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I Elemente der Mathematik

Relations de recurrence lineaires, primitivite
et loi de Benford

Hugues Deligny et Paul Jolissamt

Hugues Deligny est professeur agrege de mathematiques au college Titan Le Port La
Reunion Ses centres d mteret sont les mathematiques pour 1 mformatique en parti
culier les notions de complexite d entropie de profondeur logique automates cellu
laires et hasard effectif

Paul Jolissamt est professeur associe a temps partiel a 1 Universite de Neuchatel et

professeur de physique et de mathematiques au Lycee cantonal de Porrentruy Son
domame de recherche se situe en algebres d Operateurs et en theone ergodique

1 Introduction
Nous nous interessons ici a la loi de Benford pour des suites (an)n> l C M+ qui satisfont

une relation de recurrence d'ordre k de la forme

ttn+k Ck-lCLn+k-1 + Ck-20<n+k-2 + + C\an+i + CQCln

avec les conditions initiales at > 0 pour tout 1 < i < k On supposera la plupart du

temps que les coefficients ct sont positifs ou nuls, et que cq > 0, de sorte que la relation

Das Benfordsche Gesetz lasst sich m vielen realen Datensätzen beobachten Es

besagt, dass die Anfangsziffer d e {1, ,9} mit der Häufigkeit log10(l + l/d) auftritt

Die Anfangsziffer 1 kommt mit über 30% also deutlich häufiger vor, als die 9

mit weniger als 5% Fur Zufallszahlen einer gegebenen Wahrscheinlichkeitsverteilung
lasst sich rechnerisch nachprüfen, ob sie dem Benfordschen Gesetz gehorchen Auch
bei Zahlenfolgen kann man die Frage nach der Gültigkeit des Benforschen Gesetzes

stellen Genau das tun die Autoren der vorliegenden Arbeit fur Folgen, die einer linearen

Rekursion an+k Ck-\an+k-\ + Ck-2an+k-2 + + c\an+\ + coan genügen
Paul Jolissamt hat m früheren Arbeiten hinreichende Bedingungen fur die Gültigkeit
des Benfordschen Gesetzes aus den Nullstellen des charakteristischen Polynoms
abgeleitet Hier werden nun die Bedingungen direkt an den Koeffizienten co, Ck-\
festgemacht



10 H Deligny et P Jolissamt

de recurrence soit effectivement d'ordre k. On va presenter des conditions süffisantes sur
les cx pour qu'il existe (au moms) un entier b > 2 tel que la suite (an)n>\ satisfasse la loi
de Benford en base b.

Rappelons qu'etant donne un tel entier b > 2, une suite (un)n>l C M+ \ {0} satisfait la loi
de Benford en base b si, pour tout t e [1, b), on a :

\{l<n<N Mb(un)<t}\ ^Jlm logb(t),
N^oo N

oü Mb(un) designe la mantisse de un, c'est-a-dire l'umque element de [1, b) tel que un

Mb(un) bm avec m e Z (cf. [5, definition 2.1]). La definition ci-dessus generalise le cas

classique qui correspond ä b 10 (dix) et qui affirme que le premier chiffre significatif
d\ (un) de un satisfait la loi de probability (cf. remarque (2) de [5]) :

pour tout chiffre 1 < d < 9, on a

\{l<n<N di(un)=d}\
lim

N^oo N
log.o (l + i)

D'apres les theoremes prmcipaux de [4] et [5], une suite (un) C M+ \ {0} satisfait la loi de

Benford en base b des qu'elle remplit les deux conditions suivantes :

(a) ll existe des nombres reels a > 0, p > 0 et /x tels que lim^oo -^fpn oi;

(b) log^(p) est irrationnel.

Si c'est le cas, si Q(x) est un polynome non constant ä coefficients entiers et Q(x) > 1

pour x assez grand, la sous-suite (u Q(n))n>i satisfait egalement la loi de Benford en base b.

