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I Elemente der Mathematik

Zurich 1940

Frangois Signst

Francis Signst a etudie les mathematiques ä l'EPFZ, oü ll a obtenu le doctorat en
1967 sous la direction de Beno Eckmann II a enseigne ä UBC Vancouver avant d'etre
nomme ä l'Universite de Neuchätel, oü il a enseigne jusqu'en 2006 II a consacre sa

recherche ä la topologie algebnque (H-espaces, K-theone, homotopie) pendant une

vmgtame d'annees, puis aux formes quadratiques reelles, aux empilements de spheres
et aux codes correcteurs d'erreurs

1 Introduction
Nous sommes ä Zurich, en 1940, ä l'Ecole polytechnique federale (EPF, en allemand ETH,
devenue en 1971 EPFZ-ETHZ lors de la creation de l'EPFL ä Lausanne). Depuis sa creation

en 1855,1' institution est connue sous le nom de «Poly».

Les trois protagonistes de cette histoire sont Heinz Hopf, Eduard Stiefel, et Beno Eckmann.

Hopf est professeur au Poly. II est au sommet de son art, et au firmament des mathematiques.

Stiefel est un de ses collaborateurs, il a publie une remarquable these, sous sa

direction, en 1935. Eckmann termme sa these, egalement dingee par Hopf, et tout aussi

remarquable (il a 23 ans).

Ces trois mathematiciens ont aujourd'hui leur place parmi les grands. Leurs travaux de

l'epoque, et ä venir, sont justement celebres.

J'ai selectionne pour chacun d'eux un article qui, de leur pomt de vue, ä ce moment-
lä, n'avait peut-etre pas 1'importance qu'il a acquise plus tard. Mais dans chaque cas, on
trouve une extraordinaire etmcelle de clairvoyance qui force 1' admiration.

Meistens wird Eulers Polyedersatz als Ursprung der algebraischen Topologie betrachtet.

Als einer der Grundungstexte darf Fomcares Analysis Situs von 1895 gelten. In den
30er Jahren des 20. Jahrhunderts hat die algebraische Topologie eine ausserordentliche

Entwicklungsphase durchgemacht. Einer der kreativsten Protagonisten jener Zeit war
Heinz Hopf. Er hat damals mehrere Forschungsrichtungen initiiert, die sich m der Folge

als äusserst fruchtbar erweisen sollten. Der Autor hat den Jahrgang semer Geburt

zum Anlass genommen, um die damalige Stimmung am Poly Zurich zu beschreiben,
als man, mitten im Krieg, mathematisch zu neuen Ufern aufbrach.
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Mon choix est en bonne partie dicte par des raisons personnelles. J'ai eu la chance, au

cours de mes etudes au Poly, de beneficier de l'enseignement de ces trois professeurs, et

j'en conserve un souvenir durable. Eckmann a ete mon directeur de these. Je suis ne en
1940.

2 Heinz Hopf (1894-1971)

Hopf fait paraitre dans une revue locale (Bulletin de la societe zunchoise des sciences
naturelles) un article intitule „Systeme symmetrischer Bilmearformen und euklidische Modelle
der projektiven Räume44. II commence par enoncer une propriete en apparence tout ä fait
elementaire :

Quatre coniques dans le plan ont toujours une paire commune de points conjugues.
Tout en laissant entendre que ce resultat est bien connu, ll met en bas de page, dans

son style caracteristique, et avec une pomte d'humour, la note suivante (traduire serait
un crime) :

„Bei dem Versuch, diese Satze mit den üblichen Methoden der projektiven-
algebraischen Geometrie zu beweisen - gewiss ist ein solcher Beweis möglich

- macht, soviel ich sehe, die notwendige Realitatsbetrachtung einige
Schwierigkeit.44

1

Appelons N(r) le nombre minimal necessaire de quadnques, dans l'espace projectif reel
de dimension (r — 1), permettant de garantir qu'il n'y ait aucune paire commune de points
conjugues. Avec cette notation, la propriete s'enonce N(3) > 4.

