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Sind zwei beliebige Tetraeder mit gleichen Grundflächen und gleichen Höhen stets
zerlegungsgleich oder lassen sie sich mit kongruenten Polyedern zu zerlegungsgleichen
Körpern erganzen?

So formulierte D. Hilbert bei dem zweiten internationalen Mathematikerkongress in Paris
das dritte seiner 23 Probleme. Kaum ein Jahr später wurde dieses Problem bereits gelöst:
M. Dehn bewies, dass der Würfel und das volumengleiche reguläre Tetraeder nicht
zerlegungsgleich sind ([4]). Bei Versuchen den Dehnschen Beweis zu vereinfachen, gelang erst
V.G. Boltianskii eine markante Verbesserung ([3]). Vor einigen Jahren hat D. Benko die
Fachwelt mit einer unerwartet einfachen Lösung des 3. Hilbertschen Problems überrascht

([2]). Entscheidendes Hilfsmittel für seinen Beweis ist eine bestimmte Approximation
reeller Zahlen durch rationale Zahlen (Lemma 1 bei Benko). M. Aigner und G. Ziegler haben
den Ansatz von Benko aufgegriffen und in der dritten Auflage ihres berühmten Buchs der

Zwei Polygone, die sich in Polygone zerlegen lassen, die paarweise kongruent sind,
haben wegen der Additivität des Flächeninhalts offensichtlich den gleichen Inhalt. Dass

umgekehrt inhaltsgleiche Polygone auch zerlegungsgleich sind, lässt sich mit elementaren

Mitteln beweisen (W. Bolyai 1832, P. Gerwien 1833). Ob im Raum aus der Völu-
mengleichheit von Polyedern ebenfalls die Zerlegungsgleichheit folgt, war lange offen
und wurde im Jahr 1900 von D. Hilbert als 3. Problem in seine berühmte Liste von 23
Problemen aufgenommen. M. Dehn hat bereits ein Jahr später mit Mitteln der Höheren
Mathematik bewiesen, dass die Begriffe volumengleich und zerlegungsgleich bei
Polyedern nicht äquivalent sind. Im vorliegenden Beitrag wird im Anschluss an Benko
2007 ein Beweis geliefert, der mit elementaren Mitteln auskommt. Entscheidend ist
dabei eine bestimmte Approximation reeller durch rationale Zahlen.
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Beweise eine eigene Version veröffentlicht. Darin spielt das Kegellemma eine zentrale Rolle.

Zu dessen Beweis setzen sie allerdings stärkere Mittel ein, die aber natürlich viel weiter
reichen ([1, S. 61-70]).
Ziel der vorliegenden Note ist eine weitere Elementarisierung und Vereinfachung des
Beweises der Nichtäquivalenz von Zerlegungsgleichheit und Volumengleichheit bei
Polyedern unter Beschränkung auf Mittel der Schulmathematik. Dabei spielt die Darstellung
reeller Zahlen durch unendliche Dezimalbrüche die entscheidende Rolle.

Das folgende Lemma ist eine Variante von Lemma 1 in [2]:

Lemma. Gegeben sei eine Menge {ai,..., an) positiver reeller Zahlen und m eine

beliebige natürliche Zahl. Dann existieren nicht negative rationale Zahlen &-, i 1,..., n,

lsodassfür i 1,..., n gilt a, - — 1(F-

Beweis. Da bei der Dezimalbruchdarstellung positiver reeller Zahlen die ersten m Stellen

nach dem Komma auf 10m verschiedene Arten mit den Ziffern 0 bis 9 belegt werden

können, gibt es für beliebiges m in einer unendlichen Menge positiver reeller Zahlen

unendlich viele, deren Dezimalbruchentwicklungen in den ersten m Stellen nach dem
Komma übereinstimmen (Dirichletsches Schubfachprinzip). Die Differenz zweier solcher
Zahlen unterscheidet sich von einer natürlichen Zahl um höchstens 10_m.

Die Menge der Vielfachen t • a\,t g N, ist eine unendliche Menge. Daher existiert eine
unendliche Teilmenge Ni von N, sodass die Vielfachen t ¦ a\, t g Ni, in den ersten m Stellen

nach dem Komma übereinstimmen. Die Menge t ¦ a2, t g Ni, ist ebenfalls unendlich.
Daher gibt es eine unendliche Teilmenge N2 von Ni, sodass die Vielfachen t ¦ a2, t g N2,
ebenfalls in den ersten m Stellen nach dem Komma übereinstimmen. Durch wiederholte
Anwendung dieser Konstruktion gelangt man nach n Schritten zu einer unendlichen
Teilmenge Nn von N mit der Eigenschaft, dass für jedes i 1,..., n die Zahlen t ¦ ai, t g N„,
jeweils in den ersten m Stellen nach dem Komma übereinstimmen.

