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A generalisation of a result of de la Vallée Poussin

Friedrich Pillichshammer”

Friedrich Pillichshammer promovierte im Jahr 1999 im Fach Mathematik an der Uni-
versitidt Salzburg. Seit 2003 ist er auBerordentlicher Professor an der Johannes Kepler
Universitdt in Linz.

1 Introduction

fA={an+b :n<cNjwithe € Nand0 < b < g, then a century-old result from de la
Vallée Poussin [ 10] states that for all x > 1 we have

Y u@{zl=2a-n+owmn. (1)

d<x

where y is Euler’s constant, y — limy%oo(zngy 1/n — log y), where 14 (¥) is the char-
acteristic function of theset A € N, i.e., 14(f) = 1if f € A and O otherwise, {f} —f — [ ]
and } ;. means summation over all integers d such that 1 < & < x. A proof of this result

*The author is supported by the Austrian Science Foundation (FWE), Project S9609, that is part of the Aus-
trian National Research Network “Analytic Combinatorics and Probabilistic Number Theory™.

Die BEuler-Mascheroni Konstante y ist definiert als der Grenzwert der Differenz zwi-
schen der harmonischen Partialsumme >, .. 1/7 und logx, wenn x gegen unendlich
strebt. Wie e und s tritt y in verschiedensten Teilgebieten der Mathematik auf. Im
Jahr 1898 veroffentlichte Charles de la Vallée Poussin einen Artikel in dem er v.a. fol-
gendes zeigte: Dividiert man eine natiirliche Zahl # der Reihe nach durch alle Zahlen
d = 1,...,n dann strebt flir beliebig wachsendes n das Mittel der Bruchteile {n/d}
aller entstehenden Briiche gegen 1 — y. Eine analoge Aussage ist richtig, wenn man
lediglich durch alle Primzahlen zwischen 1 und » dividiert. In diesem Beitrag befasst
sich der Autor mit Verallgemeinerungen dieser Resultate, indem er einerseits den Be-
reich der Divisoren 4 einschrinkt und andererseits die Bruchteile durch eine Funktion
f (d) gewichtet. Dabei lassen sich in vielen Fillen analoge Formeln zum Resultat von
de la Vallée Poussin angeben.
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can also be found in [7]. In [9] the error term O (4/x) in (1) is improved to O Gl lopay
We remark that for A — N the result (1) is equivalent to Dirichlet’s divisor problem. From
(1) it follows that

ZlA(d){g}wa—y)ZlA(d) as X —> oo, 2)
d=<x d=x
(Asusual,a(x) ~ b(x)asx — ocomeansthat a(x)/b(x) — 1l asx — o0.)

'The same asymptotic relation is true if A consists of all prime numbers or of all prime
powers. Le., (2) remains valid if A = [P, see [10], orif 4 = {p® : p € P,a € N}, see [7].

IfA=1{n" :nclN forsomefixedr € N, r > 1, then it has been shown in [7], that

ZlA(af){%}N(lir—g(%))Zu(a’) o 1% 3 B @3)

d=x d=<x

Here and throughout the paper Z(«) denotes the Riemann zefa function which is defined
by £{a) =3 oo 1/a% ifa > L and by £(a) = limyoo(d} ., /0% — x17%/(1 — @)
10 <o < 1. -

It is the object of this paper to show that (3) remains valid if A = {g(®) : n € N} where
g(n) is a polynomial of degree r with coefficients in No; see Theorem 1 in Section 2.

Motivated from these findings it is natural to investigate the asymptotic behaviour of the
more general weighted fractional part sum

Zf(d){g} as x — oo,

d=x

where f(¢) is an arithmetic function f : N — Rg or any function f : [1, o0) — Rar :

The most investigated case in literature is the case where f(f) — *; see, for example,
[4, 5, 6]. For instance it has been shown by Mercier [4] (in a bit more general setting) that
for « > —1 we have

Yoa G = ettt 4 0, @
d=x
where i ¢
(1) 1 s+ v 1, wzo,
fi 1= o df =1 « o +1 (5)
! 1 s if «=0.

This result shows that for & > —1 we have
a[? —~ o
3 d {E} Co Y d* as x — o0, 6)
d<x g&<x
where

|
Y S ol 1S B ol w2

1—y if a=~0.