Hopf s'apprete alors ä demontrer :

Pour r > 2, r + 2 < N(r) < 2r — 1

Voici la demonstration de N(3) 5 donnee par Hopf. Elle a la vertu d'etre elementaire,
tout en renseignant valablement sur le cas general traite. Mais au prealable, quelques re-

marques sur la geometrie projective, qui a peu ä peu disparu de l'enseignement, ä tous les

niveaux de formation, alors qu'elle joue un role important, en geometrie algebnque par
exemple. Je prendrai l'exemple de la dimension 2, puisque c'est le contexte de l'enonce
de depart.

Le plan projectif reel RR2 est defini comme l'espace des droites par l'ongine dans R3.

On mtroduit les coordonnees homogenes pour le decnre : un point du plan projectif
est un triple de nombres reels [x\, X2, V3], different de [0, 0, 0], avec 1'identification de

[x\, X2, V3] avec [kx 1, kx2, kx3]. La geometrie projective plane consiste done ä adjomdre
au plan euclidien R2 une droite a Vinfini. Chaque droite du plan a un seul point a Vin-
fini, ce qui rend l'espace projectif non-onentable : un «ruban» du plan, avec ses points ä

l'mfini, est un ruban de Möbius

Un point p (pi) du plan euclidien correspond au point [p\, p2, 1] dans le plan projectif.

II est commode d'utiliser les memes notations, j'ecnrai done p dans le plan

projectif. Remarque : la droite ä l'mfini est 1'ensemble des points [x\, *2, 0].

1 Malgre mes bons souvenirs, je ne sais absolument pas demontrer ce resultat avec les methodes tradition-
nelles de la geometrie projective



Zurich 1940 47

Dans le plan euclidien, une conique est un polynome de degre 2 en v et y. II lui correspond

dans le plan projectif un polynome homogene de degre 2 en v, y et z, de matnce

(symetrique reelle) 3 x 3. En notant A la matnce de la conique, X ^ y ^ le point du plan

projectif, 1'equation de la conique est done

XfAX 0

La polaire d'un point P par rapport ä la conique de matnce A est la droite d'equation
PfAX 0. Cette dualite est l'un des outils standard de la geometrie projective, eile

permet de transenre les resultats pour les points en resultats pour les droites. Echantillon :

Par 5 points, ll passe une et une seule conique. Par consequent, une conique est aussi
caractensee par 5 tangentes.

Deux points P et Q sont conjugues par rapport ä la conique de matnce A si P est situe sur
la polaire de Q : Pf AQ 0.

Avec ces notations, voici comment Hopf procede :

II commence par calculer le produit de deux polynomes (en t)

(xi + yi t + z\t2){x2 + J21 + Z2t2) (xix2) + (xiy2 + x2yi )t
+(x\Z2 + X2zi + y\y2)t2 + (y\Z2 + yiz\)t3 + {z\Z2)tA

Le produit de deux polynomes non-nuls n'etant jamais le polynome nul, les points du

plan projectif [x\, yi, z\] et [*2, y2, Z2] ne peuvent pas annuler simultanement les cmq
coefficients du produit. lis ne peuvent done pas former une paire de points conjugues pour
les cmq coniques correspondantes dont les equations sont

v2 0, 2xy 0, 2xz + y2 0, 2yz 0, z2 0

II en deduit evidemment que N(3) < 5.2

II suppose ensuite que A^(3) 4. II existe alors quatre matrices 3x3, Ai, A2, A3, A4,
reelles, symetriques, telles que

XtAlY 0 (1 1,2,3,4) =^X 0 ou Y 0

On exploite cette propnete en construisant une application 0 R3 — {0} —> R4 donnee par

(XfAiX, X{A2X, X{A3X, X{A4X)
0(X)

v ;

Z(X'AiX)2 + (X'A2X)2 + (X'A3X)2 + (X'A4X)2

On constate alors avec ravissement que 1' application 0 est constante sur les droites par
Tongme de R3, qu'elle a son image sur la sphere S3 et qu'elle n'est pas surjective sur
S3 pour raison dimensionnelle (0 est differentiable). Autrement dit, 0 est une application
du plan projectif RR2 dans R3. Mais ä ce titre, 0 est injective. En effet, 0(X) 0(E)
implique qu'il existe 1^0 avec (XtAlX) X2(YtAtY), 1 1, 2, 3, 4. Les matrices
etant symetriques, ll vient (X — XY)f At(X + XY) 0, 1 1, 2, 3, 4. Par consequent
X ±XY, ou encore X Y dans RR2.

