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1 Introduction

For a domain G in the plane with smooth boundary C, the Gauss-Bonnetformula or "Umlauf

satz" fcic(s)ds 2ttx (G) relates the curvature k. (s) of the boundary curve C with
the Euler characteristic /of the region G. For a simply connected smooth region G for
which the boundary is a simple closed curve, the total boundary curvature is 2tt. Hopfs
"Umlaufsatz" relates a differential geometric quantity, the boundary curvature, with a

topological invariant, the Euler characteristic. In differential geometry, curvature needs a

differentiable structure, while Euler characteristic does not. It is the transcending property
between different mathematical branches which makes Gauss-Bonnet type results
interesting. The discrete version of the classical Hopf "Umlaufsatz" [4] is of combinatorial
nature; curvature is an integer. The result applies to some 2-dimensional graphs which are

Es sei G ein Gebiet in der Ebene mit glattem Rand C. Dann lässt sich die Krümmung
ic(p) für einen Punkt p g C wie folgt berechnen: Bezeichnet \Sr(p)\ die Länge
des Kreisbogens, der aus Punkten in G mit Abstand r zu p besteht, so gilt k. (p)
limr^o(21£r(/?)| — \S2r(p)\)/(2r2). Diese Formel motiviert es, für Graphen die

Krümmung K(p) durch die Formel 2\S\(p)\ — \Sz(p)\ zu definieren, wo |£i(/0l und
1^2 (/01 die Kreise mit Radius 1 und 2 im Graphen sind. In der vorliegenden Arbeit
untersucht der Autor diese Krümmung für Graphen G, die Teil eines flachen hexago-
nalen Gitters X sind. Im klassischen Fall sagt ein Umlaufsatz von Heinz Hopf, dass

die totale Randkrümmung fcic(p)/Qji) mit der Euler-Charakteristik des Gebietes
übereinstimmt. Hier wird gezeigt, dass für eine Klasse von Graphen G in X die Summe
der Randkrümmungen genau zwölf mal die Euler-Charakteristik von G ist.
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part of a flat 2-dimensional background graph X, where dimensionality is defined inductively.

We need some assumptions on G to equate the total boundary curvature with the
Euler characteristic.

We use the curvature K(p) 21Si (/01 — \S2(p)\, where \Sr(p)\ is the arc length of the

sphere Sr(p) sit the point p. The sphere Sr(p) is a subgraph of G containing as vertices

points of geodesic distance r and edges consisting of pairs (q, q') in Sr (p) such that q and

q' have distance 1. Gauss-Bonnet type results are more subtle for this curvature K than
for the first order curvature Ki (p) 6 — |Si (p)\ in the interior or Ki(p) 3 — \Si(p)\ at
the boundary. While Ylp^G ^i (P^ ^X (G) holds for any 2-dimensional graph G with 1-

dimensional boundary, the sum ^pgq K(p) of all curvatures K (p) 2\Si(p)\ — \S2(p)\
is only equal to 30/ (G), if more smoothness is present for the 2-dimensional graph G. In
this article, we see this subtlety to appear in a simpler "Umlaufsatz" situation, where the

graph is a subgraph of a fixed flat background lattice.

The main result in this paper is the formula ^2„^g K(p) 12/(G) which holds for
discrete domains G and for the second order curvature K. To do so, we need to specify
precisely what a smooth domain is. The background lattice X plays the role of the 2-
dimensional plane. Its vertices are the set of points {k(l, 0) + /(1, \f3)j2 \ k, l e Z}. The
edges consist of pairs for which the Euclidean distance is 1. In the infinite graph X, every
point p has six neighbors. Together with edges formed by neighboring vertices, these

points form the unit sphere Si (p), si subgraph of X. Similarly, any sphere S2(p) of radius
2 in this discrete plane has length 1^21 12. The curvature K 2|Si| — 1^21 is zero at

every point of the background lattice X.

2 Topology of the planar triangular lattice

A subset G of the triangular lattice X defines a graph (V, E), where V c X is the set of
vertices in G and where E is a subset of edges (p, q) in X, pairs in V having distance 1

within X. We often equate G with the vertex set V because V defines the graph G for
the situations we are interested in. We start by defining a dimension for graphs. To our
best knowledge, this notion has not yet have appeared, even though in the graph theory
literature, several notions of dimension exist. The inductive definition of dimension is
rather general and does not require the graph to be a subset of X.