Cpi=(c + Dy = (7)
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We will show in Theorem 2 in Section 2 that an asymptotic relation of the form (6) holds
if and only if & > —1.

'The paper is organised as follows: The principal results are stated in Section 2. In Section 3
we present some further examples and state an open problem. The proofs of the results
will be given in Section 4.

2 The results

First we provide an asymptotic formula for dex la(d)ix/d} where A = {g(n) : n € N}
and where g(¢) is a differentiable, increasing function such that g(lN) € N.

Proposition 1 Let g : [1, 00) — [1, 00) be a differentiable, increasing function such that
gy C Nandlet A =1{g(n) : n <N}, then for anyx > g(1) we have

> @z} = fl =l wa+ ovw,

where y(x) = y < [1, x] is the unique solution of y = g~ (x/v).

If we restrict on polynomial functions g, then we can generalise the result of de la Vallée
Poussin (2) and the asymptotic formula (3).

Theorem 1 Assume that g(t) is a polynomial of degree r < N with coefficients in No. Let
A= {gmn) : nelN}, then we have

d;lA(d){Z} ~ Drd;IA(d) as x — oo,

where
1—vy if r=1,

br= ! g(l) if r> 1.

1—vr r

Now we turn to the case where f(f) — f“. We present a formula in the vein of Mercier’s
result (4) also for @ = —1. Although it is not the main object of this paper, our proof
technique also allows an improvement of the error term in (4) for o = 0.

Proposition 2 for x > 1 we have:
1) Ifa > —1, then Zdﬁx d%{x/d} = cax®t 4+ O(hy(x), where

x® if a=>1,
he(x) =1 x(logx)*? if a=1,
sler Ll if —1l<a<l,

and where ¢y is as in (9).
(i) Yy d Hx/d) = Llogx + O((ogx)*3).
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Theorem 2 We have } ;.. d*{x/d} ~ Cy ) 4., d% as x — oo for some ¢y > O if and
onlyifa = —1.
In case of existence of the asympiolic relalion we have

1

I4——z@+1) if @>—1, a £0,
o

Ce =y 1y if a=0,

1/2 if o=-—1.

From Proposition 2 (or from (4)) it follows immediately that if f(f) is a polynomial over
R of degree deg(f) = «, then } ;. f(@){x/d} ~ ca ) 4, (@) wWhere ¢y is as in (5).

3 Further results and open problem

All of our results are of the form

X
Zf(d){a}wcfo(d) 88 X — 00 (8)
d=x d<x
with some proportionality constant ¢ > 0 depending only on f.
It is easy to show some further results in this vein as, for example:
@) > gexlogd)x/d} ~ (1 —y) ) 4o, logd asx — o0;
(i) D g ADx/d} ~ (1 —y) 3 4 A(d) asx — oo, where A denotes the von
Mangoldt function A(d) :=log pifd = p¥ with p € Pand v € N and 0 otherwise;
(i) Y gy 00@ix/d} ~ (1 —y) Y 4oy 00(d) asx — oo, where og(d) := me 1;
(iv) 2 ger@(ix/d} ~ 2 — 220> 4., 9(d) asx — oo, where ¢ is Euler’s totient
function. -

Motivated by the given results and examples we state the following open problem:
Characterise the functions [ (f) for which an asymptolic equivalence of the form (8) holds.

It can be shown that a necessary condition for (8) to hold for some f(f) is that
Z;’le J(d) = oo. On the other hand this condition is not a sufficient one. For exam-
ple consider the function f{f) = 14(f) where 4 = (6" : n < Np} for some integer & = 2.
Then

i [logy x | o 0 =
ST I SUEATN A
d<x d =0 b i — ﬁ(b—b n ) if x :bﬂ_ 1.

Hence an asymptotic relation of the form (8) does not exist although > 27, f(d) = oo.

If f(z) grows very rapidly in the sense that for any & > O we have 3 _, 4., f (@) ~

> d<x S (@) as x — oo, then one can prove that } ;. f(d){x/d} = o} ;.. [(d))
as x — oo. Functions satisfying this growing condition are, for example, f(d) = 4!,

f(d) = exp(d) or, more general, f(d) = c@ for some ¢ > 1 and§ > 0, and functions
J (&) == 1 forwhich f(x)f(y) < f(x + y)forallx, y € [1, o0).
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4 The proofs

Here we present the proofs of the results from Section 2. To this end we only require
elementary methods from analytic number theory and calculus. Using more sophisticated
methods it might be possible to improve the involved error terms considerably. However,
it is not the object of this paper to provide optimal error terms involved in the asymptotic
relations.