L'exemple suivant decoule immediatement des deux conditions ci-dessus, et ll ne semble

pas avoir ete decouvert auparavant:

Exemple 1. Soit (pn)n>l la suite croissante des nombres premiers. Comme cela a ete
observe dans [3], la suite (pn) ne satisfait pas la loi de Benford. En revanche, choisissons
deux entiers i > 2 et b > 2 tels que 1ogb(t) soit irrationnel. Alors la suite {pin) satisfait
la loi de Benford en base b. En effet, par le theoreme des nombres premiers, on a

i Pn
1lim 1

n^oo n In(n)

En passant ä la sous-suite (tn)n>l C N*, on a

Den pen
lim 1 et done lim ln(£)

n^oo n£n n^oo nin

Dans le cas d'une suite (an)n>\ qui satisfait une relation de recurrence du type (an)n>\
s'expnme ä l'aide des racmes du polynome caracteristique de la relation de recurrence,
c'est-a-dire le polynome

s -v L L 1

p(x) V — Ck-\X — — C\X — CO

Plus precisement, eenvons p(x) (x — f\)ßl (x — fn),Lm oü fi, e C sont les

zeros distmcts de p{x) de multiplicites respectives /xi, pbm > 1. Alors (an)n>\ est une
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combinaison lineaire des k suites pour 0 < i < \ij et 1 < j < m : il existe des

constantes aJyi dependant des conditions initiales a\, ,ak telles que

m lL j ~ 1

a"= E E aJ^n^j Vn -l-
]=\ 1=0

Des lors, si p(x) admet une racine positive simple p telle que |£| < p pour toute autre
racine £ de p(x) et si le coefficient de pn est positif dans la decomposition ci-dessus, alors
la suite (an)n>\ satisfait la condition (a).

II nous a semble interessant de donner des conditions süffisantes sur les coefficients de

la relation de recurrence plutöt que sur les racines du polynöme caracteristique de

la relation de recurrence. Nous mettrons plus particulierement 1'accent sur le cas oü les

coefficients ct sont positifs ou nuls.

Le premier resultat de notre etude est:

Theoreme 2. Soient co, c\, Ck-\ des nombres reels. On pose

I {l<j <k-\:C] ^0},

et on suppose que 7^0. Enfin, on associe ä la suite co, Ck-\ le polynöme

y -v E E 1

p(x) V — Ck-\X — — c\x — CO.

(1) Si les cx sont positifs ou nuls et si co > 0, le polynöme p admet une unique racine
positive p et | £ | < p pour tout autre zero ^ de p (compte avec multiplicity) si, et
seulement si pgcd(7 U {&}) 1.

(2) Si Ck-\ > 2 et si Ck-\ > o \cj \ + ^ alors le polynöme p admet une racine
simple p e]ck-1 — 1, Ck-i + 1 [, et toute autre racine f de p satisfait |f | < 1.

(3) Soit b > 2 un entier tel que 1ogb(p) soit irrationnel, et soit une suite (an)n>\ C
R+ \ {0} qui satisfait la relation de recurrence

G-n+k ck— iQ-n+k— 1 ~h • • • ~h C\an-\-\ + Coan.

Si les ct satisfont la condition (1) ou la condition (2), et dans ce dernier cas si de

plus an ne tend pas vers 0 lorsque n —> oo, alors la suite (an)n>\ satisfait la loi de

Benford en base b. Enfin, il en est de meme de toute sous-suite de la forme (aQ(n))
oü Q(x) designe un polynöme non constant a coefficients entiers tel que Q(x) > 1

pour tout x suffisamment grand.