Definition. A sphere Sr (p) is a subgraph G of X whose vertices are the set of points in
G which have geodesic distance r to p normalized so that adjacent points have distance
1 within G. The edges of the sphere Sr sire sill pairs (p, q) with p,q g Sr(p) for which
(p, q) is in E. A disc Br(p) in the graph G is the set of points q which have distance

d(q, p) < r in G. A vertex p of a graph G (V, E) is called 0-dimensional, if p is
not connected to any other vertex. A subgraph G of X is called 0-dimensional, if every
point p e G is 0-dimensional in G. Such a graph has no edges. A point p of V is called
1-dimensional, if -Si (p) is 0-dimensional, where -Si (p) is the unit sphere of p within G. A
finite subset G of X is called 1-dimensional, if any of the points in G is 1-dimensional. A
point p of G is called 2-dimensional, if -Si (p) is a 1-dimensional graph. A subset G of X
is called 2-dimensional, if every vertex p of G is 2-dimensional.
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Fig. 1 The numbers near each vertex indicate the curvature of the point. At

each of a few chosen points, the spheres of radius 1 and 2 in G are
drawn. Adding up the curvatures over the boundary gives 12. If a

point has as a neighborhood a disc of radius 2, the curvature is zero.

Remarks.

a) To illustrate this, we look at the Platonic solids. The cube and the dodecahedron are
1-dimensional. The isocahedron and octahedron are 2-dimensional. The tetrahedron
is 3-dimensional. The cube and dodecahedron become 2-dimensional after a stellati

on of faces. The tetrahedron becomes 2-dimensional after truncating comers and

then stellating the hexagonal faces.

b) Dimension could be generalized by defining inductively si fractional dimension by
adding 1 to the average fractional dimensions of points in Si (p).

Definition. A point p in G is called an interior point of G, if the sphere -Si (p) in the

graph G is the same as the sphere -Si (p) in the background graph X. In other words, for
an interior point, the sphere -Si (p) is a connected 1-dimensional graph without boundary,
a closed circle. A point p of a 2-dimensional graph G is a boundary point of G, if it is not
an interior point in G but has a neighbor in G which is an interior point. For a boundary
point, the sphere -Si (p) is a union of 1-dimensional arcs. The boundary of G is the set of
boundary points of G. The interior of G is the set of interior points of G.

Remarks.

a) The set of subsets {A c int(G)} U {G} defines a topology on G such that the interior
of G is open and the boundary S G is closed.
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b) The interior of a 2-dimensional graph G is not necessarily 2-dimensional. The disc
of radius 1 in X for example has a single interior point so that the interior is 0-
dimensional.

c) 2-dimensionality of a graph has no relation with being planar. The tetrahedral graph
for example is 3-dimensional in our sense but planar. A triangularization of a torus
like seen in Fig. 16 is 2-dimensional but not planar.

d) Topologically, the triangular graph X is the only simply connected 2-dimensional
flat graph without boundary.

Definition. A subset G of X is a domain, if the following five conditions are satisfied:

(i) G is a 2-dimensional subgraph of X.

(ii) Every point of G is either an interior point or a boundary point,

(iii) The set of boundary points in G is a 1-dimensional graph.

(iv) If two vertices p, q in G have distance 1 in X, then (p, q) is an edge in G.

(v) Two interior points in G with a common boundary point have distance 1 or are both
adjacent to a third interior point.

A domain G is called & finite domain, if it is a finite graph which is a domain. G is called
a smooth domain, if G and its complement are both domains.

The assumptions (i), (ii), (iii) are natural. Condition (iv) assures that no unnatural fissures

can exist. Condition (v) assures that the connectivity topology of the domain and the

connectivity topology of the interior set are the same.

Remarks.

a) We could require the interior of a domain to be 2-dimensional but prefer not to do
that because the proof of Theorem 2 simplifies, if we do not make this assumption.
The additional requirement would lift a difficulty on a different level. For us it will
be important to look at the dimension of points with respect to the interior of G.

b) The conditions (i)-(v) have analogue statements in the continuous case, where they
are necessary for the classical Gauss-Bonnet formula to be true: we cannot have
hairs sticking out of the domain for example. The closure of the complement of a

domain is a domain too and we cannot just leave out part of the boundary. Also in the
continuous case, it should not happen that parts of domains are tangent to each other.
We also cannot allow the boundary to be 2-dimensional, like for the Mandelbrot set.

c) For a smooth domain, we can look at the interior H' int(G') of the complement
G' of int(G). Then, the boundaries satisfy 9 G dG'. The three sets int(G'), int(G),
and BG dG' partition the graph X.

