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Relations de récurrence linéaires, primitivité
et loi de Benford

Hugues Deligny et Paul Jolissaint

Hugues Deligny est professeur agrégé de mathématiques au college Titan, Le Port, La
Réunion. Ses centres d’intérét sont les mathématiques pour I’informatique, en parti-
culier les notions de complexité, d’entropie, de profondeur logique, automates cellu-
laires, et hasard effectif.

Paul Jolissaint est professeur associé a temps partiel a I’Université de Neuchitel et
professeur de physique et de mathématiques au Lycée cantonal de Porrentruy. Son
domaine de recherche se situe en algebres d’opérateurs et en théorie ergodique.

1 Introduction

Nous nous intéressons ici a la loi de Benford pour des suites (a,),>1 C RT qui satisfont
une relation de récurrence d’ordre k de la forme :

An+k = Ck—1An+k—1 + Ck—2an+k—2 + ... + C1an+1 + coan (*)

avec les conditions initiales @; > 0 pour tout I < i < k. On supposera la plupart du
temps que les coefficients ¢; sont positifs ou nuls, et que ¢cp > 0, de sorte que la relation

Das Benfordsche Gesetz ldsst sich in vielen realen Datensidtzen beobachten. Es be-
sagt, dass die Anfangsziffer d € {l1,...,9} mit der Haufigkeit log;o(1 4 1/d) auf-
tritt. Die Anfangsziffer 1 kommt mit tiber 30% also deutlich héufiger vor, als die 9
mit weniger als 5%. Fiir Zufallszahlen einer gegebenen Wahrscheinlichkeitsverteilung
lasst sich rechnerisch nachpriifen, ob sie dem Benfordschen Gesetz gehorchen. Auch
bei Zahlenfolgen kann man die Frage nach der Giiltigkeit des Benforschen Gesetzes
stellen. Genau das tun die Autoren der vorliegenden Arbeit fiir Folgen, die einer linea-
ren Rekursion a,+x = ck—1an+k—1 + Ck—2an+k—2 + ... + c1an+1 + coa, geniigen.
Paul Jolissaint hat in fritheren Arbeiten hinreichende Bedingungen fiir die Giiltigkeit
des Benfordschen Gesetzes aus den Nullstellen des charakteristischen Polynoms ab-
geleitet. Hier werden nun die Bedingungen direkt an den Koeffizienten co, . . ., ck—1
festgemacht.
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de récurrence soit effectivement d’ordre k. On va présenter des conditions suffisantes sur
les ¢; pour qu’il existe (au moins) un entier b > 2 tel que la suite (a,),>1 satisfasse la loi
de Benford en base b.

Rappelons qu’étant donné un tel entier b > 2, une suite (u,),>1 C RT \ {0} satisfait la loi
de Benford en base b si, pour tout ¢ € [1,b),ona:
. {l=n <N : Mp(up) <t}
lim
N—o0 N

= log, (1),

ou Mp(u,) désigne la mantisse de u,,, ¢’est-a-dire I’unique élément de [1, b) tel que u,, =
Mp(uy,) - b™ avec m € Z (cf. [5, définition 2.1]). La définition ci-dessus généralise le cas
classique qui correspond a b = 10 (dix) et qui affirme que le premier chiffre significatif
di(uy,) de uy, satisfait la loi de probabilité (cf. remarque (2) de [5]) :

pour tout chiffre | <d <9,ona

. 1l <n<N:di(u,) =dj
lim
N—oo N

1
— (1 —).
ogp {1+ p

D’apreés les théorémes principaux de [4] et [5], une suite (u,) C R \ {0} satisfait la loi de
Benford en base b dés qu’elle remplit les deux conditions suivantes :

(a) il existe des nombres réels @ > 0, p > O et p tels que lim,— n,’f# =,
(b) log,(p) est irrationnel.

Si c’est le cas, si Q(x) est un polyndme non constant a coefficients entiers et Q(x) > 1
pour x assez grand, la sous-suite (1 g x))n>1 satisfait également la loi de Benford en base b.