Remarque. La condition supplemental an 0 dans la troisieme affirmation du theo-

reme ci-dessus est indispensable. En effet, la suite an I0~n tend vers 0, satisfait la
relation de recurrence

31 3

an+2 — ~fQan+1
—

ff)*1*1

dont le polynöme caracteristique est p(x) (x — 3)(v — 1/10); ses coefficients satisfont
la condition (2) du theoreme, mais la suite ne satisfait pas la loi de Benford pour b 10,

bien que log10(3) soit irrationnel.
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On verra que lorsque les ct sont positifs ou nuls, le polynome caracteristique p(x)
xk — Ck-\xk~l — — c\x — co admet toujours une racine dominante p > 0, c'est-a-dire
telle que | f | < p pour toute autre racine f ; regardons maintenant le cas oü il admet h > 1

racines fi p, ,& telles que |£71 p. On note encore I {1 < j < k : Cj > 0}, et

pour tout m e {0,..., h — 1}, on pose

Im {j e I : j =m (mod h)}

de sorte que (Im)o<m<h constitue une partition de I.
Theoreme 3. Soient co > 0,ci > 0,..., Ck-\ > 0, et h comme ci-dessus. Alors h

pgcd(/ U {&}). De plus, toute suite (an)n>\ qui satisfait la relation de recurrence

ttn+k Ck-ian+k-l + Ck-2an+k-2 + + C\an+\ + Coan

avec des conditions initiales positives ou nulles a\, ,ak est reunion des h sous-suites

(am+hn)n>l> 0 < m < h. Enfin, pour tout 0 < m < h, on a Valternative suivante :

- Si {j e Im : a7 > 0} 0, alors lim^^oo am+hn existe et est positive, et la suite
p

(am+hn)n>\ satisfait la loi de Benford en base b pour tout b tel que 1ogb(p) £ Q.

- Si {j G Im : aj > 0} 0, alors am+hn 0 pour tout n > 1.

Exemple 4. Le theoreme 2 s'applique au cas des suites de Fibonacci d'ordre k > 2 : on
choisit des nombres reels a\, au >0 arbitraires, et on definit (an)n>\ par

et-n+k Cln+k— 1 Cln+k—2 H~ • • • H~ &n+1 &n-

Notons que la racine dominante p > 0 est irrationnelle grace ä 1' observation suivante :

Proposition 5. Soit k > 2 un entier et soient c\, ck-1 G N, et p{x) := xk — Ck-\x —

— c\x — 1. Si p > 0 est une racine rationnelle de p(x), alors p — 1.

Preuve. Ecrivons P g
avec P>q ^ N* et pgcd(p, q) 1. Alors, en utilisant le fait que

p est une racine de p(x), on obtient

pk Ck-\pk~l q + Ck-2Pk~2q2 + + C\pqk~l + qk

qui implique que p divise q.

Enfin, il est necessaire de pouvoir preciser les valeurs de b pour lesquelles la loi de Benford
est satisfaite au moins lorsque les coefficients Cj sont rationnels.

Theoreme 6. Soit (an)n>\ C M+ \ {0} une suite qui satisfait la relation de recurrence
d'ordre k

Q-n+k ck— lO-n+k— 1 ck—2Q<n-\-k—2 H~ • • • H~ c\an-\-l ~h CQan

avec des coefficients cx > 0, co > 0 et {i < k : ct > 0} 7^ 0, et avec les valeurs initiales

a\, ak strictementpositives. Alors :

(1) La suite (an)n>\ satisfait la loi de Benford dans presque toute base b au sens sui-
vant:

lim — I {2 < b < N : (an) ne suit pas la loi de Benford en base b}\ =0.
N^oo N
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(2) Si les coefficients ct sont tous rationnels et si la racine reelle positive du polynöme
caracteristique de la relation de recurrence nest ni un entier ni un inverse d'entier,
alors (an)n>\ satisfait la loi de Benford dans toute base b > 2.