The following lemma allows us to deal efficiently with eligible regions and eliminates

many subsets which are not regions. It says that the set of interior points determines the

region as well as its boundary.

Lemma 1. Let G be a domain and H int(G) be the set of interior points ofG. Then
G ILC# Bi(q)> where Bi(q) is the disc of radius 1 in X. Especially, the interior set
H int(G) determines the domain G completely.
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Fig. 2 Examples of domains. In each of the three pictures, the integer in the upper right corner is the
total boundary curvature of the domain
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Fig 3 Examples of graphs which are not domains To the left, a set with 2 1 and 0 dimensional points
It violates condition (i). The second example is a set with both 2- and 1-dimensional points. The
third example is a 2-dimensional set with no interior points and no boundary points. It violates
condition (ii).

Proof If a point p is in G, then it is either an interior point or a point adjacent to an
interior point. Therefore, G c l_Le# Bi(q). On the other hand, if p is in [_Le# Bi (q),
then p g Bi(q) for some q. Because q e G and Si(q) c G by definition of being an
interior pomt, we have p g G. n

3 Curvature
Definition. Let | Sr (p) | denote the number of edges in the sphere Sr (p). We call it the arc
length of the sphere Sr.

Note that | -Si | is not necessarily the number of vertices in -Si. Similarly, | £21 is the number
of edges in £2 which is not always equal to the number of vertices in S2¦

Definition. The curvature of a boundary vertex p in a region G is defined as

K(p) 2\Si(p)\-\S2(p)\.

The curvature of a finite domain G is the sum of the curvatures over the boundary.

16 22 22

2

1

Fig. 4 Examples of graphs which are not smooth domains. The first violates (v), the second violates (111),

the third has a complement which is not a smooth domain
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Fig. 5 More graphs which are not smooth domains. The curvature of the first was computed while
assuming the nearest neighbor connection to be an edge as required by condition (iv). In all cases
the complement is not a region.

24 20

Fig. 6 The first picture is a smooth domain. It is not connected. The two parts Si, 52 of the regions are
at first separated enough to get curvature 24. In the second case, the sphere S2 feels part of the

other region Si and the total curvature of the boundary is not a multiple of 12.

Remarks.

a) This definition is motivated by differential geometry where the curvature in the inte¬

rior of a smooth surface is

k(p) lim
r->-0

2\Sr(p)\ - \S2r(p)\
2nr3

and the curvature of a smooth curve in the plane is

2\Sr(p)\ - \S2r(p)\
k(p) lim

r->-0 2r2

for a point p on the boundary of a flat region G and where \Sr (p)\ is the arc-length
oîSr(p)HG.

h) Every point q g G of distance 2 in X to p e G belongs to S2(p) whether there is a

connection within G from p to q or not.

Definition. A curve y in a smooth domain G is a sequence of points xo, ¦ ¦ ¦ ,xn in the
interior of G such that d(xl,xljrx) 1 and consequently (xi, xi+x) is an edge of G. A
curve is a closed curve, if xo xn. In graph theory, a curve is also called a chain. A
closed curve is a non-trivial closed curve, if its length is larger than 1. It is called a

simple closed curve, if all points xo,xx, ¦ ¦ ¦, xn-\ are different and xo xn. A domain is
called simply connected, if every closed curve {xi,..., xn) in the interior H oî G can be
deformed to a trivial closed curve within G, where a deformation of a curve within G is a

composition of finitely many elementary deformation steps {xi,..., xn} ->- {yi,..., ym}
with Y^i d(x-t, yj(i)) 1 and such that xt, yj^ sire in H and d(x, y) is the geodesic
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distance in the graph with d(x, y) 1, if (x, y) is an edge. As in the continuous case,

simply connectedness means that any closed curve in the interior of G can be deformed to
a point within the interior of G.

4 The curvature 12 theorem

The main result of this paper is a discrete version of the "Umlaufsatz". It will be generalized

to more general domains below.

Theorem 2 (Curvature 12 "Umlaufsatz"). The total boundary curvature of a finite,
smooth, and simply connected domain G is 12.

