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A generalisation of a result of de la Vallee Poussin

Friedrich Pillichshammer
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Universität Salzburg. Seit 2003 ist er außerordentlicher Professor an der Johannes Kepler
Universität in Linz.

1 Introduction

If A {an -f b : neN} with a g N and 0 < b < a, then a century-old result from de la
Vallée Poussin [10] states that for all x > 1 we have

J2 lA(d) {^} ^(1 - y) + 0(Jx~), (1)
d<x

where y is Euler's constant, y := lim-y^coQ^^ 1/n — logy), where 1a(0 is the
characteristic function of the set A ç M, i.e., 1a(ì) Hit e A sind 0 otherwise, {t} t — [t J

and Yld<x means summation over all integers d such that 1 < d < x. A proof of this result

The author is supported by the Austrian Science Foundation (FWF), Project S9609, that is part of the Austrian

National Research Network "Analytic Combinatorics and Probabilistic Number Theory".

Die Euler-Mascheroni Konstante y ist definiert als der Grenzwert der Differenz
zwischen der harmonischen Partialsumme ^n<x 1/n und log*, wenn x gegen unendlich
strebt. Wie e und tt tritt y in verschiedensten Teilgebieten der Mathematik auf. Im
Jahr 1898 veröffentlichte Charles de la Vallée Poussin einen Artikel in dem er u.a.
folgendes zeigte: Dividiert man eine natürliche Zahl n der Reihe nach durch alle Zahlen
d 1,..., n dann strebt für beliebig wachsendes n das Mittel der Bruchteile {n/d}
silier entstehenden Brüche gegen 1 — y. Eine analoge Aussage ist richtig, wenn man
lediglich durch alle Primzahlen zwischen 1 und n dividiert. In diesem Beitrag befasst
sich der Autor mit Verallgemeinerungen dieser Resultate, indem er einerseits den
Bereich der Divisoren d einschränkt und andererseits die Bruchteile durch eine Funktion

f(d) gewichtet. Dabei lassen sich in vielen Fällen analoge Formeln zum Resultat von
de la Vallée Poussin angeben.
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can also be found in [7]. In [9] the error term 0(«Jx) in (1) is improved to 0(x1^3 log*).
We remark that for A N the result (1) is equivalent to Dirichlet's divisor problem. From
(1) it follows that

5^lA(d){^}~(l-y)^lA(d) as* CO. (2)
d<x d<x

(As usual, a(x) ~ b(x) as * —>- oo means that a(x)/b(x) —>- 1 as * —>- oo.)

The same asymptotic relation is true if A consists of all prime numbers or of all prime
powers. I.e., (2) remains valid if A P, see [10], or if A {pa : p e P, et e N}, see [7].

If A {nr : neN} for some fixed r g N, r > 1, then it has been shown in [7], that

!><*{£}
d<x

1 f1 £U(d) as * oo. (3)
d<x

Here and throughout the paper f (a) denotes the Riemann zeta function which is defined

by £(«) := E^i V«" if a > 1 and by £(«) := lim,
ifO <ct < 1.

»Œ^cl/»*-*1"*^!-«))

It is the object of this paper to show that (3) remains valid if A {g(n) : n g N} where

g(n) is a polynomial of degree r with coefficients in No; see Theorem 1 in Section 2.

Motivated from these findings it is natural to investigate the asymptotic behaviour of the

more general weighted fractional part sum

£'«{sl as x oo,
d<x

where f(t) is an arithmetic function / : N —>- Rq or any function / : [1, oo) ->¦ ]Rj".

The most investigated case in literature is the case where f(t) ta; see, for example,
[4, 5, 6]. For instance it has been shown by Mercier [4] (in a bit more general setting) that
for a > — 1 we have

E'is}- Ì C«X a+1 0(* a+1/2

d<x

where

c„ :=
Ui

dr
'i '2+

This result shows that for ct > — 1 we have

1 £(« + 1)

a a+1
i-y

if a > —1, a ,t 0,

if a 0.

£^}~cavv as * CO,

(4)

(5)

(6)

d<x d<x

where

C« := (a + l)o*
1

ct

i-y
- Ç (ct +1) if ct > -1, a ^ 0,

if a 0.
(7)
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We will show in Theorem 2 in Section 2 that an asymptotic relation of the form (6) holds
if and only if a > — 1.

The paper is organised as follows: The principal results are stated in Section 2. In Section 3

we present some further examples and state an open problem. The proofs of the results

will be given in Section 4.