Remarque. Dans le cas oü seul co > 0, c'est-a-dire si I 0, toute suite (an)n>\ qui
satisfait la relation de recurrence est de la forme :

Par pediodicite de e2TlUn/k? la suite (an) est done reunion de k sous-suites (am+kn)n>l>
0 < m < &, qui sont toutes geometriques de raison co-

Amsi, si co 1, chaque sous-suite (am+kn)n>i satisfait la loi de Benford dans presque
toute base. Si en revanche co 1, chaque sous-suite est constante et ne satisfait pas la loi
de Benford.

Les preuves utilisent prmcipalement la matnee compagnon du polynöme p(x) et elles

reposent sur la theorie de Perron-Frobenius des matrices ä coefficients positifs ou nuls qui
sont irreductibles ou primitives, et dont nous rappelons les prmcipaux resultats dans le

paragraphe suivant. Les preuves des theoremes 2 et 3 se trouvent dans le paragraphe 3 et
la preuve du theoreme 6 dans le dernier paragraphe.

2 Matrices irreductibles; matrices primitives
Nous rappelons ci-dessous les definitions et les resultats prmcipaux de la theone de Perron-
Frobenius ä propos des matrices irreductibles et primitives. Nos references sont d'une

part le chapitre 8 de la monographie de Carl D. Meyer [7] et d'autre part les notes de

J.E. Rombaldi [8].

Soit C G MjfM) une matnee k x k ä coefficients positifs ou nuls (on note C > 0). Nous
considererons ici les valeurs propres complexes de C, c'est-ä-dire ses valeurs propres en
tant qu'endomorphisme de Ck. Uensemble des valeurs propres est le spectre de C et sera

note a (C). Nous rappelons que le rayon spectral de C est

On dit que C est reductible s'll existe une matnee de permutation P telle que PCP 1 soit
de la forme :

oü C' et C" sont des matrices carrees de dimensions positives, et on dit qu'elle est irreduc-
tible si eile n'est pas reductible.

On demontre qu'une telle matnee C (ci j) est irreductible si et seulement si le graphe
onente G(C) associe est fortement connexe. Le graphe G(C) a pour ensemble de sommets
les entiers 1,2, &, et ll y a une arete orientee de i vers j si et seulement si ct j > 0; le

graphe est fortement connexe s'll existe un chemm onente de 1 vers 1 passant par tous les

sommets.

k—\

an {ifa)n YJ0l^2nUn'k Vn

1=0

p(C) max{|A| k G cr(C)}
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Si C est irreductible, le rayon spectral p p(C) est strictement positif et c'est une valeur

propre simple du polynöme caracteristique pcM det(C — xI). Le sous-espace propre
correspondant est de dimension (complexe) egale ä 1, et il est engendre par un vecteur de

vi \
Perron-Frobenius, c'est-a-dire un vecteur v dont toutes les composantes vt

\ vk /
sont strictement positives.

Notons h > 1 le nombre de valeurs propres X e cr(C) telles que \X\ p. Si h > 1, on
l'appelle Vindice d'imprimitivite de C, et si h 1, on dit que C est primitive.

On demontre que si C est irreductible, alors eile est primitive si et seulement s'il existe

un entier m > 0 tel que Cm > 0, c'est-a-dire les coefficients de Cm sont tous strictement
positifs (test de primitivite de Frobenius, cf. [7, pp. 674 et 678]).

Si C est irreductible mais non primitive, si {X\, X%} est l'ensemble des valeurs propres
de C de module egal ä p, alors

{kl, ...,Xh} {p, poo, poo1, pcoh~1}

oua) e2ni/h ([7, p. 676]).

Soit S (shJ) G M^(R) une matrice ä coefficients positifs ou nuls. On dit que S est

stochastique (par rapport aux lignes) si, pour tout 1 < i < k, on a

k

izs''j=l
j=i

Si une telle matrice S est de plus irreductible, si h est son indice d'imprimitivite, alors eile
admet toutes les racines h-ieme de 1'unite comme valeurs propres.