First of all note that
Yr@olfl= Y% e ©)
d<x d<x n=<x
=% f() - > fm, (10)
d=x =X m=x/n

where f * g is the convolution of two arithmetic functions f and g and 1(¢) = 1 for
d e N,

In the following we will use Euler’s summation formula (see, for example, [1] for a proof)
which states that if a function g(f) has a continuous derivative g’ (f) on the interval [1, x],
then

3 g(@) = ] g0di+ [ g ®d - o)) + g (an

d<x

Lemma 1 Assume that the function g(t) has a continuous derivative g'(t) on the interval
[1,x], then for 1 < y < x we have

Se()=f (-

n<y /¥y

X

Elewa+gm— g (f) |
y

Proof. We have

-1

]; L Jg(r)dr Z ]}(Wl)g(z)dwm /xztng’(:)d;
=>a(3)- e (3):

n<y
Integration by parts yields

[ tews—sw-ye(D)+ [Te() o

5

]: [Z}emar =g -y (%) + ffg(?) -y g(>)

/¥ n<y

Hence

and the result follows. Il
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We can give the proof of Proposition 1.
Proof. From (9) for f(f) = 14(f) we obtain

ZIA(dJ{g}x 3 g() — 3 Lar L. (12)

d=x d<g'(x) i

Now we use Dirichlet’s hyperbola method (see, for example, [1]) and obtain for
l =y=x,

Nt =3 Y um+ Y lA(m)[%J—LyJ 3 La@w

n<x nEym=xfn m=x/y n=x/y
1 {X X X
:Qg 1(£)J+m<§mlgch L”L (y)J
- —_1{* X -1 —1{*
L () Y o () om0 (5)))
= m=gtx/y)

Choose y(x) = y < [1, x] to be the unique solution of y = ¢! (x/y). (Such a y exists,
since g is continuous and increasing and hence also g~1, and since g 71 (x/x) = g7 1(1) <
x and g7'(x/1) > 1.) Then we obtain

St =Yg (3)+ ﬁ—y + 0.

n<x n=y m=<y

With Lemma 1 and with (11) we obtain

Y 14 10n) = ] G) dr—]

Pheyma+ g7 - pe™ (x)
n=x x/y f

g gy g Hx/y) 1y 1 y
sl = df 4+ — _ 2
o (]1 ot (g) Ty x{y})

—y 0.

/lg_l(x/y){z} (é)f(r) dr = floo{:} (é)x (O di ~ 0 (%)

Using the substitution z = g(#) and integration by parts we also obtain

gy g x/y 1 dz x/y 1
/ Py _/ ST P _f (g (dz
1 gt Jey z 8@ Sy 2

-1 x/y ,—1

g x/y) 1 f g =)

— dz
7y ey 2

X

Now
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Furthermore, using the substitution 7z = x/f we obtain

¥ x ,—1
] s () dI:x/ & Qg
1 . xfy L

With these formulas we get

Zlel(n):x]x 8_1(Z)dz—]x;{;i}(g—l)f(r)dr+g—1(x)

n<x g z?
o0 1 !
—I—JC/1 {t} (g) (t)ydi + O(y). (13)

We consider x deg—l(x) 1/g(d). From (11) we obtain
LI fg‘“’” dr /g”% (1) mar L&
L@ T s g g)  gt))’

Asg above we have

27 () dr —Ly 1 x -1 z
[ e 1 s,
1 40 X g Jey z

g7 ) 4 0o !
] {r}(l) (r)dr:f {t}(l) (Hyde + O(1/x).
1 8 1 &

Therefore we obtain

i /x '@ /“ (1) g B
xd;(x)g(d)g bidw | T wtal W) B ey HO

and

(14)
Inserting (14) and (13) into (12) gives

Suof)-

X

5 Flewasom = f1 e ma+ o

as desired. L]
We give the proof of Theorem 1.
Proof Assumethat g(t) = a.t' +a, ("1 + ... +agwitha; e Nofor0 <i < r and
ar # 0. First we show two properties of (g71),
(i) Since

gm _ y

S U e GO 1
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it follows that for every x = O we have

g (xt) _ L Ur

A 16)
Now we have

@ @D _ e
(gY@ g g )