2 The results

First we provide an asymptotic formula for ^2d<x ^-A (d) {x/d} where A= {g(n) : n eN)
and where g(t) is a differentiable, increasing function such that g (N) Ç N.

Proposition 1 Let g : [1, oo) ->- [1, oo) be a differentiable, increasing function such that
g(N) ç N andlet A {g(n) : n g N}, then for anyx > g(l) we have

/X {jJCs^'COdf + OCyC*)),

a±x

where y (x) y g [1, x] is the unique solution ofy g~l (x/y).

If we restrict on polynomial functions g, then we can generalise the result of de la Vallée
Poussin (2) and the asymptotic formula (3).

Theorem 1 Assume that g (t) is a polynomial ofdegree r g N with coefficients in No- Let
A {g(n) : neN), then we have

J21A(d){^}-DrJ21A(d) aS x^°°>
d<x d<x

where
f i - y if r 1,

Dr 1 -ti-] tf r>l1 -r
Now we turn to the case where f(t) ta. We present a formula in the vein of Mercier's
result (4) also for a — 1. Although it is not the main object of this paper, our proof
technique also allows an improvement of the error term in (4) for ct > 0.

Proposition 2 For x > 1 we have:

(i) Ifa > -1, then Y,d<x da{x/d] caxa+1 + 0(ha(x)), where

ha(x)

xa if ct > 1,

x(logx)2,/3 if ct 1,

x(a+l)/2 y _ 1 < a < 1,

and where ca is as in (5).

(Ü) Ed<x d~l{x/d} \ log* + 0((log*)2/3).
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Theorem 2 We have X^<x da{x/d} ~ ca ^2la<x da as x —>- oo for some ca > 0 ifand

only ifct > — 1.

In case ofexistence ofthe asymptotic relation we have

1 + f(a+l) if a >-1, a^O,
al-y if ct o,

1/2 if ct -l.
From Proposition 2 (or from (4)) it follows immediately that if f(t) is a polynomial over
R. of degree deg(/) ct, then X^<x f(d){x/d) ~ ca Yld<x /(*0 wnere Q* is as in (5).

3 Further results and open problem
All of our results are of the form

£/(<*) {£}~ */£/(<*) asx^co (8)
d<x d<x

with some proportionality constant Cf > 0 depending only on /.
It is easy to show some further results in this vein as, for example:

(i) Hd<x(ìoèd){x/d} ~ (l-y) J2d<x lo%d âSX -+ °°;
(ii) ^2d<x h-(d){x/d) ~ (1 — y) ^2d<x A(d) sisx —>- oo, where A denotes the von

Mangoldt function A(d) := log p If d pv with p g P and v g N and 0 otherwise;

(ui) Y,d<x oo(d){x/d} ~ (l-y) Y,d<x °o(d) sisx -> oo, where a0(d) := J2m\d ^
(iv) ^2d<x (P(d){x/d} ~ (2 — t, (2)) ^2d<x v(d) as x —>- oo, where <p is Euler's totient

function.

Motivated by the given results and examples we state the following open problem:

Characterise the functions fit) for which an asymptotic equivalence of theform (8) holds.

It can be shown that a necessary condition for (8) to hold for some f(t) is that
YlT=i f(d) — °°- On the other hand this condition is not a sufficient one. For example

consider the function f(t) 1a(0 where A {bn : n g No} for some integer b > 2.

Then

LlOgfcXj

£/«{j}= E {£}
d<x k=0

0 if i bn,

n-- -(b-b-n+1) iîx=bn-l.b — 1

Hence an asymptotic relation of the form (8) does not exist although X^Li f(d) °°-
If f(t) grows very rapidly in the sense that for any s > 0 we have X!(i-£)x<d<x f(d) ~
T,d<x f(d) as x -* °°» fo™ one can Prove ^at Y,d<x f(d){x/d} o(J2d<x f(d))
as x —>- oo. Functions satisfying this growing condition are, for example, f(d) dì,

f(d) exp(d) or, more general, f(d) cd for some c > 1 and 8 > 0, and functions

/(0 # 1 for which f(x)f(y) < f(x + y) for all*, y e [1, oo).
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4 The proofs
Here we present the proofs of the results from Section 2. To this end we only require
elementary methods from analytic number theory and calculus. Using more sophisticated
methods it might be possible to improve the involved error terms considerably. However,
it is not the object of this paper to provide optimal error terms involved in the asymptotic
relations.