L’exemple suivant découle immédiatement des deux conditions ci-dessus, et il ne semble
pas avoir été découvert auparavant :

Exemple 1. Soit (p,),>1 la suite croissante des nombres premiers. Comme cela a été
observé dans [3], la suite (p,) ne satisfait pas la loi de Benford. En revanche, choisissons
deux entiers £ > 2 et b > 2 tels que log, () soit irrationnel. Alors la suite (pgn) satisfait
la loi de Benford en base b. En effet, par le théoréme des nombres premiers, on a

. pll
lim ——— =
n—oo nIn(n)

En passant a la sous-suite (¢£"),>1 C N*, ona

. pen
lim ——— =
n—o0 nf" In(€)

P2 _ince).

1 etdonc lim

n—o00 pl’
Dans le cas d’une suite (a,,),>1 qui satisfait une relation de récurrence du type (x), (a,)n>1
s’exprime a I’aide des racines du polyndome caractéristique de la relation de récurrence,
c’est-a-dire le polyndme

px) = xk = ck_lxk_1 —...—C1X —CQ.

Plus précisément, écrivons p(x) = (x — Z1)* -+ (x — &)Pm 06 ¢, ..., &y € C sont les
zéros distincts de p(x) de multiplicités respectives i1, ..., iy > 1. Alors (a,),>1 est une
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combinaison linéaire des k suites (n‘zg“j’?),,zl pour0 < ¢ < pjetl < j<m:ilexistedes

constantes «j ¢ dépendant des conditions initiales a1, . .., ai telles que
m nj—l1
a, = Z Z aj.gnl{j’-’ VYn > 1.
j=1 =0

Des lors, si p(x) admet une racine positive simple p telle que || < p pour toute autre
racine ¢ de p(x) et si le coefficient de p" est positif dans la décomposition ci-dessus, alors
la suite (ay,),>1 satisfait la condition (a).

Il nous a semblé intéressant de donner des conditions suffisantes sur les coefficients de
la relation de récurrence (x) plutdt que sur les racines du polyndme caractéristique de
la relation de récurrence. Nous mettrons plus particuliérement I’accent sur le cas ou les
coefficients ¢; sont positifs ou nuls.

Le premier résultat de notre étude est :

Théoreme 2. Soient co, ¢y, ..., ck—1 des nombres réels. On pose
I={l<j<k—1:c;#0},

et on suppose que 1 # @. Enfin, on associe a la suite co, . . ., cx—1 le polynéme

p(x) = xk— ck_l)ck_1 —...—C1X —Cp.
(1) Siles c; sont positifs ou nuls et si co > 0, le polynéme p admet une unique racine
positive p et |L| < p pour tout autre zéro ¢ de p (compté avec multiplicité) si, et
seulement si pged(l U {k}) = 1.

2) Sicik—1 > 2 et sicr—1 > Z’;;% lcj| + 1, alors le polynéme p admet une racine
simple p €lck—1 — 1, ck—1 + 1[, et toute autre racine ¢ de p satisfait |¢| < 1.

(3) Soit b > 2 un entier tel que log,(p) soit irrationnel, et soit une suite (an)p>1 C
RT \ {0} qui satisfait la relation de récurrence

ant+k = Ck—1an+k—1 + ...+ C1ap4+1 + coan.

Si les c; satisfont la condition (1) ou la condition (2), et dans ce dernier cas si de
plus a, ne tend pas vers 0 lorsque n — oo, alors la suite (a,),>1 satisfait la loi de
Benford en base b. Enfin, il en est de méme de toute sous-suite de la forme (ag))
oit Q(x) désigne un polynéme non constant a coefficients entiers tel que Q(x) > 1
pour tout x suffisamment grand.