Proof. For the proof, it suffices to look at local deformations of the region. We start with
an arbitrary finite, simply connected, smooth region G and find a procedure to remove
interior points near the boundary while keeping it simply connected and also preserve the
curvature. Removing one point affects the curvatures in a disc of radius 2 only:

Lemma 3 (Curvature is local). Let G\, G2 be two regions and p be a point in both Gx
and G2. Let Ux Bx (p) c Gi and U2 B2(p) c G2 be the discs of radius 2 in Gx and
G2, respectively. Define Ht Gi \ {/?}. IfUx U2, then

J2K(p)- T,K(p)= £*oo- £*oo.
p<^Hi i"=#2 P^G\ P^-Gl

The lemma tells that, if we remove a point from a region, then the total curvature-change
can be read off from the curvature-changes in a disc of radius 2. We could therefore check
all possible configurations in discs of radius 2 and compare the total curvature before and
after the center point is removed. We indeed did this with the help of a computer. This
helped us also to identify the failure cases and to define what a domain is.

But checking all possible local deformations is not a complete proof yet. We also need to
know that there is always a point which we can remove without changing the topology of
G or its complement. It turns out that this question is of more global nature. Take a ring
shaped region for example which has a 1-dimensional interior. No point can be removed
without the curvature to change. See the right picture in Fig. 12. The key is to look at the
dimension of points in the interior of G and distinguish points which are 1-dimensional in
int(G) and points which are 2-dimensional in int(G). A 0-dimensional interior means for
a simply connected region that the graph is the disc of radius 1 in X. By removing interior
points, we want to reach this situation.

We can focus on the topology of interior points because int(G) defines G by Lemma 1. It
is enough to check therefore what happens, if we remove interior points. Our goal is to
show:

Proposition 4 (Trimming a tree). For any simply connected smooth region G for which
the interior set H has more than one point, it is possible to remove an interior point p
from H, such that the new region defined by H \ {p} remains a simply connected smooth

region with one interior point less and such that the curvature does not change.
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Fig. 7 The picture illustrates the process of pruning a tree. To shrink the region, we have to remove
alternatively 2- or 1-dimensional interior points until only one interior point is left. The left
picture shows a simply connected region where one branch can be trimmed. We get the tree to the

nght, where only ridges and bridges are left and all branches have been pruned. We would now
have to start etching the ridges. There are four end ridges to choose from. The simple connectivity
assures that at least one end ridge exists.

Fig. 8 The left picture shows the process of trimming of branches, the right picture shows a sequence
of edging steps. Proposition 4 claims that one of the steps can be applied to a simply connected

region with more than one interior point

Theorem 2 follows from this proposition. To prove the latter, we need some more
terminology:

Definition. Assume we are given a smooth and simply connected region G with interior
H. Denote by Hx the points in H which are 1-dimensional in H. Similarly, call H2 the
set of points in H which are 2-dimensional in H. Connected components of Hi sue called
either branches or bridges. Connected components of H2 are called ridges. A branch
of G is a connected component of Hi for which at least one point has only one interior
neighbor. All other connected components of H\ are called bridges.

The set int(G) is the union of points which are 2-dimensional in int(G) and points which
are 1-dimensional in int(G). We will use two procedures called pruning sind etching to
make the region smaller. The pruning procedure removes a 1-dimensional interior point at
branches. The etching procedure removes a 2-dimensional interior point at ridges.
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Fig. 9 The figure shows a 1-dimensional interior point and its possible
neighbors. It can have either one, two, or three neighbors. There

are four possibilities up to rotation. The situation of four or more
neighbors makes the interior point 2 dimensional in int(G).

Let us start with the pruning procedure which removes interior points which are 1-

dimensional in int(G). It allows us to remove 1-dimensional branches until we can no
more reduce 1-dimensional points in int(G). Removing 1-dimensional parts will make

sure that there will be 2-dimensional ridges ready for the etching procedure. If edging is
no more possible, we will reach a situation where pruning needs to be done again. Fig. 9

shows the situations which can occur locally at a point of a branch.

After reducing 1-dimensional branches, the tree still can have 1-dimensional parts: these

are 2-dimensional ridges connected with 1-dimensional bridges which cannot be pruned
immediately without changing the topology.