Grace au test de primitivite de Frobenius, on observe que si A et B sont des matrices ä

coefficients positifs ou nuls irreductibles et s'il existe e > 0 tel que A > eB (c'est-a-dire
si ahJ > obt J pour tous i, j), alors A est primitive si B l'est.

/ v\ \
Considerons encore une matrice C > 0 irreductible et notons v > 0 un

\Vk/
vecteur de Perron-Frobenius de C ; la transposee CT de C possede les memes proprietes,

/«" \
done eile admet un vecteur de Perron-Frobenius w : \ > 0 associe egalement au

V Wk

rayon spectral p.

Si de plus C est primitive, alors la suite de matrices {j^Cn)n>\ converge vers la matrice

G := vwT/wT v qui est la projection sur le noyau de C — pi parallelement ä 1'image de

C — pi ([7, p. 674]). On observe que G a tous ses coefficients strictement positifs.
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3 Preuves des theoremes 2 et 3

Considerons d'abord un polynome p(x) xk — Ck-\xk~l — — c\x — co comme dans

la premiere partie du theoreme 2, c'est-a-dire tel que c7 > 0 pour tout 1 < J < k — let
co > 0 On lui associe sa matrice compagnon

0

0

C

1 0

0 1

o \
0

0 0

\ co c\

0 1

Ck—2 Ck-1 /
Cela signifie que le polynome caractenstique pcM det(C — x I) satisfait pcM
(—1 )kp{x) Les deux polynomes ont par consequent exactement les memes racmes avec
les memes multiplicites Comme co > 0, C est irreductible puisque, dans le graphe associe,
ll y a une arete de 1 vers 2, de 2 vers 3, etc de k — 1 vers k et de k vers 1, au moms Amsi,
p(x) satisfait les conditions de la premiere partie du theoreme 2 si et seulement si sa

matrice compagnon est primitive

La partie (1) du theoreme 2 est alors une consequence immediate de la proposition 7 ci-
dessous, qui est un cas particulier du theoreme de la page 679 de [7], mais nous en donnons

une demonstration par souci d'etre complet

Proposition 7. Soient co, ci, Ck-\ des nombres reels positifs ou nuls, co > 0 et soit
/ {!<;<£ cj > 0} Alors la matrice

C

/ o 1

0 0

0 0

\ CO ci

0
1

0 \
0

1

Ck-2 Ck-1

est primitive si et seulement si pgcd(7 U {&}) 1

Preuve Comme nous l'avons observe ci-dessus, C est irreductible Notons N le cardmal
de I Soit S la matrice

S

0

0

0

\ NTT

1

0

0
1

N+l

\

A/ + 1 /
oü dans la derniere ligne, pour tout j e I U {0}, c7 est remplace par -^-j- La matrice amsi
obtenue est done stochastique En particulier, p(S) 1, et S est irreductible De plus, par
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les rappels du paragraphe 2, C est primitive si et seulement si S 1'est. On remplace alors
C par S, qui est la matrice compagnon de

q(x) — xk - ^2
jz,umN+1

Supposons d'abord que d pgcd(7 U {&}) > 1. Ecrivons j ajd et k ad avec

aj, a e N* pour tout j e /, et considerons le polynome

yd,
r(x)=xa- Ŷ N+ 1

J£/U{0}

Alors q(x) r(xd), r(l) 0, et pour tout f C, fd 1, on a g(f) r(l) 0- Cela
demontre que C n'est pas primitive.

Reciproquement, supposons que pgcd(7 U {&}) 1, et soit f une racine de q(x) telle que
If | 1. Par le paragraphe 2, on sait que f est alors une racine de 1'unite. Ecrivons done

v. 2mm/d
S — ^

avec 1 < //i < d et pgcd(m, J) 1. L'egalite g(f) 0 donne

(.N + \)e2l7tkm/d y^e2lJTjm/d ^
jei

et en prenant les modules

W + 1 | y] + 1 < ^ |e2^ym/rf| + j N + j
7G/ jel

qui implique que d divise jm pour tout j e 7, done que ell7Tjm/d 1, puis que ell7Tkm/d

1, done que J divise egalement km. Ces conditions impliquent que d divise pgcd(7 U {&});
comme pgcd(m, d) 1, on obtient que f 1, et S est primitive.