First of all note that

fid)
d<x d<x
E/wfsHE^f -£/*K<«) w

d<x n<x m<x/n

where / * g is the convolution of two arithmetic functions / and g and 1(d) 1 for
d gN.
In the following we will use Euler's summationformula (see, for example, [1] for a proof)
which states that if a function g(t) has a continuous derivative g'(t) on the interval [1, x],
then

J2s(d)= f* g(t)dt+ (X{t}g'(t)dt-g(x){x} + g(l). (11)
dTx Jl Jl

Lemma 1 Assume that the function g(t) has a continuous derivative g'(t) on the interval
[l,x], then for 1 < y < x we have

n<y

Proof. We have

zzQ=I! *Q*- LiiU^+^-^i
Cx i x i L^U1 fx/n r*l\y\
/ - \g'(t) dt Y n / g'(t) dt + LyJ / g'(t) dt

3x/y l S Jx/(n+v Jx/y

n<y

Integration by parts yields

£'©-"'(!)¦

Hence

>*=f«-„g) + ff(f,*.

{£}i'Wd,=iW-Wig)+jf,i(£)d,-j:.
>x/y - - - s j / « i n<y

and the result follows. D
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We can give the proof of Proposition 1.

Proof. From (9) for f(t) 1a(0 we obtain

d<x d^g-^ix) n<x
(12)

Now we use Dirichlet's hyperbola method (see, for example, [1]) and obtain for
1 < y <x,

-LyJEL'"1
n<y

n<ym<x/n

X

n E

E

m<x/y

X

n<x/y

;(m) y/.

m<g l(x/y)
:(m)

yg
-1 O max y, g

V V v.y

Choose y (x) y g [1, a:] to be the unique solution of y g-1 (x/y). (Such a y exists,
since g is continuous and increasing and hence also g_1, and since g_1(x/x) g_1 (1) <
x andg-1(x/l) > 1.) Then we obtain

^lA*l(n) ^g-1
n<x n<y

With Lemma 1 and with (11) we obtain

E
m<y

(m)
-y2+0(y).

Çl^l^/V^^
x

Kx/y)

ĝ(t) {t}{-} (0d/ + —r-Z{v}

Now

-r + oGO.

r_1(*/y)

f}(±) (t)dt j°°{t}(-\ (t)dt+0(£).

Using the substitution z g(t) sind integration by parts we also obtain

g~Hx/y) fa fx/y 1 dz fx/y 1

'1 m I >< -1, n- I
Z(S~1nz)dz

(0 JgO) zg'ig Hz)) ^(i) z

-^A/y) i r*» g-1®
x/y Ad) ^

dz.
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Furthermore, using the substitution z x/t we obtain

'l v^ A/y Z2

With these formulas we get

TlA*l(n)=x f' Z—P-dz- f f^Wg^y^df+g-1^)^ Ad) z2 A/3,UJ

+ x^°°{r}('-') (0d/+O(y). (13)

We consider x X^<?_1(x) 1/5 (^)- From (11) we obtain

E - -1« dr i-r1^) /1\' 1

*[ / "^ + / W - (0d/ +
.,o'(rf) \Ji 5(0 Jl \8/ 5(D *(*)

d<g~l(x) \

As above we have

¦»-i W dr g-1^) 1 r 5_1(zK
dz

'i 5(0 * 5(1)
'

Jg(i) z2

and

%}(-) (ß)dt j°°{t}(-\ (t)dt+0(l/x).

Therefore we obtain

•* --!(Z) f00 /lV *{*'
:(<0 JgQ.) z2 ii \g/ g (x)

X T, -7^ Ì~1W + x I ^T^dz+x/ jfj(^) tt)d/-^+0u).
(14)

Inserting (14) and (13) into (12) gives

E>w {5} £ {7} fe-1)'«^ + 00) f ß} (*-')'«*+ow

as desired. D

We give the proof of Theorem 1.

Proof. Assume that g(t) arf + ar-xtr~l + + ao with a; g No for 0 < i < r and

ar ^0. First we show two properties of (g-1)'.