Für zwei beliebige Zahlen r, 51 g Nn mit r < s folgt, wenn q := s — r gesetzt wird, dass

sich q -ai für i 1,..., n um höchstens 10_m von einer ganzen Zahl pi > 0 unterscheidet

und daher at von der rationalen Zahl &¦ um höchstens —— 1QOT
D

Zusatz 1. Wenn s hinreichend groß gewählt wird, kann man erreichen, dass alle pi positiv
sind, was für die folgenden Überlegungen aber irrelevant ist.

Zusatz 2. Statt von der unendlichen Menge N kann man auch von einer endlichen Menge

M natürlicher Zahlen ausgehen, die mindestens (10m)n + 1 Elemente enthält. Nach
dem Schubfachprinzip ergibt sich nach n Schritten eine Menge Mn mit mindestens zwei
Elementen, welche in Bezug auf ai,... ,an die gleichen Eigenschaften wie Nn aufweist.

Zusatz 3. Aus dem Lemma lässt sich mühelos das Kegellemma von Aigner/Ziegler ([1,
S. 64]) herleiten. Man braucht m nur hinreichend groß zu wählen und kann dann eine
ähnliche Abschätzung vornehmen wie unten beim Beweis von Satz 1.

Der Beweis des Theorems 2 von Benko, welches die Lösung des Hilbertschen Problems

liefert, lässt sich mit Hilfe des folgenden Begriffs, der eine anschaulichere Fassung des

Dehnschen Funktionais ist, übersichtlicher führen.
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Definition. Für ein Polyeder P wird unter der gewichteten Winkelsumme S(P) des
Polyeders die Summe X^(e;') ¦ ctj verstanden. Summiert wird dabei über alle Kanten ej des

Polyeders. / (ej ist die Länge von ej und ctj der zu der Kante e} gehörende Diederwinkel.

Die gewichtete Winkelsumme S(Pi,..., Pk) einer Menge (Pi,..., Pk} von Polyedern
wird definiert als S(Pi) + • • • + S(Pk).

Die Zerlegung eines Polyeders P in Polyeder Pi,..., Pk gibt Anlass, die einzelnen
Summanden von S (Pi,..., Pk) in folgender kanonischer Weise zu zerlegen: Bei der Zerlegung
von P wird jede Kante e eines Polyeders Pi durch die Ecken der anderen Polyeder, die auf
ihr liegen, sowie durch ihre Schnittpunkte mit Kanten der anderen Polyeder in Teilstrecken
zerlegt.

Der Beitrag jeder Kante e zur Summe S(P\,..., Pk) der Diederwinkel kann daher auch
dadurch ausgedrückt werden, dass man die Länge jeder Teilstrecke von e mit dem

zugehörigen Diederwinkel multipliziert und die Produkte aufsummiert. Diese Darstellung
heißt die durch P verfeinerte Darstellung Sp(Pi,..., Pk) der gewichteten Winkelsumme

S(Pi,...,Pk).
Wenn sich ein zweites Polyeder Q in die gleichen Polyeder Pi,..., Pk zerlegen lässt,
in diesem Fall sind P und Q zerlegungsgleich und volumengleich, ergibt sich eine
analoge Aufspaltung der Kanten von Pi,..., Pk und die durch Q verfeinerte Darstellung
SQ (Pi Pk) der Winkelsumme S(Pi ,...,Pk).
Offensichtlich gilt SP(PU..., Pk) S(Pi,..., Pk) SQ(PU..., Pk).

Sei nun (Li,..., Ln] die Menge sämtlicher Kanten der Polyeder Pi,..., Pk und sämtlicher

Teilstrecken, die aus den Zerlegungen von P und Q in Pi,..., Pk resultieren. Die
natürliche Zahl m wird so groß gewählt, dass iV < 10OT gilt. Aus dem obigen Lemma

folgt, dass sich die reellen Längen / (Li ),...,/ (Ln) durch nicht negative rationale Zahlen

^,..., 2^- so gut approximieren lassen, dass der Fehler jeweils höchstens 1Q], ist.

Satz 1. Die approximativen gewichteten Winkelsummen S*(Pi,..., Pk), S^(Pi,..., Pk)
und Sq(Pi, Pk), die entstehen, wenn in den gewichteten Winkelsummen S(Pi,
Pk)> Sp (Pi ¦,¦ ¦ ¦ -,Pk) und Sq (Pi Pk) die Langen l (Lt) far i 1,..., N durch ihre
rationalen Näherungen &¦ ersetzt werden, sind gleich.

Beweis. Für jede Kante e eines Polyeders Pi ist die Summe der Längen der bei der
Zerlegung von P induzierten Teilstrecken, gleich der Länge von e, ebenso die Summe der

Längen der bei der Zerlegung von Q induzierten Teilstrecken. Der approximative Wert von
e und die Summe der approximativen Längen der Teilstrecken von e sind jeweils Brüche
mit dem Nenner q, die sich um höchstens

10OT < - unterscheiden. Die Zähler und daher
auch die Brüche müssen somit gleich sein. Bei dieser Abschätzung wird benutzt, dass die
Anzahl der Teilstrecken jeder Kante e jeweils kleiner als N ist. D

Satz 2. Für zerlegungsgleiche Polyeder P und Q ist die Differenz S*(P) — S*(Q) ein
rationales Vielfaches von tt.