Remarque. La condition supplémentaire a, /> 0 dans la troisieme affirmation du théo-
réme ci-dessus est indispensable. En effet, la suite @, = 107" tend vers 0, satisfait la

relation de récurrence
31 3
ap+2 = Eanﬂ - l_oan
dont le polyndme caractéristique est p(x) = (x — 3)(x — 1/10) ; ses coefficients satisfont
la condition (2) du théoréme, mais la suite ne satisfait pas la loi de Benford pour b = 10,

bien que log;(3) soit irrationnel.
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On verra que lorsque les ¢; sont positifs ou nuls, le polyndme caractéristique p(x) =

xK — cr_1xk=1 — .. — ¢1x — ¢o admet toujours une racine dominante p > 0, ¢’est-a-dire
telle que |¢| < p pour toute autre racine ¢ ; regardons maintenant le cas ou il admet 4 > 1
racines {1 = p, ..., §, telles que [¢j| = p. Onnoteencore I = {1 < j <k :c; > 0}, et
pour toutm € {0, ..., h — 1}, on pose

Ln={jel:j=m(modh)}
de sorte que (1,;)o<m<n constitue une partition de /.

Théoréme 3. Soientco > 0,c; > 0,...,ck—1 > 0, et h comme ci-dessus. Alors h =
pged(! U {k}). De plus, toute suite (a,),>1 qui satisfait la relation de récurrence

An+k = Ck—1an+k—1 + Ck—2an4+k—2 + ... + C1an+1 + coay

avec des conditions initiales positives ou nulles ay, . . ., ay est réunion des h sous-suites

(@m+hn)n>1, 0 < m < h. Enfin, pour tout 0 < m < h, on a I’alternative suivante :

- Si{j € I : aj > 0} # @, alors lim,_, o ””‘p‘,“,h" existe et est positive, et la suite
(am+hn)n>1 satisfait la loi de Benford en base b pour tout b tel que log,(p) ¢ Q.

— Si{j € Ly :aj >0} =40, alors ayminn = 0 pour toutn > 1.

Exemple 4. Le théoreme 2 s’applique au cas des suites de Fibonacci d’ordre k > 2 : on
choisit des nombres réels ay, ..., ax > O arbitraires, et on définit (a,),>1 par

Atk = Aptk—1 + Apvk—2 + ...+ apt1 + ay.

Notons que la racine dominante p > 0 est irrationnelle griace a I’observation suivante :

Proposition 5. Soit k > 2 un entier et soient cy, ..., cr—1 € N, et p(x) := xk

...—c1x — 1. Si p > 0 est une racine rationnelle de p(x), alors p = 1.

— Ck—1X —

Preuve. Ecrivons p = g avec p, q € N* et pged(p, g) = 1. Alors, en utilisant le fait que

p est une racine de p(x), on obtient

k k=2 2

p* =1 P g+ ckap T2+ L+ el pgtT!

+qk

qui implique que p divise g. 0

Enfin, il est nécessaire de pouvoir préciser les valeurs de b pour lesquelles la loi de Benford
est satisfaite au moins lorsque les coefficients c; sont rationnels.

Théoreme 6. Soit (ay)y>1 C R* \ {0} une suite qui satisfait la relation de récurrence
d’ordre k

An+k = Ck—1An+k—1 + Ck—2an4+k—2 + ... + C1an+1 + coan
avec des coefficients c; > 0, co > 0et {i < k : ¢; > 0} # @, et avec les valeurs initiales
ai, ..., ay strictement positives. Alors :

(1) La suite (a,)n>1 satisfait la loi de Benford dans presque toute base b au sens sui-
vant :

1
lim N|{2 < b < N : (ap) ne suit pas la loi de Benford en base b}| = 0.

N—o0
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(2) Si les coefficients c; sont tous rationnels et si la racine réelle positive du polynéme
caractéristique de la relation de récurrence n’est ni un entier ni un inverse d’entier,
alors (ap)n>1 satisfait la loi de Benford dans toute base b > 2.

Remarque. Dans le cas ou seul ¢cp > 0, c’est-a-dire si I = #, toute suite (a,),>1 qui
satisfait la relation de récurrence (x) est de la forme :

k—1
an = (Heg) - ZaeeZmln/k V.