2 L'argument general donne N(r) < 2r — 1 De plus, en prenant des polynomes ä coefficients complexes,
on obtient N(2q) < 4q — 2
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Dans le langage forge par Hopf, le plan projectif MP2 possede un modele euchdien de

dimension 3. Or, ll est bien connu que c'est impossible, puisque le plan projectif n'est

pas onentable. Pour le cas general, Hopf utilise la dualite d'Alexander et obtient N(r) >
r + 2. C'est done une demonstration «clandestmement cohomologique», alors que le mot
«cohomologie» n'a jamais fait partie de son vocabulaire.

Le probleme topologique sous-jacent est done : Trouver la dimension D(m) du plus petit
espace euclidien dans lequel on puisse plonger l'espace projectif RPm. La contribution de

Hopf est done m + 2 < D(m) < 2m.

Le probleme est reste d'actualite. Des centames d'articles ont ete ecnts sur la borne mferi-
eure. Les distinctions de cas sont mnombrables, les demonstrations sont souvent tres ar-
dues. Pour la borne supeneure, je ne connais qu'un resultat general, spectaculaire, dü ä

Brian Steer (1970) : D(m) < 2m — aim) + 1. La fonction aim) compte le nombres de

I's dans l'ecriture de m en base deux. Sa pertinence dans le probleme vient du fait que la
borne mfeneure conjecturale est Dim) >2m — 2aim). II y a bien des annees, j'ai assiste,
et un peu participe, aux efforts de Brian Steer et d'Ueli Suter pour retablir une demonstration

mcorrecte qui venait de paraitre de cette conjecture, sans succes. Mais ll est probable
qu'on puisse la confirmer aujourd'hui, simplement en compliant la masse de donnees ä

disposition. Le probleme est remarquablement tenu ä jour sur

www. lehigh. edu/^dmdl/irmmtable

3 Eduard Stiefel (1909-1978)

L'article dont je vais parier s'mtitule „Uber Richtungsfelder m den projektiven Räumen
und einen Satz aus der reellen Algebra". L'auteur est bien Stiefel, mais une note en bas de

la premiere page merite attention.

II y a bien des disciplines scientifiques oü les patrons signent simplement les articles des

chercheurs. Ce n'est pratiquement jamais le cas en mathematiques. Malgre cela, ll est tout
de meme rare que le patron ecrive 1'article du chercheur. Voici le texte integral, qui illustre
bien le climat de l'epoque :

„Herr Prof. Dr. H. Hopf war so freundlich, mein ursprünglich vorliegendes
Manuskript wahrend meiner längeren Abwesenheit im Militärdienst fur den Druck
auszuarbeiten. Er hat bei dieser Gelegenheit einige Hilfsmittel, die ich als
Spezialfälle der allgemeinen Theorie dargestellt hatte, fur die projektiven Räume
direkt hergeleitet. Ferner hat er einen Beweis, der bei mir noch nicht ganz präzis

war, durch Benutzung eines Satzes von Wasewski m Ordnung gebracht. Ich
danke ihm herzlich fur seme Hilfe, ohne die das Erscheinen der Arbeit zum
mindesten stark verzögert worden ware."

II est fasemant de lire cet article avec le reeul que donnent les annees, car ll montre la

genese de notions qui ont completement envahi la topologie algebnque. Les resultats se

sont «banalises» au point d'apparaitre comme exercices dans les livres sur le sujet.