The etching procedure is invoked, if no 1-dimensional branches are left any more. The

region consists now of 2-dimensional ridges connected with bridges. Our goal is to see
that we can remove a 2-dimensional interior point of a ridge.

The simply connectivity implies that there is a ridge which has only one bridge connected
to it. To see this, look at a new graph, which contains the 2-dimensional ridges as vertices
and 1-dimensional bridges as edges. This graph contains no closed curves which are not
contractible, is connected and must therefore be a tree with at least one end point. We can
consequently focus our discussion to such an end-ridge for which only one 1-dimensional

bridge is attached. We are able to remove a boundary point on the opposite side of that
region, where no branches can be and where the boundary is smooth.

Once the etching process is over, we can again start pruning branches, or we are left with
a region with only one interior point. If a region G can no more be pruned and edged then

int(G) consists of only one point and G consists of only seven points and in this case, we
know the total curvature is 12.

Since pruning and etching did not change the curvature, we demonstrated that one can
reduce every simply connected region to a situation with only one interior point. This
completes the proof of the curvature 12 theorem.
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12 12 12

Fig. 10 A 2 dimensional interior point at the boundary can have either two or three or four interior
points as neighbors We see all the possible configurations with either two or three interior
neighbors up to a rotation or a reflection.

12 12 12

Fig. 11 Situations, where a 2-dimensional interior point at the boundary has four interior points as

neighbors In all these cases, the middle point cannot be removed while keeping the region a

smooth region. If a point has five interior points as neighbors, it automatically must have six
neighbors and is no more connected to a boundary point of G.

5 Discrete Gauss-Bonnet theorem

To generalize the "Umlaufsatz" to domains which are not necessarily simply connected

we first define the Euler characteristic of a region using Euler's formula:

Definition. A face in a domain G (V, E) is a triangle (p, q, r) of three points in G for
which all three points have mutual distance 1. An edge in G is a pair p, q of points in G
of distance 1. A vertex is a point in G. Denote by / the number of faces in G, by e \E\
the number of edges, and v | V | the number of vertices. The Euler characteristic x (G)
of the domain G is defined as x (G) v — e + /.
Remark. The Euler characteristic of int(G) and G is the same, if G is a smooth region
but we do not need this fact. For a simply connected region for example the Euler characteristic

is 1.

12

Fig 12
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The left picture shows a bridge. No interior point which is 1-dimensional in int(G) can be

removed. The middle picture shows a situation where no interior point in int(G) can be
removed. We would first have to trim some branches. The right picture shows a situation where

no trimming is possible any more. The region is not simply connected.
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Fig. 13 Joining two regions changes the total curvature by 12. One can prove this by trimming both

sides. The left hand side trims down to a disconnected domain consisting of two discs of
radius 1, the right hand side will end up with a disc of radius 1

Lemma 5. The Euler characteristic does not change under the pruning and etching
operations defined above as long as the subgraphs remain smooth domains. Filling in a simply
connected hole adds 1 to the Euler characteristic.

Proof. Both removing an end point of a 1-dimensional branch, as well as removing a 2-
dimensional point from a ridge does not change x ¦ The number of interior points of a

smooth region is 2/ — e + x as can be proven inductively: Each added face corresponds
to add two edges unless we generate a new interior point, where one edge adds a face. The
second statement follows from the fact that a hole H m a region G has / (H 1 and that

X(H) + x(G) x(H U G) - x(H D G) with X(H C\G) Obecause H n G is a closed

path. D

Theorem 6 (Discrete Gauss-Bonnet theorem). IfG is a finite smooth domain G with
boundary C, then

YJK(p) 12X(G).
pzC

We could use the same pruning-etching technique as before. However, pruning and etching

can lead to final situations which have no end points like a ring. Instead of classifying
all these final situations, it is easier to reduce the general situation to a simply connected
situation. There are two ways to change the topology: we can either build bridges
between different connected components or we can fill holes to make the region simply
connected. Merging different unconnected components works as long as their complements
are smooth, both the Euler characteristic as well as the total curvature add up.

We can assume the region to be connected, because both the curvature as well as the Euler
characteristic are additive with respect to adding disjoint domains as long as the complement

is a domain. To illustrate this more, we can join two separated regions along with a

1-dimensional bridge. The curvature drops by 12, the number of connected components
drops by 1. See Fig. 13.