(i) Since

v ^~l(0 r v nctlim TT- lim it 1 (15)
*-oo dlar)1!' y-00 (g(y)/ar)iA
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it follows that for every x > 0 we have

lim
t-oo g-l(t)

Now we have

(5_1y(*0 5'(5_1(0)

lim ° ' =x1/r. (16)

(g-ly(t) ~ g'(g-Hxt))
arr(g-1(t)y-1 + ar-i(r - lXg-W"2 + + ax

arr(g-1(xt)Y-1 + ar-i(r - l)(g-1(*0)r_2 + + fli
flrr + OCl/^CO)

i*,(£$y-i + ar.l(r - D(^)-j% + + aii%
With g(f) also g_1(0 tends to infinity as t increases. Therefore and with (16) it follows
that for every x > 0 we have

lim(5-^0=;c-1+1/r-
*-oo (g-iy(o

We remark that this property means that (g-1)' is regularly varying1,

(ii) There exists an absolute constant ci > 0 such that

(g-jy^/o
_

g'(g-\x))
(g-1)'^) g'(g-Hx/t))

arr(g-1(x))r-1 +... + Ö1

<ci
1 tHx) \

,-1 (x/t)
r-1

(x/t)/(x/(tar))i/r=*"»[ *:.™?'?''\ ¦ as)

From (15) it follows on the one hand that g_1 (x)/ (x/ar)1,/r < 2 for all x large enough and

on the other hand that there is a yo > 0 such that g~l (x/t)/(x/(tar))1^r > 1/2 whenever

x/t > yo. If 1 < x/t < yo we have

r_1C*/0
^ 5_1(y)
> mm r-r- > 0.

(A/(tar))1/'- - l<y<yo (y/flr)1/r

A continuous function /(f) is said to be regularly varying, if f(xt)/f(t) tends to some positive limit h(x)
as t —>¦ oo for every x > 0. It is known that in this case

a) A(x) xa for some finite a and that

b) the convergence is uniform on any interval [a, b] with 0 < a < b < oo.
The notion of regularly varying functions goes back to Karamata [2, 3] (see also [8] for more information).
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Combining these considerations with (18) it follows that there exists a c > 0 such that

(s_1)'(*/0 <ct1~1/r forali 1 <t <x.(g-'yw - - -
Now we follow Mercier and Nowak [6, Proof of (9)] to show that

ÇX
lim / h(x,t)t~1~1/rdt 0,

x^coj1

(19)

(20)

where/î(*,0 := t-1+1/r(g-1)'(x/t)/(g-1)'(x) - 1. Lets > 0. According to (19) we
have

h(x,t)t~x-xlr dt <c / rl-l'rdt t-'-^dt cr 1 1

a>lf ct + 1 alir 2
(21)

for a large enough and arbitrary x > a. Fix such an a and choosex so large that \h(x,t)\ <
f-1+1^rfi/2 for 1 < < a. This is possible according to (17) and since the convergence of
(g~1)'(x/t)/(g~1y(x)îorx —>- oo is uniform on the interval 1/a < 1/t < 1. Then we
have

h(x,t)t -l-l/r dt
£

< s- I r2dt < °-.- 2 A 2
(22)

Now (20) follows from (21) and (22).

Note that /* {x/t}(g~1)'(t) dt x j* {t}(g-l)'(x/t)t-2 dt. Hence (20) implies that

0 as x —h oo.—! / f-l(5_1y(0df- / {t}rl-^rdt(g-1)'(x)J1 UP Jl

Since /^{f }f ~1_1/r dr c_i+i/r (see (5)) it follows that

/X I?} (^"1)/(f)df ~ c-i+i/r*(5_1yW ~ C-i+i/.g-1^) as * -> 00, (23)

where C_i+i/r jC-i+i/r is defined as in (7).

Let y(x) y e [1, x]be the unique solution of y g-1 (x/y). Hence yr+1 < yg(y) a;

and therefore y (a;) < A:1^r+1\ Since g_1 (x) ~ (x/ar)l^r for a; -»¦ 00 it follows that

-4^ o(*-i/(r(r+i)))=*(i) as x -¥¦ 00. (24)

Since X^<x 1 a(^) L5 * C*0J the result follows from (23), (24) and Proposition 1. D

For the proof of Proposition 2 we need the following lemma.