Au prealable, et pour her les problemes envisages ici, une petite parenthese sur le theoreme
du hensson ilgelsatz) me semble utile. II est impossible de peigner un hensson : ll n'existe

pas de champ de vecteurs tangents ä la sphere S2 et non-nuls en tout point de S2. Ce resultat
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de Poincare (demontre pour toute sphere de dimension paire) est le point de depart de toute
la topologie algebrique du siecle precedent.

Hopf, apres avoir demontre le theoreme du herisson, aimait en presenter la consequence
suivante, qui est un cas particulier des resultats de Stiefel que nous verrons ci-apres :

S'il existe deux matrices reelles (n x n) telles que toutes leurs combinaisons lineaires
non-triviales aient le rang n, alors n est pair.

Preuve. On peut supposer que l'une des deux matrices est la matrice-unite. Appelons A
Y autre. Pour tout vecteur-unite v de Rw, les vecteurs v et Av sont lineairement indepen-
dants. En projetant Av sur le plant tangent ä la sphere-unite, on obtient un champ de

vecteurs tangents non-nuls.

Eckmann preferait, par principe, enoncer les resultats sous forme positive. Sa version etait
done :

S'il existe 2m + 1 fonctions reelles de 2m + 1 variables

fl {x\ > • • • > X2m+1)> • • • > flm+l (-H > • • • > X2m+l)

telles que
X\ fl + X2fl + + X2m+l /2m+1 0

alors les fonctions (/i, fim+l) out un zero commun autre que l'origine.

Preuve. A contrario, le vecteur (/i, /2, /2m+i)> orthogonal au vecteur-unite (x\, X2,

• •*2m+0> ne s'annule pas en dehors de l'origine, il constitue done un champ de vecteurs

tangents ä la sphere de dimension 2m.

Voici maintenant un des resultats de Particle de Stiefel, dans sa version originale :

Theoreme. S'il existe s matrices (r x n) telles que toute combinaison lineaire non-triviale
ait le rang r, il est necessaire que les coefficients binomiaux (") soient pairs pour n — r <
j < s.

Remarque : La condition donnee est äquivalente ä

(x + y)n 0 dans F2[x, y]/(xr, ys).

Le cas r n fournit s — I champs de vecteurs tangents ä la sphere Sw_1, lineairement
independants en tout point. Par exemple, s 2 demande que (") soit pair, done que n soit
pair, e'est la consequence decrite ci-dessus du theoreme du herisson. C'est pourtant le cas

s r n qui est le plus interessant. II existe alors n — 1 champs de vecteurs tangents
ä la sphere Sw_1, lineairement independants en chaque point. On dit alors que la sphere

est parallelisable : on peut employer les memes coordonnees dans tous les espaces
tangents. II est done necessaire que (") soit pair pour 0 < j < n, ou encore que n soit

une puissance de 2. Ce resultat etait probablement dejä deductible de la these de Stiefel en
1935, il est d'une importance historique considerable.

Seules les spheres S1, S3, et S7 sont parallelisables, et ceci grace ä leur structure
multiplicative (nombres complexes, quaternions, et octaves de Cayley). II suffit en effet de

deplacer l'espace tangent par multiplication pour obtenir un parallelisme global. Mais il a

fallu attendre 1958 (Milnor et Kervaire, separement) pour montrer que ce sont les seules

spheres parallelisables.
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4 Beno Eckmann (1917-2008)

Le cas particulier du probleme pose par Stiefel: Trouver s matrices mversibles n x n telles

que toute combmaison lmeaire soit mversible, avait ete resolu separement par A. Hurwitz
et par J. Radon en 1923, dans le cas oü les matrices sont orthogonales. En voici le resultat.

Theoreme (Hurwitz-Radon). Soitn 24tt+^(2y+ l) avec 0 < ß < 3. Cette decomposition

est unique. Soit ensuite p(n) Sa + 2@. Alors il existe pin) — 1 champs de vecteurs

tangents, orthogonaux deux a deux, a la sphere Les champs sont donnes explicite-
ment par des matrices orthogonales.