Definition. A hole W of G is a bounded simply connected smooth region such that the

interior int(W) is a connected component of the complement G' of G and the interior
int(G) is a subset of the complement of W. Holes are assumed to be simply connected
since otherwise G would be disconnected in which case the discussion can be delegated
to each connected component of G. By definition, the hole W and the region G share a

common 1-dimensional boundary.
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Fig. 14 Filling a simply connected hole in a larger region adds to the curvature exactly the same amount

than the total curvature of the hole. The point wise curvatures of the removed inside region
matches the curvatures of the inner outside region Filling a hole increases the curvature by 12

and the Euler characteristic by 1.
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Fig. 15 When cutting a ring, the curvature changes from 0 to 12. Only the last region is a smooth

region The second last is a region but not smooth because the complement is not a region

By Theorem 2, the hole has total curvature 12. A key observation is that the point-wise
curvatures at the inner boundary of G enclosing the hole are just the negative of the
corresponding point-wise curvatures of the hole. Fig. 14 illustrates this. This follows almost
from the definition of curvature and the fact that the circles | Si (p) C\W\ + \S\ (p) C\ G\ 6
and \S2(p) n W\ + \S2(p) n G| 12 so that Kw(p) + KG(p) 0. Alternatively, we
could also cut rings, as Fig. 15 illustrates.

6 Compact flat graphs

If we introduce identifications in the hexagonal background graph X, the topology of
the background space changes. Identifying points along two parallel lines for example
produces a flat cylinder. With a triangular tiling, we can tessellate a torus. Because there
is no boundary now, the sum of the curvatures is zero, which is the Euler characteristic.
There are many different non-isometric graphs which lead to such twisted tori. As graphs
they can be different even, if the number of faces, edges, and vertices are the same.

The notion of regular domam can be carried over to subsets of such a twisted background
torus X. We assume that it is large enough so that S2(p) is a circle at every point. We still
have.

Theorem 7. IfG is a domain in a twisted torus X, then YLvgBG K(p) 12/ (G).

Proof. If the region is simply connected, the same proof as before applies: the domain can
be trimmed down to a point. If G is equal to the background torus X itself, the formula
holds also because there is no boundary and the Euler characteristic is 0. Removing a

simply connected component of G reduces the Euler characteristic by 1. Filling a hole
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Fig. 16 The left picture shows a twisted flat torus X where opposite sides of a rectangular
domain in a hexagonal lattice are identified and the total curvature is 0. On the

right, the interior of a region G in X is shown. It has two connected components.
One is simply connected with Euler characteristic 1. The closed loop has Euler
characteristic 0.

adds 1 to the Euler characteristic. After tilling up all holes, all connected components of
G can be edged and trimmed to connected domains Gi for which each int(G;) is either
a 1-dimensional closed graph winding around the torus or trimmed to a point. The Euler
characteristic of a domain Gt is 0, if a trimmed down version is a closed loop or 1, if it is

a point. For every connected component Gi, the Euler characteristic is therefore the same

as the sum of the boundary curvatures of Gi. Summation over all components leads to the
result. D

7 Combinatorial curvature
In this section, we consider a more elementary Gauss-Bonnet formula. The curvature is

again defined by a Puiseux discretization. Since only circles of length 1 appear in the

definition, it is a first order curvature.

Definition. For a 2-dimensional graph with boundary, the combinatorial Puiseux curvature

is defined as K\(g) 6 - |Si(g)| for interior points and Ki(g) 3 - \Si(g)\ for
boundary points.

For this combinatorial curvature, a proof of the Gauss-Bonnet theorem is easier. For
subgraphs G of the hexagonal lattice, the boundary curvature is almost trivially equal to 6

because the curvature is related to angles of the corresponding polygon: for a boundary
point, K\{p) ¦ n/3 is the complementary interior angle at a vertex p of the polygon.
Because 2~2 Ki(p)jr/3 2n by the polygonal version of the Hopf "Umlaufsatz", we have

J:pK1(p) 6x(G).
It can be generalized for 2-dimensional graphs and more generally to 2-dimensional graphs
with boundary. Since it is so closely related to the Euler characteristic, we should attribute
it to Euler, even so we are not aware that Euler considered K\ (g), nor that he looked at the

dimension of a graph.