B arr(@ YO T dar - DO P4+t

T ar(g e a1 — D@D 2+ ... +a

_ ar + 0(1/g7' (1)

g + 4~ DEREY g + o+ ey

With g(¢) also g7 () tends to infinity as ¢ increases. Therefore and with (16) it follows
that for every x > 0 we have

=1~/ f
im M — Tl (17)
t=—o0 (g=1Y(1)
We remark that this property means that (g~1)’ is regularly varying!.

(ii) There exists an absolute constant ¢; > 0 such that

(¢ D@/n gt

(g~WYx)  ggtx/6)
oar@l)y T 4+t
T a0y .t a

1 r—1
E Cl g_li(x)
g /)

-1 1/r =
e SRR g x)/(x/ar)
- (3_1 x/ 0/ &/ Ga )V ' =

From (15) it follows on the one hand that g 7! (x)/ (x /a,)1/" < 2 for all x large enough and
on the other hand that there is a yo > O such that g1 (x /£)/(x/(ta, )" = 1/2 whenever
x/f=yo. I[1 < x/f =< yg we have

G O
(x/(Fa,NV" ~ 1<y<yq (y/ar)lfr

1 A continuous function F(?) is said to be regularly varving, if f(xt)/f(f) tends to some positive limit ;(x)
as t =+ coforevery x = 0. It is known that in this case

a) h{x) = x® for some finite v and that

b) the convergence is uniform on any interval [¢, #] with0 < g < & < co.
The notion of regularly varying functions goes back to Karamata [2, 3] (see also [8] for more information).
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Combining these considerations with (18) it follows that there exists a ¢ > 0 such that

—1~/ f
(g _)1 EX/ ) < iU
g7 ) x)
Now we follow Mercier and Nowak [6, Proof of (9)] to show that

forall 1 < < x,. (19)

X

lim | A, O Y dr =0, (20)

X— 00 1

where A(x, £) = 1TV (e W (x/0/ (g7 (x) — 1. Lete > 0. According to (19) we
have

X
] Rix, Hr 171 g
el

X X
—1-1/r —1-1/r er 1 1 €
<c I df ! df = —
- ]a +]a _a1/r+o:+1a1/”<2

(21
for @ large enough and arbitrary x > a. Fix such an @ and choose x so large that |A(x, 1)| <
t~ 11/ g/2 for 1 = t < a. This is possible according to (17) and since the convergence of
(g_l)’(x/r)/(g_l)’(x) for x — oo is uniform on the interval 1/¢ < 1/f < 1. Then we

have .
] Rix, 17V qs
1

Now (20) follows from (21) and (22).
Note that [} {x/1}(g 71y (1) df = x f7 {1} (g1 (x /)¢ ~% di. Hence (20) implies that

W/lx {;} (g7 () dr — floo{t}r_l—lff’ A

Since f{e} 1Y dr = ¢y 41y (see (5)) it follows that

<S/ar_2da‘ ¢ (22)

— 0 as x — oo.

]1 {)ri} @O dt ~ coq1px (@ )~ Copgryrg X)) a8 x 00, (23)

where C_y41/r = %C_H_]/r is defined as in (7).
Let y(x) = y  [1, x] be the unique solution of y = g1 (x/y). Hence y't! < yg(y) =x
and therefore y(x) < x0T Since gfl(x) ~ (x/a )" for x — oo it follows that
y(x)
g71(x)
Since Zdﬁx lald) = Lg_l (x)] the result follows from (23), (24) and Proposition 1. [

For the proof of Proposition 2 we need the following lemma.

