seules les spheres st S3, et S7 sont parallélisables, et ceci grace a leur structure mul-
tiplicative (nombres complexes, quaternions, et octaves de Cayley). Il suffit en effet de
déplacer I’espace tangent par multiplication pour obtenir un parallélisme global. Mais il a
fallu attendre 1958 (Milnor et Kervaire, séparément) pour montrer que ce sont les seules
spheres parallélisables.
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4 Beno Eckmann (1917-2008)

Le cas particulier du probleme posé par Stiefel : Trouver s matrices inversibles n x n telles
que toute combinaison linéaire soit inversible, avait été résolu séparément par A. Hurwitz
et par J. Radon en 1923, dans le cas ou les matrices sont orthogonales. En voici le résultat.

Théoréme (Hurwitz-Radon). Soitn = 24¢+F 2y+1) avec 0 < B < 3. Cette décomposi-
tion est unique. Soit ensuite p(n) = 8« + 28, Alors il existe p(n) — 1 champs de vecteurs
tangents, orthogonaux deux a deux, a la sphére S*~'. Les champs sont donnés explicite-
ment par des matrices orthogonales.

Remarque. Le probléme topologique des champs de vecteurs sur les spheres a la méme
réponse. Il a fallu pour cela attendre 1962 (Frank Adams) pour une démonstration. Mais
c’est la démarche d’Eckmann, qui consiste en fait a inverser la fonction p(n), qui a lancé
la recherche dans la bonne direction.

Eckmann devait présenter au séminaire I’article de Radon, qu’il avait trouvé particuliere-
ment rébarbatif, bien que la solution fournisse explicitement les champs de vecteurs. La
démarche de Radon mérite cependant attention (remarquons que le résultat de Radon est
purement algébrique, et ne nécessite aucun recours a la topologie).

i) Notons / la matrice-unité (n x n). S’il existe une matrice orthogonale A ayant la
propriété que x I + y A est orthogonale pour tous (x, y) avec x>+ y> = 1, on montre
facilement que A est antisymétrique de carré —I. Une conséquence immédiate est
que n doit &tre pair. C’est donc la version orthogonale du théoréme du hérisson.

ii) On prend x/ + yA + zB comme combinaison. Comme précédement, on obtient
A?> = B> = ABA'B~! = —I. Un raisonnement ad hoc montre alors que la
dimension doit étre divisible par 4, et que la famille I, A, B, AB est orthogonale (si
une sphere a deux champs de vecteurs tangents orthogonaux, elle en a un troisieme).

La construction explicite des matrices montre ensuite que les familles orthogonales suc-
cessives se trouvent soit dans la méme dimension, soit dans la dimension double. On reste
donc dans les puissances de 2. Mais les distinctions de cas rendent le travail fastidieux.

Mettons-nous dans la situation d’Eckmann. Son sujet de recherche est le probleme topolo-
gique des champs de vecteurs sur les spheres, le travail de Radon est donc incontournable.
Il fait alors la constatation suivante, qui est tout a fait visible sur le cas particulier ii).

Les matrices A et B engendrent un groupe fini (£/, +A, £B, =AB) d’ordre 8 (cas géné-
ral : une puissance de 2), isomorphe au groupe des unités des quaternions (%1, £i, +j,
=+k). Elles constituent par conséquent une représentation de dimension n du groupe des
quaternions. De plus, la matrice —I est un commutateur (ABA~'B~! = —1).

En 1937, I. Schur, venu d’ Allemagne, était venu a Zurich donner un cours de théorie des
représentations des groupes. J’ai eu en main le polycopié de ce cours, rédigé par Stiefel. Il
me parait certain qu’Eckmann en disposait en 1940. Le résultat principal de la théorie est
le théoreme d’orthogonalité des caracteres, dont on déduit en particulier :

La représentation réguliére (table de multiplication!) d’un groupe fini se décompose, sur
les nombres complexes, en autant de représentations irréductibles qu’il y a de classes



Zurich 1940 51

conjuguées dans le groupe, avec chaque représentation irréductible apparaissant autant
de fois que sa dimension. Toute représentation irréductible figure dans la représentation
réguliere. De plus, le nombre de représentations irréductibles de dimension 1 (caracteres)
est égal a I’ordre de 1’abélianisé du groupe (ici 4). A cet argument général s’ajoute, dans
notre cas, le fait que la matrice —/ est un commutateur. Il n’y a donc aucune représentation
de dimension 1 dans la décomposition! C’est le lemme de Schur. Comme 1’équation des
dimensions est 8 = 1% + 124 1% + 12 422, cela a pour conséquence que la représentation
donnée est de dimension 2 sur les nombres complexes. Il reste a voir qu’une représentation
de dimension 2 du groupe des quaternions ne peut pas étre réelle, ce qui est assez facile.
On obtient donc directement le fait que la dimension doit étre divisible par 4, retrouvant le
résultat de Radon.