Definition. A graph G is called a 1-dimensional graph without boundary, if every sphere

Si(p) in G is a 0-dimensional graph with two points. A graph G is called a 1-dimensional



14 O. KniU

graph with boundary, if every unit sphere Si (p) is a O-dimensional graph with one or two
points. A point in a 2-dimensional graph is an interiorpoint, if the unit sphere is a polygon,
a 1-dimensional graph without boundary. If a 2-dimensional graph has only interior points
it is called a 2-dimensional graph without boundary. A point p in a 2-dimensional graph
is a boundary point, if it is adjacent to an interior point and the unit sphere Si(p) is a

connected 1-dimensional graph with boundary. A graph is called a 2-dimensional graph
with boundary, if every point is either an interior point or a boundary point.

With these definitions, the boundary of a 2-dimensional graph G with boundary is a 1-

dimensional graph without boundary. The boundary of G is made of finitely many
subgraphs Gt (Vi {gn,..., giri[}, Ei) with i 1,..., n of G (V,E) which are

polygons and nt > 3. The stellated graph H is obtained by adding n vertices pt and edges

(Pi-> 8ij)i=i,.~,n,j=i,...,n, • The graph H is a 2-dimensional graph without boundary.

Remark. The Euler characteristic is equal to v — e + f + n, where v \V\, e \E\,
smd f is the number of triangles of the original graph G and where n is the difference
between the number of vertices of H and the number of vertices of G. The n polygons of
the original graph can be thought of as additional faces of the old graph G.

Theorem 8 (Combinatorial Gauss-Bonnet theorem). For every 2-dimensional graph
with boundary, J2gGG Ki (#) 6X (G).

Remarks.

a) This result does not need the rigid requirements on the domain. The graph does not
have to be part of X.

h) The result appears in a different formulation: the Princeton Companion to Mathematics

[3] mentions on page 832 the formula £^n (6 — n)fn 12 for convex polyhedra,
where fn is the number n-hedral faces and the summation is over all face cardinalities

which appear. This is an equivalent formulation but the Gauss-Bonnet character
is less evident. The term polyhedron is often used in a much more restrictive way. In
[2] the number C(g) d(g) — 6 is called the charge of the graph at the point g and

^ G C(g) —12 mentioned for planar graphs. For 2-dimensional graphs without
boundary, we have d(g) \Si (g) | and so C(g) —Ki (g).

Theorem 8 is graph theoretical. Most definitions of polyhedra assume an ambient
Euclidean space or more structure on a graph. The book [5] discusses some of the struggles
to define polyhedra. Since 2-dimensional graphs with boundary behave like polyhedra,
one could more generally define a polyhedron as a graph in which a sequence of truncation

and stellation operation produces a 2-dimensional graph H without boundary. All
Platonic solids are polyhedra in this sense and the Gauss-Bonnet theorem holds for H.
For a cube for example, which is a 0-dimensional graph G in our sense, a truncation of the

eight vertices and additional stellation produces a 2-dimensional graph H without boundary.

The stellation has produced six new vertices of curvature —2. The 24 other points
have curvature 1. The sum over all curvatures is 6 (—2) + 24 12 6x(H). Also
for a dodecahedron, a stellation produces twelve new vertices of curvature 1, while the

original vertices have curvature 0 after stellation. The octahedron and the icosahedron are
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Fig. 17 The left picture shows a 2-dimensional graph G with 12 points of curvature —4 and

30 points of curvature 2 leading to a total curvature of 12. To the right, we see a

graph H with boundary obtained by removing all vertices of curvature —4 and their
connections. Each of the 120 boundary points which are now present has curvature
-1 3 - \Si |. The total curvature of H is 30 • 2 - 120 -60 matching 6x(H)
since x(H) 2- 12 -10.

already 2-dimensional with constant curvature 2 and 1, respectively. The tetrahedron is a

3-dimensional graph. It becomes a 2-dimensional graph H without boundary after
truncating its four vertices and then a stellation of the six hexagonal boundary curves. The
twelve vertices have constant curvature 1, the six added face vertices have curvature 0.

Proof. Assume first that G (V, E) is a 2-dimensional graph without boundary. Every
unit sphere Si (p) in G is then a polygon. The number of faces / and the number of edges
e for the entire graph are then related by the dimensionality formula

3f 2e.

