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fiir Elementarmathematik und Didaktik der Mathematik an der Universitdat Dortmund.
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Sind zwei beliebige Tetraeder mit gleichen Grundflichen und gleichen Hohen siels zer-
legungsgleich oder lassen sie sich mul kongruenien Polyedern zu zerlegungsgleichen
Korpern erganzen?

So formulierte D. Hilbert bei dem zweiten internationalen Mathematikerkongress in Paris
das dritte seiner 23 Probleme. Kaum ein Jahr spiter wurde dieses Problem bereits gel6st:
M. Dehn bewies, dass der Wiirfel und das volumengleiche regulire Tetraeder nicht zerle-
gungsgleich sind ([4]). Bei Versuchen den Dehnschen Beweis zu vereinfachen, gelang erst
V.G. Boltianskii eine markante Verbesserung ([3]). Vor einigen Jahren hat D. Benko die
Fachwelt mit einer unerwartet einfachen L.osung des 3. Hilbertschen Problems tiberrascht
([2]). Entscheidendes Hilfsmittel fiir seinen Beweis ist eine bestimmte Approximationre-
eller Zahlen durch rationale Zahlen (I.emma 1 bei Benko). M. Aigner und G. Ziegler haben
den Ansatz von Benko aufgegriffen und in der dritten Auflage ihres beriihmten Buchs der

Zwei Polygone, die sich in Polygone zerlegen lassen, die paarweise kongruent sind, ha-
ben wegen der Additivitit des Flicheninhalts offensichtlich den gleichen Inhalt. Dass
umgekehrt inhaltsgleiche Polygone auch zerlegungsgleich sind, 14sst sich mit elemen-
taren Mitteln beweisen (W. Bolyai 1832, P. Gerwien 1833). Ob im Raum aus der Volu-
mengleichheit von Polyedern ebenfalls die Zerlegungsgleichheit folgt, war lange offen
und wurde im Jahr 1900 von D. Hilbert als 3. Problem in seine bertihmte Liste von 23
Problemen aufgenommen. M. Dehn hat bereits ein Jahr spiiter mit Mitteln der Hoheren
Mathematik bewiesen, dass die Begriffe volumengleich und zerlegungsgleich bei Po-
lyedern nicht dquivalent sind. Im vorliegenden Beitrag wird im Anschluss an Benko
2007 ein Beweis geliefert, der mit elementaren Mitteln auskommt. Entscheidend ist
dabei eine bestimmte Approximation reeller durch rationale Zahlen.
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Beweise eine eigene Version verdffentlicht. Darin spielt das Kegellemma eine zentrale Rol-
le. Zu dessen Beweis setzen sie allerdings stirkere Mittel ein, die aber natiirlich viel weiter
reichen ([1, S. 61-70]).

Ziel der vorliegenden Note ist eine weitere Elementarisierung und Vereinfachung des Be-
weises der Nichtiquivalenz von Zerlegungsgleichheit und Volumengleichheit bei Poly-
edern unter Beschrinkung auf Mittel der Schulmathematik. Dabei spielt die Darstellung
reeller Zahlen durch unendliche Dezimalbriiche die entscheidende Rolle.

Das folgende Lemma ist eine Variante von Lemma 1 in [2]:

Lemma. Gegeben sei eine Menge {ay, ..., an} positiver reeller Zahlen und m eine be-
liebige natiirliche Zahl. Dann existieren nicht negative rationale Zahlen %, i=1,....n
sodass furi =1,...,n gilf |a; — % < 1o

Beweis. Da bei der Dezimalbruchdarstellung positiver reeller Zahlen die ersten m Stel-
len nach dem Komma auf 10” verschiedene Arten mit den Ziffern O bis 9 belegt wer-
den konnen, gibt es fiir beliebiges m in einer unendlichen Menge positiver reeller Zah-
len unendlich viele, deren Dezimalbruchentwicklungen in den ersten m Stellen nach dem
Komma tibereinstimmen (Dirichletsches Schubfachprinzip). Die Differenz zweier solcher
Zahlen unterscheidet sich von einer natiirlichen Zahl um héchstens 1077

Die Menge der Vielfachen ¢ - a1, { € I, ist eine unendliche Menge. Daher existiert eine
unendliche Teilmenge Ny von N, sodass die Vielfachen £ - @1, € Ny, in den ersten m Stel-
len nach dem Komma tibereinstimmen. Die Menge f - as, £ = Ny, ist ebenfalls unendlich.
Daher gibt es eine unendliche Teilmenge N> von Ny, sodass die Vielfachen ¢ - ag, ¢ € Na,
ebenfalls in den ersten m Stellen nach dem Komma iibereinstimmen. Durch wiederholte
Anwendung dieser Konstruktion gelangt man nach zn Schritten zu einer unendlichen Teil-
menge N, von N mit der Eigenschaft, dass fiir jedesi — 1, ..., n die Zahlent - g;, f € [N,
jeweils in den ersten m Stellen nach dem Komma tibereinstimmen.