=0

Par pédiodicité de e2mitn/k 1a suite (a,) est donc réunion de k sous-suites @m+kn)n>1,
0 < m < k, qui sont toutes géométriques de raison c.

Ainsi, si ¢g # 1, chaque sous-suite (a,+kn)n>1 satisfait la loi de Benford dans presque
toute base. Si en revanche ¢p = 1, chaque sous-suite est constante et ne satisfait pas la loi
de Benford.

Les preuves utilisent principalement la matrice compagnon du polynéme p(x) et elles
reposent sur la théorie de Perron-Frobenius des matrices a coefficients positifs ou nuls qui
sont irréductibles ou primitives, et dont nous rappelons les principaux résultats dans le
paragraphe suivant. Les preuves des théoremes 2 et 3 se trouvent dans le paragraphe 3 et
la preuve du théoreme 6 dans le dernier paragraphe.

2 Matrices irréductibles ; matrices primitives

Nous rappelons ci-dessous les définitions et les résultats principaux de la théorie de Perron-
Frobenius a propos des matrices irréductibles et primitives. Nos références sont d’une
part le chapitre 8 de la monographie de Carl D. Meyer [7] et d’autre part les notes de
J.E. Rombaldi [8].

Soit C € M (R) une matrice k x k a coefficients positifs ou nuls (on note C > 0). Nous
considérerons ici les valeurs propres complexes de C, c’est-a-dire ses valeurs propres en
tant qu’endomorphisme de C¥. I”ensemble des valeurs propres est le spectre de C et sera
noté o (C). Nous rappelons que le rayon spectral de C est

p(C) =max{|r| : L € o (C)}.

On dit que C est réductible s’il existe une matrice de permutation P telle que PC P~! soit

de la forme : ) ,
_ cc”
PCP ‘:( o )

ou C’ et C” sont des matrices carrées de dimensions positives, et on dit qu’elle est irréduc-
tible si elle n’est pas réductible.

On démontre qu’une telle matrice C = (c;,j) est irréductible si et seulement si le graphe
orienté G (C) associé est fortement connexe. Le graphe G (C) a pour ensemble de sommets
lesentiers 1,2, ..., k, etil y a une aréte orientée de i vers j si et seulementsic; ; > 0;le
graphe est fortement connexe s’il existe un chemin orienté de 1 vers 1 passant par tous les
sommets.
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Si C est irréductible, le rayon spectral p = p(C) est strictement positif et c’est une valeur

propre simple du polyndme caractéristique pc(x) = det(C — x1). Le sous-espace propre

correspondant est de dimension (complexe) égale a 1, et il est engendré par un vecteur de
V1

Perron-Frobenius, ¢’est-a-dire un vecteur v = : dont toutes les composantes v;

Vk
sont strictement positives.

Notons & > 1 le nombre de valeurs propres A € o (C) telles que |A| = p.Sih > 1, on
I’appelle lindice d’imprimitivité de C, et si h = 1, on dit que C est primitive.

On démontre que si C est irréductible, alors elle est primitive si et seulement s’il existe
un entier m > 0 tel que C" > 0, c’est-a-dire les coefficients de C™ sont tous strictement
positifs (test de primitivité de Frobenius, cf. [7, pp. 674 et 678]).

Si C est irréductible mais non primitive, si {1, ..., A;} est I’ensemble des valeurs propres
de C de module égal a p, alors

(A, ) = (o, poo, po®, ..., p™!)

ot w = >/ ([7, p. 676)).

Soit § = (s;,j) € My(R) une matrice a coefficients positifs ou nuls. On dit que S est
stochastique (par rapport aux lignes) si, pour tout | <i <k,ona

Si une telle matrice S est de plus irréductible, si & est son indice d’imprimitivité, alors elle
admet toutes les racines h-ieme de 1’unité comme valeurs propres.