Pour demontrer la seconde affirmation du theoreme 2, considerons un polynome ä coefficients

reels p(x) xk — cxk~l — te^ fiue c —
2 et c > \cj \ + 1-

observe d'abord que pour tout z £ C tel que |z| > 1, on a

k—2

\J2cjzJ
J=o

< \z\k~2(c- 1).

Cela implique facilement que p(c — 1) < 0, que p(c + 1) > 0 et que p(z) ^ 0 pour
tout |z| 1. Ainsi, p s'annule en un nombre reel 1 < c — 1 < p < c + 1. Enfin, soit

q(z) zk — czk~l. On a |q(z) \ > c — 1 pour tout |z| 1, et, pour ces memes valeurs de

z, on a
k—2

<c-l < \q(z)\.
7=0

i p(z) - q(z)\ \ ycjzj
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Puisque q admet k — 1 zeros (comptes avec multiplicites) dans le disque unite ouvert, ll en
est de meme pour p par le theoreme de Rouche

Considerons ensuite une suite (an)n>i comme dans la troisieme partie du theoreme 2

an > 0 pour tout n, et eile satisfait la relation de recurrence

ttn+k Ck-ian+k-l + Ck-2an+k-2 + + C\Cln+\ + CQCln (n > 1)

oü les ct satisfont l'une des deux premieres conditions du theoreme 2 On note encore p
1'unique racme positive du polynöme caractenstique p(x) xk — Ck-\xk~l — — co de

la relation de recurrence

Pour demontrer la troisieme partie du theoreme 2, ll suffit de verifier que lim^oo ^ existe
et est positive ([5, theoreme 2 4]) Le cas oü les coefficients cx satisfont la condition (1) est

une consequence de la proposition suivante

Proposition 8. Avec les hypotheses et les notations ci-dessus, si les ct satisfont la condition

(l) du theoreme 2, on a
an

lim —
n—>oo pn

existe et est positive

Preuve Notons encore C la matnce compagnon du polynöme p(x) et posons pour tout
entier n > 1

an \
an+1

An —

\ an+k—1 /
de sorte que

CAn An~i-i

pour tout n > 0 Par suite, on a An Cn 1 A\ pour tout n Si v et w sont des vecteurs de
^T Ati o \711 niia 1o cmta r\c± motnr>ac \

converge vers la matnce G vwT/wTv lorsquen oo Amsi,

Perron-Frobenius pour C et C respectivement, on a vu que la suite de matrices (—fTCn)

1 1 1 „-1 1

r A n — — — rC A i G A\
pn p pn 1

p

En particulier, qui est la premiere composante de jpAn, converge vers la premiere

composante de ^GA\, et comme Ai > 0 et G > 0, toutes les composantes de GAi sont

positives

Pour terminer la preuve du theoreme 2, considerons une suite (an)n>\ C M+ \ {0} qui
satisfait la relation de recurrence

kln+k — Ck-ian+k-l + + C\an-\-i + CQan
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avec Ck-\ > 2, Ck-i > Y^j o \cj I + 1» et telle que an ne converge pas vers 0 lorsque n ->
oo. D'apres la structure de telles suites (rappelee dans le paragraphe 1), si fi p > 1,

sont les racines du polynome caracteristique p{x) xk — Ck-\xk 1
— —

c\x — co, de multiplicites respectives 1, /X2, /xm, il existe des coefficients otj^i
tels que

m Uj~ 1

a» «l.lP" + X X aJ'ent$j Vw - 1-

y=2 £=0

Puisque p > 1 et |£71 < 1 pour tout j 2,..., m, an est de la forme an — ot\ppn + ßn

avec ßn -> 0 lorsque n -> oo. Les hypotheses > 0 pour tout n et an /> 0 impliquent
que ol\j > 0, et on obtient immediatement que

r i-ilim — aii. U
n—>oo pn

Nous passons enfin ä la preuve du theoreme 3.