Beweis. Wir fassen in den Summen S^(Pi,..., Pk) und Sq(P\, Pk) diejenigen
Terme zusammen, die zur gleichen Teilstrecke Lt gehören. Dabei sind drei Fälle zu
unterscheiden.
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(1) Wenn Li im Innern von P bzw. Q, aber nicht auf einer Seitenfläche eines der Poly¬
eder Pi,..., Pk, P bzw. Q liegt, summieren sich die zu Lt gehörenden Diederwinkel
zu 2tt (Abb. 1). Daher liefert jede solche Teilstrecke den Beitrag ^ • 2tt.

Abb. 1 Orthogonaler Schnitt durch eine Teilstrecke Lr entsprechend Fall (1)

(2) Wenn Lt im Innern von P bzw. Q und auf einer Seitenfläche eines der Polyeder

Pi,..., Pk oder P bzw. Q liegt, summieren sich die zugehörigen Diederwinkel zu

tt (Abb. 2). Entsprechend ist der Beitrag einer solchen Teilstrecke ^ -tt.

Abb. 2 Orthogonaler Schnitt durch eine Teilstrecke Lt entsprechend Fall (2)

(3) Wenn Li auf einer Kante von P bzw. Q liegt, summieren sich die zu Li gehören¬
den Diederwinkel zum Diederwinkel ctj dieser Kante. Die Teilstrecken dieses Typs
liefern zu S*p(Pi,..., Pk) den Beitrag S*(P) und zu S*Q(Pi,..., Pk) den Beitrag
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S*(Q). Somit haben wir

S%(Pi,...,Pk) S\P) + - Tt,

SQ(Pi,...,Pk) S*(Q) — - TT

mit ganzen Zahlen u, v. Aus Satz 1 ergibt sich S*(P) — S*(Q) TT D

Anmerkung: Wenn man alle Terme in der letzten Gleichung mit dem gemeinsamen Nenner

q multipliziert, folgt für zerlegungsgleiche Polyeder P und Q, dass es eine Summe von
ganzzahligen Vielfachen der Diederwinkel von P und eine Summe von Vielfachen der
Diederwinkel von Q gibt, die sich nur um ein Vielfaches von7T unterscheiden (Bricardsche
Bedingung).

Satz 3. Ein reguläres Tetraeder T und der zu T volumengleiche Würfel W sind nicht
zerlegungsgleich.

Beweis (indirekt): Angenommen T und W wären zerlegungsgleich. Dann gäbe es Polyeder

Pi,..., Pk, aus denen sich sowohl T als auch W zusammensetzen ließen. Beim Würfel ist
der Diederwinkel aller Kanten ^-, beim Tetraeder gilt für den Diederwinkel ct aller Kanten

cosa j, wie aus Abb. 3 abzulesen ist. AM und DM sind Höhen und Seitenhalbierende

der regulären Dreiecke ABC und DBC und damit gleich lang. Der Fußpunkt F
der Höhe DF des Tetraeders ist der Mittelpunkt von ABC und teilt als Schnittpunkt der
Seitenhalbierenden die Strecke AM im Verhältnis 2:1.
S*(T) ist ein rationales Vielfaches von ct, S*(W) ein rationales Vielfaches von tt. Aus
Satz 2 folgt, dass es natürliche Zahlen n und k gibt, für die n ¦ a k ¦ tt gilt, was n > 1

einschließt. Aus dieser Winkelbeziehung folgt cos« • ct cosk ¦ tt ±1.
Mit Hilfe der Additionstheoreme für Sinus und Kosinus zeigt man durch vollständige
Induktion, dass für beliebige <p die Beziehung cos» ¦ <p Tn(cos<p) gilt, wobei Tn ein Polynom

n-ten Grades mit ganzzahligen Koeffizienten und 2n~l der Koeffizient der höchsten

M

Abb. 3
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Potenz von Tn ist. Wegen cos ct ^ müsste daher eine Gleichung der Form

/l\n /l\;î_1 1

2n_1.f-J +%_i (-) +--- + A1 -- + a0 ±l

mit ganzen Zahlen a^ bestehen. Wenn beide Seiten dieser Gleichung mit 3" multipliziert
werden, erhält man

2"-1 + an-i 3 + - - + ai. 3"-1 + a0 • 3* ±3",

woraus
2»-l ±3n _ (%-1 3 + + ai 3n-l + ao 3n)

folgt. Die rechte Seite dieser Gleichung ist durch 3, die linke durch 2 teilbar, was ein
Widerspruch zur Teilerfremdheit von 2 und 3 ist. Dieser Widerspruch zeigt, dass T und W

nicht zerlegungsgleich sein können. D
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