Grice au test de primitivité de Frobenius, on observe que si A et B sont des matrices a
coefficients positifs ou nuls irréductibles et s’il existe € > 0 tel que A > € B (c’est-a-dire
sia; j > €b; j pourtous i, j), alors A est primitive si B I’est.
V1
Considérons encore une matrice C > 0 irréductible et notons v = > 0 un
Uk
vecteur de Perron-Frobenius de C ; la transposée C de C posséde les mémes propriétés,
wi

donc elle admet un vecteur de Perron-Frobenius w = . > 0 associé également au

Wk
rayon spectral p.

Si de plus C est primitive, alors la suite de matrices (pL,,C")nzl converge vers la matrice

G := vwT Jw’ v qui est la projection sur le noyau de C — p/ parallelement a I’image de
C — pl ([7, p. 674]). On observe que G a tous ses coefficients strictement positifs.
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3 Preuves des théoremes 2 et 3

Considérons d’abord un polynéome p(x) = xk— e xk"1 — .. —¢1x — ¢o comme dans

la premiere partie du théoréme 2, c’est-a-dire tel que ¢; > O pourtout 1 < j < k — 1l et
co > 0. On lui associe sa matrice compagnon

0 1 0 0
0 0 1 0
C= oo : :
0 0 0 ... 1
co €1 ... Ck=2 Ck—1

Cela signifie que le polyndme caractéristique pc(x) = det(C — x1) satisfait : pc(x) =
(—=1)* p(x). Les deux polyndmes ont par conséquent exactement les mémes racines avec
les mémes multiplicités. Comme ¢g > 0, C est irréductible puisque, dans le graphe associé,
il y a une aréte de 1 vers 2, de 2 vers 3, etc. de k — 1 vers k et de k vers 1, au moins. Ainsi,
p(x) satisfait les conditions de la premiere partie du théoréme 2 si et seulement si sa
matrice compagnon est primitive.

La partie (1) du théoréeme 2 est alors une conséquence immédiate de la proposition 7 ci-
dessous, qui est un cas particulier du théoréme de la page 679 de [7], mais nous en donnons
une démonstration par souci d’étre complet.

Proposition 7. Soient cg, c1, ..., ck—1 des nombres réels positifs ou nuls, co > 0 et soit
I ={1 <j<k:cj>0}. Alorsla matrice

o 1 o ... 0
0o o 1 .. 0
C¢= oon : :
0o o0 o .. 1
co) C1 vee Ck—2 Ck—1

est primitive si et seulement si pged(I U {k}) = 1.

Preuve. Comme nous 1’avons observé ci-dessus, C est irréductible. Notons N le cardinal
de 7. Soit S la matrice

0 1 0
0 0 1 0
S = : : . : :
0 0 o ... 1
1 1 1
N¥T "+ N+1 - Nl

ol dans la derniére ligne, pour tout j € I U {0}, ¢; est remplacé par ﬁ La matrice ainsi
obtenue est donc stochastique. En particulier, p(S) = 1, et S est irréductible. De plus, par
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les rappels du paragraphe 2, C est primitive si et seulement si S 1’est. On remplace alors
C par S, qui est la matrice compagnon de

xj
q(x) = xk — Z .
Jjelu{o} N+1
Supposons d’abord que d = pged(I U {k}) > 1. Ecrivons j = ajd et k = ad avec
aj,a € N* pour tout j € I, et considérons le polyndme

aj

r(x) =x%— Z Nx%;l'

jeluio)

Alors g(x) = r(x?), r(1) = 0, et pourtout £ € C,¢% = 1,0onaq(¢) = r(1) = 0. Cela
démontre que C n’est pas primitive.