Preuve du theoreme 3.. En n'ecrivant que les coefficients non nuls dans 1'expression du

polynome p(x),on a

P(x) X Ck—k^X
1

Ck—ks%
S

£0

avec 1 < k\ < < ks < k. Par le theoreme de la page 679 de [7], on obtient:

h pgcd(& — k\, k — ks, k) pgcd(&i, ks, k) pgcd(7 U {&}).

Ecrivons, pour 1 < i < s, kt hk'v et aussi k hk'. Pour chaque m fixe, en remplagant
n par m + hn dans la relation de recurrence, on obtient

am+h(n+kf) ck-ki^m-\-h(n-\-kf-k[) + • • • + ck-ksam+h{n+k'-k's) +

Cela signifie que la suite (am+hn)n>l satisfait une relation de recurrence d'ordre kf dont le

polynome caracteristique q(x) est

q(x) — xk' - ck-klxk'~k'i - - ck-ksxk'~k's

avec pgcd(7(q)\J{k'}) 1. On applique alors les conclusions des propositions precedentes
ä la suite (am+hn)n>l-

4 Critere d'irrationnalite de log^(/o)
Soit p(x) le polynome p(x) xk — Ck-\xk~l — — c\x — co avec ct e M+ et co > 0.

On designe encore par 7 1' ensemble des indices 1 < i < k tels que ct > 0, et par p la
racine positive de p{x). On suppose encore que 7^0.
Le resultat suivant sera utilise dans la preuve du theoreme 6.

Proposition 9. Soit b > 2 un entier. On suppose que les ct e Q+ et que :

(1) pgcd(7 U {&}) 1;

(2) p nest ni entier, ni inverse d'entier.

Alors 1ogb(p) est irrationnel.
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Preuve Supposons que 1ogb(p) soit rationnel, de sorte qu'il existe deux entiers p et q > 0

premiers entre eux tels que p bp!q Comme p^l,ona/?7^0 Designons par m(x) le

polynome minimal (unitaire) de p
Si p est irrationnel, alors m(x) est de degre au moms 2 et p en est une racme simple Mais

p est egalement une racme de t (x) xq — bp, done le polynome m(x) divise t (v), et amsi
toutes les racmes dem(i) sont des racmes de t (x) Or, ces dernieres sont toutes de module
egal ä p Cela contredit (1) car m(x) divise egalement p(x), et ce dernier aurait plusieurs
racmes de module egal ä p
Par suite, p est necessairement rationnel, ll existe des entiers positifs a, ß tels que p |
et pgcd(of, ß) 1 On obtient aq bpßq, et l'umcite de la decomposition en facteurs

premiers implique que

ß 1 si p est positif, e'est-a-dire si p > 1, et alors p a est entier,
a 1 si p est negatif, e'est-a-dire si p < 1, et alors p l/ß est un inverse d'entier,

ce qui contredit la seconde hypothese

Remarque. La condition (2) est facile ä utiliser puisqu'il est commode de localiser p dans
R+ grace ä une etude succmte du polynome p{x)

Exemple 10. Soit m > 1 un entier fixe, pour tout entier k > 2, soit

/ \ k k— 1 k—2
pk m(x) x — mx — mx — — nix — in.