Fiir zwei beliebige Zahlen r, s € N, mitr < s folgt, wenn ¢ :— § — r gesetzt wird, dass

sichg-a; fiiri — 1, ..., numhodchstens 10 ™ von einer ganzen Zahl p; > O unterscheidet
und daher a; von der rationalen Zahl %’ um hochstens % — ﬁ' U]

Zusatz 1. Wenn s hinreichend grof} gewihlt wird, kann man erreichen, dass alle p; positiv
sind, was fiir die folgenden Uberlegungen aber irrelevant ist.

Zusatz 2. Statt von der unendlichen Menge IN kann man auch von einer endlichen Men-
ge M natiirlicher Zahlen ausgehen, die mindestens (10™)* + 1 Elemente enthilt. Nach
dem Schubfachprinzip ergibt sich nach n Schritten eine Menge M,;, mit mindestens zwei
Elementen, welche in Bezug auf ay, . . ., a, die gleichen Eigenschaften wie N, aufweist.

Zusatz 3. Aus dem [emma lisst sich mithelos das Kegellemma von Aigner/Ziegler (|1,
S. 64]) herleiten. Man braucht m nur hinreichend grof zu wihlen und kann dann eine
dhnliche Abschitzung vornehmen wie unten beim Beweis von Satz 1.

Der Beweis des Theorems 2 von Benko, welches die L.&sung des Hilbertschen Problems
liefert, lasst sich mit Hilfe des folgenden Begriffs, der eine anschaulichere Fassung des
Dehnschen Funktionals ist, tibersichtlicher fithren.
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Definition. Fiir ein Polyeder P wird unter der gewichiefen Winkelsumme S(P) des Poly-
eders die Summe ) I(e;) - «; verstanden. Summiert wird dabei iiber alle Kanten e; des
Polyeders. [(e;) ist die Linge von e; und «; der zu der Kante e; gehérende Diederwinkel.

Die gewichtete Winkelsumme S(Py, ..., Py) einer Menge {Py,..., P} von Polyedern
wird definiert als S(P1) + -+ + S(FPy).

Die Zerlegung eines Polyeders P in Polyeder Py, ..., Py gibt Anlass, die einzelnen Sumn-
mandenvon S(Py, ..., P;) infolgender kanonischer Weise zu zerlegen: Bei der Zerlegung
von P wird jede Kante e eines Polyeders P; durch die Ecken der anderen Polyeder, die auf
ihr liegen, sowie durch ihre Schnittpunkte mit Kanten der anderen Polyeder in Teilstrecken
zerlegt.

Der Beitrag jeder Kante ¢ zur Summe S{ Py, ..., P;) der Diederwinkel kann daher auch
dadurch ausgedriickt werden, dass man die Linge jeder Teilstrecke von e mit dem zu-
gehorigen Diederwinkel multipliziert und die Produkte aufsummiert. Diese Darstellung
heilt die durch P verfeinerte Darstellung Sp( Py, ..., Py) der gewichteten Winkelsumme
Sy v B

Wenn sich ein zweites Polyeder ¢ in die gleichen Polyeder Py, ..., Py zerlegen lisst,
in diesem Fall sind P und @ zerlegungsgleich und volumengleich, ergibt sich eine ana-
loge Aufspaltung der Kanten von Pp, ..., Py und die durch @ verfeinerte Darstellung
Sg(Py, ..., B)der Winkelsumme S(Py, ..., P).

Offensichtlich gilt Sp(Py1, ..., Pr) = S(P1, ..., Pt) = So(P1, ..., Py).

Seinun {Ly, ..., L, die Menge simtlicher Kanten der Polyeder Py, ..., P, und sdmtli-
cher Teilstrecken, die aus den Zerlegungen von P und @ in Py, ..., P; resultieren. Die
natiirliche Zahl m wird so groP} gewihlt, dass N < 107 gilt. Aus dem obigen Lemma
folgt, dass sich die reellen Lingenl(l), ..., I(Ly) durch nicht negative rationale Zahlen

%, S %" so gut approximieren lassen, dass der Fehler jeweils héchstens o7 g ist.

Satz 1. Die approximativen gewichteten Winkelsummen S*(Py, ..., Pr), S} (Pr,.... P
und S5H(P1, ..., Py), die entstehen, wenn in den gewichteten Winkelsummen S(Py, ...,
Pe), Sp(Pr, ..., Pyund Sg(Py, ..., Py) die Langen I(L;) furi = 1, ..., N durch ihre
rationalen Naherungen % erselzl werden, sind gleich.