Réciproquement, supposons que pged(/ U {k}) = 1, et soit ¢ une racine de g(x) telle que
|¢| = 1. Par le paragraphe 2, on sait que ¢ est alors une racine de 1’unité. Ecrivons donc

.= eZimn/d
avec | <m <detpged(m,d) = 1. ’égalité ¢g(¢) = 0 donne

(N + l)e2i7tkm/d — ZeZ[Jij/d +1,
jel

et en prenant les modules

N+l= |Zeziﬂjl1‘l/d+l‘ Szleziﬂjl71/d|+1:N+l
jel jel

2imjm/d 2imkm/d _

qui implique que d divise jm pourtout j € I, donc que e = 1,puisquee
1, donc que d divise également km. Ces conditions impliquent que d divise pged(/ U {k}) ;
comme pged(m, d) = 1, on obtient que { = 1, et S est primitive. O

Pour démontrer la seconde affirmation du théoréme 2, considérons un polyndme a coeffi-
cients réels p(x) = xk — cx*~1 — Zﬁ;ﬁ cjx/ telquec > 2etc > Z(};% lcjl + 1. On
observe d’abord que pour tout z € C tel que |[z| > 1,0na

k=2

‘ch‘zj‘ <1z = 1).

j=0

Cela implique facilement que p(c — 1) < 0, que p(c + 1) > 0 et que p(z) # 0 pour
tout |z| = 1. Ainsi, p s’annule en un nombreréel | < ¢ — 1 < p < ¢ + 1. Enfin, soit
q(z) = K —czF1. Ona lg(z)| = ¢ — 1 pour tout |z] = 1, et, pour ces mémes valeurs de

z,ona
k—2

p@—a@| = | ezl <c=1=laI.

j=0
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Puisque ¢ admet k — 1 zéros (comptés avec multiplicités) dans le disque unité ouvert, il en
est de méme pour p par le théoreme de Rouché. g

Considérons ensuite une suite (a,),>1 comme dans la troisieme partie du théoréme 2 :
a, > 0 pour tout n, et elle satisfait la relation de récurrence

Antk = Ck—1An+k—1 + Ck—2Qn+k—2 + ...+ Clant1 +coan  (n > 1)

ou les ¢; satisfont I'une des deux premieres conditions du théoréme 2. On note encore p
I’'unique racine positive du polyndme caractéristique p(x) = x¥ — cx_1x¥=1 — ... —¢o de
la relation de récurrence.

Pour démontrer la troisieme partie du théoreme 2, il suffit de vérifier que lim,,_, o, 2% existe
et est positive ([5, théoreme 2.4]). Le cas ou les coefficients ¢; satisfont la condition (1) est

une conséquence de la proposition suivante.

Proposition 8. Avec les hypothéses et les notations ci-dessus, si les c¢; satisfont la condi-
tion (1) du théoréme 2, on a :

existe et est positive.

Preuve. Notons encore C la matrice compagnon du polyndme p(x) et posons pour tout
entier n > 1
An
An+1

An+k—1
de sorte que
CAy = Appi
pour tout n > 0. Par suite,ona A, = ch A pour tout n. Si v et w sont des vecteurs de
Perron-Frobenius pour C et CT respectivement, on a vu que la suite de matrices (pL,,C”)
converge vers la matrice G = vw” /w v lorsque n — oco. Ainsi,

L . 1
n_lC Al =00 —GAL.
p o

A
=
|-

En particulier, Z—:’,, qui est la premieére composante de anA,.,, converge vers la premiere

composante de %GAl, etcomme A; > Oet G > 0, toutes les composantes de G A sont
positives. 0

Pour terminer la preuve du théoréme 2, considérons une suite (a,),>1 C RT \ {0} qui
satisfait la relation de récurrence

Aptk = Ck—1ap+k—1 + ...+ Clap+1 + coay
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avec cx—1 > 2, cp—1 > Z/j‘;% lcj| + 1, et telle que a,, ne converge pas vers 0 lorsque n —
oo. D’apres la structure de telles suites (rappelée dans le paragraphe 1), si ¢ = p > 1,

&2, ..., ¢m sont les racines du polynome caractéristique p(x) = xk—qgox - =
c1x — co, de multiplicités respectives ju; = 1, u2, ..., im, il existe des coefficients o ¢
tels que
m /lj*1
an = 1p" + Y D ajn't] Vnzl.
Jj=2 ¢=0
Puisque p > 1 et |¢j| < 1 pourtout j =2,...,m,a, estdelaformea, = ai 10" + B

avec 8, — 0 lorsque n — 0. Les hypotheses a, > 0 pour tout n et a, # 0 impliquent
que o1.1 > 0, et on obtient immédiatement que

lim — = o1.1- O
Nous passons enfin a la preuve du théoreme 3.