Lemma 2 Iff has a continuous derivative f on the interval [l,x], then

d<.x
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Proof From Euler's summation formula (11) we obtain

v^ f(d) fx f(t) fx f'(t)t - f(t) f(x)E^r=/ zydf+/ ur \2 JKJdt-^{x} + f(i)f-i d Ji t Ji t2 x
d<x

and hence, using (10), we obtain

*X fl

d<x
"x/n fx/n

f(t)t- f(t) ^ f(x)
fw t2 dt-±^{x} + f(i)E/<H(f^+/

/ fx/n fx/n /X\ (XIE(/ /«dI + / w/'od.-/(-){-} + /(d

Jl r 771J l

n<x
xjn

X
/, t.

n<x

x f{t)f(f)t-mét- J2 fX/"{t)f'(t)ât (25)
Jl l 77ÌJ1

E/©{f} + '(1)(*>-'«<*>•

l-X/ZFor F(z) := fi f(t) dt we have F'(z) —xjzfixjz) and hence with (11) we obtain

"x/n
Y f f(t)dt= f F(z)dz+ f {z}F'(z)dz-F
771 Jl Jl Jl

-F(x){x} + F(l)

x px/z fX x /x\ Cx

j f(t)dtdz-j W-2f[-)dz + j /(0^
^dt-xT^^

i t ji,/ -J-ät-x ^f{7)ät.
Therefore we have

"x/nfx /(0 x-^ fx/n fx (0 /x-)dt. (26)

Similarly, for G(z) := f?/z{t}f'(t)at we have G'(z) -x/z2{x/z)f(x/z) and hence
with (11) it follows as above that

px/h px /*x

Y / {t}f(t)dt= / G(z)dz+ / {z}G'(z)dt-G(x){x} + G(l)
nTxJl Jl Jl

fx f(t) fx {t} iXi /X\xJ villa-,J ^{7}/(7)d..
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Therefore we have

/'(Of - /(0 ^ v- fx/nxr{t]mi_mdt_i:y {t]fmtJl l 77ÌJ1n<x

r>—jtsìti^t)*--* x-±f(t)dî+x\ LL\-\f(-)àt. (27)

Inserting (26) and (27) into (25) yields the desired result. D

Furthermore, we will need some elementary and well-known asymptotic formulas whose

proof can be found, for example, in [1]. We collect them in the following lemma.

Lemma 3 For x > 1 we have:

(i) En<x V*S *1-7(1 - s) + £(0 + 0(*-5)/or* > 0, j 5É 1.

(n) E»<x »* âr + 0(*a)/" « > o.

(iii) En<x !/» lo%x + y + Ö(l/*).

Let aa (n) := Edin ^" ^e ^16 sum °f ^-^1 Powers °f the divisors of n. Note that aa(n)

/ * l(n) where /(d) da. We have the following asymptotic relations.

Lemma 4 For x > lwe have:

(O E*<* °«(») ienu*"+1 + ö^/or a > 1.

(n) E«<*«ne») ^*2 + o(*(iog*)2/3).

(m) En<x °«(») iënu*ûr+1 +1(i - <*)x + ° (^(a+1)/2)/or 0 < a < 1.

(iv) En<x ffo(w) x log* + (2y - l)x + 0(*/x).

The results from (i) and (iv) are well-known; see, for example, [1]. A proof for (ii) can be

found in [11]. The result from (iii) is an improvement of [1, Theorem 3.5] for 0 < ct < 1.

We found the result nowhere in literature but it can easily be shown by using Dirichlet's
hyperbola method.

We give the proof of Proposition 2.

Proof. For ct > 0 we obtain from (9) that

E^HE'-'-E*«
d<x d<x

and the result follows from Lemma 3 and 4.
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For a < 0 it follows from Lemma 2 that

E^H^f^-f^^E^J + ^-
d<x d<x

We have

t2-a Jl tX-a L-, Jk t2-a Lxj

1 K(l-ct) 1o'
a 1 — a yx1 a

For the evaluation of /* {t}t~2~a dt we consider two cases:

If ct — 1, then we have

— dt x — 1 — I — dtit Ji t
x-X

x- 5^fclog(l+ 1/^+0(1)

£± + 0(l) ±log* + 0(l),2-^k 2
k<x

where we used that log(1 -f y) y — ^y2 + 0(y3). Hence

E5G} f^-*n*4E'G}"<i)
d<x d<x

ilog*+0((log*)2/3).

If —1 < a < 0, then it follows in the same way as above that

<«>d,= i_«!±üO + 0/ i

D

fl f2+o; a 1 + a \*1+or

and hence

d<x x 7

We give the proof of Theorem 2.

Proof. For a > — 1 the result follows from Proposition 2 and for a < — 1 the result follows
from the fact that an asymptotic relation of the form (8) can only hold true for some f(t)
if ££i/00 oo-

" "

D
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