Beweis. Fir jede Kante e eines Polyeders P; ist die Summe der Lingen der bei der Zer-
legung von P induzierten Teilstrecken, gleich der Linge von e, ebenso die Summe der
Lingen der bei der Zerlegung von () induzierten Teilstrecken. Der approximative Wert von
e und die Summe der approximativen Lingen der Teilstrecken von e sind jeweils Briiche
mit dem Nenner ¢, die sich um héchstens 10% < L unterscheiden. Die Zhler und daher
auch die Briiche miissen somit gleich sein. Bei dieser Abschitzung wird benutzt, dass die

Anzahl der Teilstrecken jeder Kante e jeweils kleiner als MV ist. ]

Satz 2. Fiir zerlegungsgleiche Polyeder P und Q ist die Differenz S*(P) — S*(Q) ein
rationales Vielfaches von 7.

Beweis. Wir fassen in den Summen S3(Py,..., P) und S"é(Pl, ..., Py) diejenigen
Terme zusammen, die zur gleichen Teilstrecke I; gehoren. Dabei sind drei Fille zu
unterscheiden.
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(1) Wenn L; im Innern von P bzw. (), aber nicht auf einer Seitenfliche eines der Poly-
eder Py, ..., Py, P bzw. Q liegt, summieren sich die zu L; gehtrenden Diederwinkel
zu 27 (Abb. 1). Daher liefert jede solche Teilstrecke den Beitrag % 2.

/ \

Abb. 1 Orthogonaler Schnitt durch eine Teilstrecke L; entsprechend Fall (1)

(2) Wenn L; im Innern von P bzw. O und auf einer Seitenfliche eines der Polyeder
Pr,..., Py oder P bzw. @ liegt, summieren sich die zugehtrigen Diederwinkel zu
7 (Abb. 2). Entsprechend ist der Beitrag einer solchen Teilstrecke % L

-

-
/

Abb. 2 Orthogonaler Schnitt durch eine Teilstrecke L; entsprechend Fall (2)

(3) Wenn L; auf einer Kante von P bzw. () liegt, summieren sich die zu I; gehdren-
den Diederwinkel zum Diederwinkel «; dieser Kante. Die Teilstrecken dieses Typs
liefern zu S} (P, ..., Pr) den Beitrag S*(P) und zu S*Q(Pl, ..., P) den Beitrag
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S*(Q). Somit haben wir

* o+ U
SP(Pl,,Pk):S(P)—I—gﬂ,
o o v
q
mit ganzen Zahlen u, v. Aus Satz 1 ergibt sich S*(P) — §*(Q) = ? 7. O

Anmerkung: Wenn man alle Terme in der letzten Gleichung mit dem gemeinsamen Nenner
g multipliziert, folgt fiir zerlegungsgleiche Polyeder P und @, dass es eine Summe von
ganzzahligen Vielfachen der Diederwinkel von P und eine Sumie von Vielfachen der
Diederwinkel von ( gibt, die sich nur um ein Vielfaches von 7z unterscheiden (Bricardsche
Bedingung).

Satz 3. Ewn regulires Tefraeder T und der zu T volumengleiche Wiirfel W sind nichi
zerlegungsgleich.

Beweis (indirekt): Angenommen T und W wiren zerlegungsgleich. Dann gébe es Polyeder
Py, ..., P, aus denen sich sowohl T als auch W zusammensetzen liefen. Beim Wiirfel ist
der Diederwinkel aller Kanten %, beim Tetraeder gilt fiir den Diederwinkel o aller Kanten
cosq = %, wie aus Abb. 3 abzulesen ist. AM und DM sind Hohen und Seitenhalbie-
rende der reguliren Dreiecke ABC und DBC und damit gleich lang. Der Fubpunkt F
der Hohe DF des 'letraeders ist der Mittelpunkt von ABC und teilt als Schnittpunkt der
Seitenhalbierenden die Strecke AM im Verhélinis 2 : 1.

S*(T) ist ein rationales Vielfaches von «, S*(W) ein rationales Vielfaches von 7. Aus
Satz 2 folgt, dass es nattlirliche Zahlen n und k gibt, flirdien - « = k - 7 gilt, wasn > 1
emschliefit. Aus dieser Winkelbeziehung folgt cosn - « = cosk -7 = +1.

Mit Hilfe der Additionstheoreme fiir Sinus und Kosinus zeigt man durch vollstindige In-
duktion, dass fiir beliebige ¢ die Beziehung cosn - ¢ = T, (cos @) gilt, wobei T}, ein Poly-
nom #-ten Grades mit ganzzahligen Koeffizienten und 27! der Koeffizient der htchsten

Abb. 3
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Potenz von 1} ist. Wegen cos o = % miisste daher eine Gleichung der Form
1\" 1" 1
2”‘1‘(3) +an1-(3) +---+a1'§+ao:i1

mit ganzen Zahlen a; bestehen. Wenn beide Seiten dieser Gleichung mit 3" multipliziert
werden, erhilt man

2 gy i3 4 et ai -3 Lag B = 485

woraus
P =43 (g 34t ar 3 a3

folgt. Die rechte Seite dieser Gleichung ist durch 3, die linke durch 2 teilbar, was ein
Widerspruch zur Teilerfremdheit von 2 und 3 ist. Dieser Widerspruch zeigt, dass 7 und W
nicht zerlegungsgleich sein kénnen. ]
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