Additionally, for any graph without self-loops and without multiple edges, we have the

edge formula

£>i(S)|=2e.
geV

The definition of the Euler characteristic combined with these two formulas gives

6/ (G) 6/ - 6e + 6v -2e + 6v

- £>i(S)l + 6« - £(|Si(g)| - 6) J2 *i(S) •

geG geG geG

The case of a graph G with boundary can be reduced to the boundary-less case: the boundary

of G is a union of n closed cycles Gi. For each of them we add an other point Pi and

add m | Gì | edge connections from each of the cycle boundary points of G; to P{. This

produces a stellated graph H without boundary and which contains G as a subgraph. The
formula without boundary shows that 6/ (H) is the sum of curvatures of the original interior

points and the sum of the curvatures of the boundary points as well as the sum of the
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curvatures Ki (P^ 6 — n-t to each newly added point Pt:

n

6x(H)= J2 *(*)+£**(*) + !>-»»).
#eint(G) gGdG i=l

Since we have added n vertices, \BG\ edges and \BG\ faces,

X(H) x(G) + n - \BG\ + \BG\ X(G) + n (1)

The boundary points g satisfy Kn(g) 6 — |Si(g)| — 2 and Ko(g) 3 — \Si(g)\ so
that ä"h (g) — Kq (g) 1. In the stellated graph H each boundary point g has become an
interior point for which the curvature Kh (g) is by 1 larger than the curvature Kg (g) as a

boundary point. From the previous boundary-less case, we get

6X(H)=J2kh(8)
gGH

geint(G) i=l £€Gj i=l

gGG

Combining this with formula (1) gives

6X(G) 6X(H) -6n=YJ K(g) + 6n-6n YJ K(g). D
gGG gGG

8 About higher order curvatures
The curvature definition K is motivated by the notion oî Jacobi fields [1]. While smoothness

requirements are necessary for the more sophisticated second order Gauss-Bonnet

formula, the metric Gauss-Bonnet formula stated in Theorem 8 holds for any polyhedron
with triangular faces. For example, every finite triangularization of a 2-dimensional compact

manifold works. The curvature K 2|Si| — |^2| is more differential geometric
because the Gauss-Jacobi equations f" —Kf in differential geometry require the second
differences of a Jacobi field /.
We initially were interested in extending the notion of Jacobi fields to the discrete case

for numerical purposes: for a discretized Jacobi field / with /(0) 0, we have f"(0)
/ (2)-2/ (1) + /(0) /(2) -2/(1). The Jacobi equations suggest to call this -K. Since

f(k) is the variation of the geodesic when changing the angle, we can integrate over the
circle and we get the arc length \Sr\ of the circle of radius r 1 or r 2. Therefore K is

a multiple of 2| Si \ — \S2\ and there is no reason to normalize this in the discrete case. The
first order curvature Ki 6 — \Si \ on the other hand only requires first order differences.
The curvature K has some advantages over the curvature £1 :

(i) The curvature formula for the boundary and in the interior is the same, while for the
curvature K\, one has to distinguish between the boundary and the interior.
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(ii) There is no reference to a flat background structure for K, while Kx refers to the flat
situation via integers 6 or 3.

(iii) It is more closely rooted to the differential geometry of manifolds and to classical
notions like Jacobi fields, a notion which is of second order too.

(iv) It can be adapted to higher dimension, when defining scalar curvature for graphs and
where no natural flat triangulated ambient reference graph exists. While Ki is of
metric flavor, K is more differential geometric.

Similarly as many metric results extend to the differential geometric setup, statements
become more subtle in the discrete case, if higher order difference notions are used. The
limitations of the results are related to similar limitations we know in the continuous case.

We can combme the two results, for the Puiseux curvature with radius 2 defined by
K2(g) 12 — 1^2(^)1 in the interior and K2(g) 6 — \S2(g)\ sit the boundary, we
get the following corollary:

Corollary 9. If G is a 2-dimensional smooth domain with boundary C in the triangular
tessellation X of the plane, then E?eC Ki(s) — 24/ (G).

Proof. Add Egsd6 - 2|5i(g)|) 12/(G) from Theorem 8 with £*ec<2|Si(g)| -
\S2(g)\) 12X(G) fromTheoremötoget£,eCtf2(g) £jcC(6-l&(s)l) 24/(G).

For example, if G is a disc of radius 1, then | Si | | £21 2 for all the six boundary points
g, where Ki (g) 2 and Kz(g) 4.

Unlike the combinatorial curvature formula E?eG ^10») ^X (G), the formula for K2 is

only obvious modulo the main result Theorem 6 for smooth domains.
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