Eckmann traite ensuite complétement le cas général, retrouvant tous les résultats de Ra-
don. Son article, paru en 1942 dans les Commentarii, est un document pédagogique ex-
ceptionnel. On peut le donner tel quel comme exercice (avancé, il est vrai) dans un cours
de théorie des groupes.

Il y a une partie plus difficile : c’est de décider quand une représentation complexe est
équivalente a une représentation réelle de méme dimension. C’était un ancien résultat de
Frobenius, mis a la page par Schur. Il est occulté aujourd’hui, car il est énoncé a 1’aide de
I’opération d’ Adams /2, mais n’en est pas moins assez délicat.

Remarque. Il est facile de vérifier que p(n) = n <= n = 1,2, 4, 8. Ce résultat, qui
donne les spheres orthogonalement parallélisables, avait été€ obtenu par Hurwitz en 1898
déja.

Une bonne généralisation des quaternions est donnée par les algebres de Clifford, un des
plus incontournables outils de travail de la topologie. Il se trouve que les groupes envisagés
par Eckmann sont en fait les groupes des unités dans les algebres de Clifford. Dans un livre
de J.F. Adams, 25 ans plus tard, un chapitre est consacré a la classification des algebres
de Clifford, et I’auteur conseille au lecteur de prendre directement 1’article d’Eckmann
pour se familiariser avec le probléme. Un bel exemple de pérennité, surtout si I’on songe
qu’Adams a résolu la plupart des problemes de la topologie algébrique des années 40.

5 Quelques commentaires

Le contexte unificateur de toutes les questions abordées ici est la fameuse identité

(Xlz + x%) : (y12 + y§> = (x1y1 — x2y2)> 4+ (x1y2 4+ x231)?

obtenue, par exemple, a I’aide de la multiplication des nombres complexes. >

L’équation matricielle qui décrit la genese de cette identité est

10 0 -1 Y1) _ [ X1Y1—Xx2y2
<XI<O 1)+x2(1 0 ))()’2)_<x1y2+X2y1

3. En 1962 = 392 + 212, année de mon diplome au Poly, chacun de nous connaissait cette décomposition,
car nous savions que Hopf, a I’examen d’algebre, demandait rituellement si I’année courante était une somme de
deux carrés. Le lien avec la remarque ci-dessus est 1962 =2-9 - 109 = (12 + 12) .32, (]02 + 32).
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Si (x1, x2) et (y1, y2) sont des vecteurs-unité, on obtient deux matrices orthogonales dont
toute combinaison linéaire est orthogonale, et conserve donc les longueurs, d’ou 1’identité
de départ. On se trouve donc dans le contexte Hurwitz-Radon-Eckmann. D’autre part, le
coefficient binomial (%) = 2 est pair, on se trouve donc aussi dans le contexte du résultat de
Stiefel. Comme le vecteur (—x»2, x1) est constamment perpendiculaire au vecteur (x1, x2),
cela signifie finalement que la sphére S! (cercle !) est parallélisable.

Soit f : R” x R — R" une application bilinéaire. On notera [r, s, n] si f est non-
singuliére (f(x,y) =0=x =0ouy = 0),et[[r, s, n]] si f estnormée (| f (x, y)| = |x].
|y]). Clairement [[r, s, n]] = [r, s, n]. L’identité ci-dessus est [[2, 2, 2]]. Une excellente
référence est un cours donné par Daniel Shapiro :

www.math.osu.edu/~shapiro/lecl.pdf

Les résultats mentionnés ci-dessus peuvent alors s’énoncer ainsi :
[[n,n,n]]l = n=1,2,4,8. (Hurwitz 1898)
[r, r, n] symétrique = Il existe un plongement de RP'dans R" ! = n > r+ 1.
(Hopf 1940)
[r, r, n] = Il existe une immersion de RPP"~! dans R*~1. (Ginzburg 1964)
11 existe un plongement de RP"~! dans R>~—1_(Steer 1970)
[n, n, n] = n est une puissance de 2. (Stiefel 1940)
[n,n,n] = n=1,2,4, 8. (Milnor-Kervaire 1958)
[[r, n, n]] = r < p(n). (Hurwitz-Radon 1923, Eckmann 1942)
[r,n,n] = r < p(n). (Adams 1962)
[r,s,n] = (x + y)" = 0dans F>[x, y]/(x", y*). (Stiefel 1940)
Pour terminer, un simple exemple montrera que le sujet est d’une richesse insoupconnée.

[16, 16, 23] et 23 est minimal, alors que [[16, 16, n]] = n > 28 et que [[16, 16, 32]].
(Kee Lam 1972 et 1985)
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