qui generalise le polynome caractenstique des suites de Fibonacci d'ordre k mtroduites
dans I'exemple 4, et qui satisfait les conditions du theoreme 2 Notons pu m la racme
positive de pk mW
Elle est irrationnelle par la proposition 5, Pk m > 1 car p^ m(l) 1 — km < 0, et en

fait, pk m est un nombre de Pisot (cf [2], [1]) e'est un entier algebnque, et pk mW est

son polynome minimal car on a Ck-\ > > co > 0, et toutes les racmes f Pk m de

Pk mW satisfont If I < Pkm

On a m < pk m < m + 1 car

PkmW
I — k < 0. m 1,

<0, in > 2.
in — mk

m — 1

et pk mW + 1) 1 P°ur t°utm
Plus precisement, on va demontrer que pkm < Pk+\ m pour tous k et m, et que

(m + 1)£
7 i 1 ^ ^k m < ^ H~ 1
A: + 1

pour tout m et tout k assez grand Cela demontrera que, pour tout m fixe, la suite (pk m)k>2
est croissante et converge vers m + 1 lorsque k oo

La premiere affirmation provient des egalites

Pk-\-1 m(ßk m) — Pk m Pk m WiPk m Wl Pk m Pk m (ßk m) Jfl III

et Pk+\ m(Pk+1 m) 0
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Pour demontrer la seconde affirmation, nous mtroduisons le polynome auxiliaire

q(x) (x — l)pk m(x) — (jn + l)xk + m

On venfie sans peine que

(m + 1)&\ m + 1 /(m + 1)&X
k

,l"rrrJ -Fnl.TTT-i +

(\ ^
^1+1^) + m < 0 est equivalente ä (m + 1)^+1 > m(k + 1)(1 +

I /&)* qui est vraie des que k est assez grand Cela demontre la seconde affirmation

Remarques.

(1) Les suites m)i>\ ne sont Pas equidistnbuees mod 1 car la distance entre {p| m

t < n) et N tend vers 0 Mais qu'en est-il de (a P^m)£>i pour a irrationnel
positif7 (On salt que, pour presque tout nombre reel x > 1, la suite (xn)n>\ est

equidistnbuee mod 1, cf [6, chap 1, corollaire 4 2])
(2) Si co, ci, Ck-\ G Z avec k >2 sont tels que

k—2

Ck-1 > y] |Cy| + 1

0

et co 0, le polynome associe p(x) xk — Ck-\xk~l — -co est le polynome
minimal d'un nombre de Pisot pk ([ 1, chap 5 2]), et cela donne une famille de suites

qui satisfont une relation de recurrence ä coefficients entiers non necessairement

positifs et qui satisfont egalement la loi de Benford d'apres le theoreme 2

Nous passons enfin ä la preuve du theoreme 6

Preuve du theoreme 6 (1) Pour N >3 fixe, posons

Bn {2 < b < N \ogb(p) G Q}

II suffit de demontrer que

log(2)

C'est evident si est vide ou s'll ne contient qu'un element S'll contient au moms deux
elements, soit bo mm{Z? g%) Pour tout b e B^ tel que b > bo, en utilisant encore la

decomposition en facteurs premiers, on venfie qu'il existe un entier u < tel que bo et
b soient des puissances entieres de u Par suite,

Bn C {2 < up < N p>l,u<<J~N}

On obtient amsi la majoration annoncee



Relations de recurrence lmeaires, pnmitivite et loi de Benford 21

(2) Soit h > 1 le nombre de racmes positives distmctes du polynome p(x). Les sous-suites

qui ont des conditions initiales positives parmi (am+hn)n>i> 0 < m < h, ont un polynome
caractenstique dont est la racme positive. Si p n'est ni entier ni inverse d'entier, alors
px!h non plus et les conditions de la proposition 9 sont satisfaites.

Enfin, si p est rationnel, en utilisant la decomposition en facteurs premiers, on venfie
comme dans la preuve de la proposition 9 que b±a^ e N pour des entiers positifs a et

ß. Par suite, ll existe des entiers c,d > 1 et u >2 tels que p±l uc et b ud, mais
alors p serait entier ou inverse d'un entier, contrairement ä l'hypothese. Cela demontre la
deuxieme partie du theoreme 6.
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