= O Vet = p(1)  as x — oo. (24)

Lemma 2 [f [ has a confinuous derivative [’ on the inferval [1, x], then

Lrafgl e [ R @as [ mroass [a ) ()

Y rC) L+ rom - reow.
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Proof. From Euler’s summation formula (11) we obtain

f@ o, O f®)
Y= [ e [0 e Lm0

d<x

and hence, using (10), we obtain

X\ _ F) 0= 1) f &)
d;f(d){g}_x(l i+ /1{:} T dr = {x}—|—f(1))

—Z(f f(r)dr+] ”{}f”a)dr—f(%){;i}wcn)

n=Xx

&dt i o / £ dr
Z f () f1 () dr (25)

“f f"(r)r—f(r)
1 n<x

+37(5) {g} + FDE) - FEx)

n<x

For F(z) := x/z f(t)dt wehave F/(z) = —x /2 f(x/z) and hence with (11) we obtain

Zf fde = flx F(z)dz + flx{z}F’(z) dz — F){x} + F(1)

:fxfx”f(g)dmz—fx{z}if(f) dz+/1xf(r)df
- 1&d_ flx sz)

Therefore we have

f&dx Zf f(;)d:_xfx%fG)dz. (26)

n=x

Similarly, for G(z) = lx/z{r}f"(r) df we have G'(z) = —x/z%{x/z) f'(x/z) and hence
with (11) it follows as above that

Zf nrwa = [ oot [ Ee@d-ewin + 6

A R S T R
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Therefore we have

¥ormr— fo Bt
x/l {I}x—2dt_zjl [V () dr

n<x
B * {1} T pxy L gx
_—le I—zf(r)dﬂrle I—z{?}f (;) dt. 27)
Inserting (26) and (27) into (25) yields the desired result. L]

Furthermore, we will need some elementary and well-known asymptotic formulas whose
proof can be found, for example, in [1]. We collect them in the following lemma.

Lemma 3 Forx = 1 we have:

D Yy 1/8° = 0 - L 4 OGS fors » 084 L

xcc-f—l

(i) D yex ¥ =23 + 0% fora 2 0.
(iii) anx I/n=logx +y + O(1/x).

Letoy(n) = de d” be the sum of w-th powers of the divisors of #. Note that o, (1) =
f # 1(n) where f(d) = d*. We have the following asymptotic relations.

Lemma 4 Forx > 1 we have:

(i) anx g (1) = ggf—:f)x““ + Ox%) fora > 1.

(i) ¥pep 01 (0) = £2x2 4 O (x(logx)?/3),

(i) 3y 00 () = £ x4 (1 —a)x + 0 (x@TD2) for 0 < < 1.

(iv) anx oo(n) = xlogx + 2y — Dx + O(/x).
The results from (i) and (iv) are well-known; see, for example, [1]. A proof for (ii) can be
foundin [11]. The result from (iii) is an improvement of [1, Theorem 3.5] for 0 < « < 1.

We found the result nowhere in literature but it can easily be shown by using Dirichlet’s
hyperbola method.

We give the proof of Proposition 2.
Proof. For ¢ = 0 we obtain from (9) that

Zd“{%} — x> @ =Y oum

d=x d=x n=x

and the result follows from Lemma 3 and 4.
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For ¢ < O it follows from Lemma 2 that

dgxd“{g}:xlﬂfj ,;ii}a dr—x]l —dr—l—x Y a “{ }+0(1)

d=x

We have

x {1} X dr ¥ k+1 X dr
/ 2—w dr = ] Z / 2—or
1 ! lx] ¢

1_;(1—a)+0( 1 )
o 1 —« xl-«

For the evaluation of f lx [F1 27 df we consider two cases:
¢ If o = —1, then we have

[Baos [
|t {

1
Bl dp X dt
—r 1o f %
Z k] £
:x—Zklog(l—l—l/k)—l—O(l)

E<x

1 1 1
= EZE + 0 = E1ogx+ o(l),

kF<x

where we used thatlog(1 + v) = v — %yz + O(y*). Hence

Z;{;}:/lx{i}dsxflxi’;}dwizcz{;ho(l)

d<x d<x

1
=3 logx + O((logx)*?).

o [f —1 < & < 0, then it follows in the same way as above that

X
{t} 1 (14w 1
dft=——1-—" 10
L [2+a o 1+(l’ + xl4e

Zda‘ { } iy (1 Ll + 1)) & O(x(a‘Jrl)/Z)_

o o o +1

and hence

We give the proof of Theorem 2.

Proof. For o = —1 the result follows from Proposition 2 and for @ < —1 the result follows
from the fact that an asymptotic relation of the form (8) can only hold true for some f(¢)

if Y g fld) =0

0
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