Remarque. Le probleme topologique des champs de vecteurs sur les spheres a la meme

reponse. II a fallu pour cela attendre 1962 (Frank Adams) pour une demonstration. Mais
c'est la demarche d'Eckmann, qui consiste en fait ä inverser la fonction p(n), qui a lance
la recherche dans la bonne direction.

Eckmann devait presenter au semmaire 1'article de Radon, qu'il avait trouve particuliere-
ment rebarbatif, bien que la solution fournisse explicitement les champs de vecteurs. La
demarche de Radon merite cependant attention (remarquons que le resultat de Radon est

purement algebnque, et ne necessite aucun recours ä la topologie).

I) Notons I la matrice-unite (n x n). S'll existe une matnce orthogonale A ayant la

propnete que vI + yA est orthogonale pour tous (x, y) avec x2 + y2 l,on montre
facilement que A est antisymetrique de carre —I. Une consequence immediate est

que n doit etre pair. C'est done la version orthogonale du theoreme du hensson.

II) On prend xl + yA + zB comme combmaison. Comme precedement, on obtient
A2 B2 ABA~lB~1 —I. Un raisonnement ad hoc montre alors que la
dimension doit etre divisible par 4, et que la famille /, A, B, AB est orthogonale (si
une sphere a deux champs de vecteurs tangents orthogonaux, eile en a un troisieme).

La construction explicite des matrices montre ensuite que les families orthogonales suc-

cessives se trouvent soit dans la meme dimension, soit dans la dimension double. On reste
done dans les puissances de 2. Mais les distinctions de cas rendent le travail fastidieux.

Mettons-nous dans la situation d'Eckmann. Son sujet de recherche est le probleme topologique

des champs de vecteurs sur les spheres, le travail de Radon est done mcontournable.
II fait alors la constatation suivante, qui est tout ä fait visible sur le cas particulier 11).

Les matrices A et B engendrent un groupe fini (=b/, =bA, =bB, =bAB) d'ordre 8 (cas general

: une puissance de 2), isomorphe au groupe des unites des quaternions (=bl, =h, =bj,
±k). Elles constituent par consequent une representation de dimension n du groupe des

quaternions. De plus, la matnce —I est un commutateur (ABA~lB~1 —I).

En 1937,1. Schur, venu d'Allemagne, etait venu ä Zurich donner un cours de theone des

representations des groupes. J'ai eu en mam le polycopie de ce cours, redige par Stiefel. II
me parait certain qu'Eckmann en disposait en 1940. Le resultat principal de la theone est
le theoreme d'orthogonalite des caracteres, dont on deduit en particulier :

La representation reguliere (table de multiplication!) d'un groupe fini se decompose, sur
les nombres complexes, en autant de representations irreductibles qu'il y a de classes
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conjuguees dans le groupe, avec chaque representation irreductible apparaissant autant
de fois que sa dimension. Toute representation irreductible figure dans la representation
reguliere. De plus, le nombre de representations irreductibles de dimension 1 (caracteres)
est egal ä 1'ordre de l'abelianise du groupe (ici 4). A cet argument general s'ajoute, dans

notre cas, le fait que la matnce —I est un commutateur. II n'y a done aucune representation
de dimension 1 dans la decomposition C'est le lemme de Schur. Comme 1'equation des

dimensions est 8= l2 + l2+l2 + l2 + 22, cela a pour consequence que la representation
donnee est de dimension 2 sur les nombres complexes. II reste ä voir qu'une representation
de dimension 2 du groupe des quaternions ne peut pas etre reelle, ce qui est assez facile.
On obtient done directement le fait que la dimension doit etre divisible par 4, retrouvant le
resultat de Radon.

Eckmann traite ensuite completement le cas general, retrouvant tous les resultats de
Radon. Son article, paru en 1942 dans les Commentarn, est un document pedagogique ex-
ceptionnel. On peut le donner tel quel comme exercice (avance, ll est vrai) dans un cours
de theone des groupes.

II y a une partie plus difficile : c'est de decider quand une representation complexe est

äquivalente ä une representation reelle de meme dimension. C'etait un ancien resultat de

Frobenius, mis ä la page par Schur. II est occulte aujourd'hui, car ll est enonce ä l'aide de

l'operation d'Adams mais n'en est pas moms assez delicat.