Preuve du théoréme 3.. En n’écrivant que les coefficients non nuls dans I’expression du
polyndme p(x),on a

px) = xk— ck_klxk_k‘ - ck_k_\_xk_k"‘ —C0

avec 1 <kj < ... < kg < k. Par le théoréme de la page 679 de [7], on obtient :
h = pged(k — ki, ...,k — kg, k) = pged(ki, ..., kg, k) = pged(1 U {k}).

Ecrivons, pour 1 <i < s, k; = hk;, et aussi k = hk’. Pour chaque m fixé, en remplagant
n par m + hn dans la relation de récurrence, on obtient

Am+h(n+k') = Ck—ki Anh(n+k'—k,) + oo Chk—ky At h(ntk —k,) T COAmthn-

Cela signifie que la suite (am+nn)n>1 satisfait une relation de récurrence d’ordre k" dont le
polyndme caractéristique g (x) est

K=k _ K=k,

k/
q(x) =x" — Ccr—gy X o= Ch—kX

avec pged(I(q)U{k’}) = 1. On applique alors les conclusions des propositions précédentes
a la suite (alrl+llrl)rlzl . O

4 Critere d’irrationnalité de log, (o)

Soit p(x) le polyndme p(x) = xk—cpoxkt— . —cix —cpavec¢; € Rt eteg > 0.
On désigne encore par I I’ensemble des indices 1 < i < k tels que ¢; > 0, et par p la
racine positive de p(x). On suppose encore que I # @.

Le résultat suivant sera utilisé dans la preuve du théoréme 6.

Proposition 9. Soit b > 2 un entier. On suppose que les c; € Qt et que :
(1) pged(1 U {k}) =1;
(2) p n’est ni entier, ni inverse d’entier.

Alors log,(p) est irrationnel.
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Preuve. Supposons que log;,(p) soit rationnel, de sorte qu’il existe deux entiers p etg > 0
premiers entre eux tels que p = b?/4. Comme p # 1,ona p # 0. Désignons par m(x) le
polyndme minimal (unitaire) de p.
Si p est irrationnel, alors m(x) est de degré au moins 2 et p en est une racine simple. Mais
p est également une racine de ¢ (x) = x4 — bP, donc le polyndme m (x) divise 7 (x), et ainsi
toutes les racines de m(x) sont des racines de ¢ (x). Or, ces dernieres sont toutes de module
égal a p. Cela contredit (1) car m(x) divise également p(x), et ce dernier aurait plusieurs
racines de module égal a p.
Par suite, p est nécessairement rationnel ; il existe des entiers positifs o, g tels que p = %
et pged(e, B) = 1. On obtient «¢ = b” B9, et I'unicité de la décomposition en facteurs
premiers implique que

B = 1si p est positif, c’est-a-dire si p > 1, et alors p = « est entier,

o = 1si p est négatif, c’est-a-dire si p < 1, et alors p = 1/8 est un inverse d’entier,
ce qui contredit la seconde hypothése. d

Remarque. La condition (2) est facile a utiliser puisqu’il est commode de localiser p dans
R grace a une étude succinte du polyndme p(x).

Exemple 10. Soit m > 1 un entier fixé ; pour tout entier k > 2, soit

k-1 k=2

Pkm(x) = x* — mx —mx L.—mXx —m,

qui généralise le polynome caractéristique des suites de Fibonacci d’ordre k introduites
dans I’exemple 4, et qui satisfait les conditions du théoreme 2. Notons px ,, la racine
positive de pg m (x).

Elle est irrationnelle par la proposition 5, px,m > 1 car px (1) = 1 —km < 0, et en
fait, pg.m est un nombre de Pisot (cf [2], [1]) : c’est un entier algébrique, et pi », (x) est
son polyndme minimal car on a cx—1 > ... > ¢o > 0, et toutes les racines { # pk., de
Pk.m (x) satisfont [¢] < ok .

Onam < pgm <m+1car

1—-k <0, m=1,
Pkm(m) =13 m—m* <0 m>2,
m—1

et px.m(m + 1) = 1 pour tout m.
Plus précisément, on va démontrer que px , < Pk+1.m pour tous k et m, et que
(m+ 1)k

k+1

pour tout m et tout k assez grand. Cela démontrera que, pour tout m fixé, la suite (ok m)i>2
est croissante et converge vers m + 1 lorsque k — oo.

< Prm <m—+1

La premiere affirmation provient des égalités :
_k+1 k _ _
Pk+1.m(Pk.m) = Pkom — MPry — -+ — MPkm — M = Pk.m * Pk.m (Pkm) —m = —m

et Prk+1.m (pk-}—l,m) =0.
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Pour démontrer la seconde affirmation, nous introduisons le polynéme auxiliaire
q(x) = (¢ = Dpen() = ¥ = (m+ Dx* 4 m.

On vérifie sans peine que

(m+DkY _ m+1((m+ Dk "+m
N%51 )7 k+1 k+1

voogote metd ((mrDk\F o 5 k1
Or, I’inégalité ) ) + m < 0 est équivalente a (m + 1) >mk+ 1)(1+

1/k)* qui est vraie dés que k est assez grand. Cela démontre la seconde affirmation.

Remarques.

(1) Les suites (p/f.m)(zl ne sont pas équidistribuées mod 1 car la distance entre {,o,f‘m :

¢ < n} et N tend vers 0. Mais qu’en est-il de (« - ,Olf.m)gzl pour « irrationnel
positif ? (On sait que, pour presque tout nombre réel x > 1, la suite (x"),>; est
équidistribuée mod 1 ; cf. [6, chap.1, corollaire 4.2.])

(2) Sicp,c1,...,ck—1 € Z avec k > 2 sont tels que

k—2
Ch—1 > Z|Cj| +1
Jj=0

et co # 0, le polyndme associé p(x) = xk—cprixk 1= —cpestle polyndme
minimal d’un nombre de Pisot p; ([1, chap. 5.2]), et cela donne une famille de suites
qui satisfont une relation de récurrence a coefficients entiers non nécessairement

positifs et qui satisfont également la loi de Benford d’apres le théoréeme 2.

Nous passons enfin a la preuve du théoreme 6 :

Preuve du théoreme 6. (1) Pour N > 3 fixé, posons
By ={2 <b < N :log,(p) € Q}.

11 suffit de démontrer que
VN log(N)

log(2)
C’est évident si By est vide ou s’il ne contient qu’un élément. S’il contient au moins deux
éléments, soit bo = min{b € By}. Pour tout b € By tel que b > by, en utilisant encore la
décomposition en facteurs premiers, on vérifie qu’il existe un entier u < /N tel que by et
b soient des puissances entieres de u. Par suite,

|BN| <

ByC2<uP <N:p>1u<+N.

On obtient ainsi la majoration annoncée.
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(2) Soit & > 1 le nombre de racines positives distinctes du polyndme p(x). Les sous-suites
qui ont des conditions initiales positives parmi (@ +hn)n>1, 0 < m < h, ont un polyndme
caractéristique dont p'/” est la racine positive. Si p n’est ni entier ni inverse d’entier, alors
p'/" non plus et les conditions de la proposition 9 sont satisfaites.

Enfin, si p est rationnel, en utilisant la décomposition en facteurs premiers, on vérifie
comme dans la preuve de la proposition 9 que b¥*/# € N pour des entiers positifs o et
B. Par suite, il existe des entiers c,d > 1 etu > 2 tels que p*' = u¢ et b = u?, mais
alors p serait entier ou inverse d’un entier, contrairement a I’hypothese. Cela démontre la
deuxieéme partie du théoreme 6. g
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