Remarque. II est facile de verifier que p(n) n -<=>- n 1, 2, 4, 8. Ce resultat, qui
donne les spheres orthogonalement parallelisables, avait ete obtenu par Hurwitz en 1898

deja.

Une bonne generalisation des quaternions est donnee par les algebres de Clifford, un des

plus mcontournables outils de travail de la topologie. II se trouve que les groupes envisages

par Eckmann sont en fait les groupes des unites dans les algebres de Clifford. Dans un livre
de J.F. Adams, 25 ans plus tard, un chapitre est consacre ä la classification des algebres
de Clifford, et l'auteur conseille au lecteur de prendre directement 1'article d'Eckmann

pour se familiariser avec le probleme. Un bei exemple de perennite, surtout si l'on songe
qu'Adams a resolu la plupart des problemes de la topologie algebnque des annees 40.

5 Quelques commentaires

Le contexte unificateur de toutes les questions abordees ici est la fameuse identite

+ xf) (yi + yi) (xiyi ~ x^2)2 + (x\yi + X2yi)2

obtenue, par exemple, ä l'aide de la multiplication des nombres complexes.3

L'equation matricielle qui decrit la genese de cette identite est

Hi ?M? "o1 ))(£)-()
3 En 1962 392 + 212, annee de mon diplome au Poly, chacun de nous connaissait cette decomposition,

car nous savions que Hopf, ä l'examen d'algebre, demandait ntuellement si 1'annee courante etait une somme de

deux carres Le lien avec la remarque ci-dessus est 1962 2 9 109 (12 + 12) 32 (102 + 32)
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Si (x\, X2) et (yi, y2) sont des vecteurs-unite, on obtient deux matrices orthogonales dont
toute combmaison lmeaire est orthogonale, et conserve done les longueurs, d'oü 1'identite
de depart. On se trouve done dans le contexte Hurwitz-Radon-Eckmann. D'autre part, le
coefficient binomial (^) 2 est pair, on se trouve done aussi dans le contexte du resultat de

Stiefel. Comme le vecteur (—X2, x\) est constamment perpendiculaire au vecteur (x\, X2),
cela signifie finalement que la sphere S1 (cercle est parallelisable.
Soit / f x f ^ F une application bilmeaire. On notera [r, s,n] si / est non-
smguliere(/(*, y) 0 =>> v 0 ouy 0), et [[r, s, n]] si / est normee(| f(x, y)| \x\*
|y|). Clairement [[r, s, n]] => [r, s, n\. L'identite ci-dessus est [[2, 2, 2]]. Une excellente
reference est un cours donne par Daniel Shapiro :

www.math. osu. edu/^shapiro/leel .pdf
Les resultats mentionnes ci-dessus peuvent alors s'enoncer amsi:

[[n, n, n]] =>- n 1, 2, 4, 8. (Hurwitz 1898)

[r, r, n] symetrique =>> II existe un plongement de RPr_1 dans W1-1 n > r + 1.

(Hopf 1940)

[r, r, n] => II existe une immersion de RPr_1 dans Rw_1. (Gmzburg 1964)

II existe un plongement de RRr_1 dans R2r-0^-1). (Steer 1970)

[n, n, n] =>- n est une puissance de 2. (Stiefel 1940)

[n, n, n] =>> n 1, 2, 4, 8. (Milnor-Kervaire 1958)

[[r, n, n]] =>- r < p(n). (Hurwitz-Radon 1923, Eckmann 1942)

[r, n, n] =>> r < p(n). (Adams 1962)

[r, n] => (x + y)w 0 dans F2[^, 3;]/(^r? ys)• (Stiefel 1940)

Pour terminer, un simple exemple montrera que le sujet est d'une nchesse msoupgonnee.

[16, 16, 23] et 23 est minimal, alors que [[16, 16, n]] =>> n > 28 et que [[16, 16, 32]].
(Kee Lam 1972 et 1985)
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