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1 Introduction

For p aprime and k an integer, v, (k) denotes the highest exponent v such that p* | k. (Here
a | b means a divides b.) For example, v2 (k) = 0 if and only if & is odd, and v,(40) = 3.
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For any power sum
m
Spm) =Y jr=1"4+2"+ - 4m"  (m>0,n>0),
j=1

we determine v2 (S, (m)). As motivation, we first give a classical extension of the fact that
S1(m) = m(@m + 1)/2, a formula known to the ancient Greeks [1, Ch. 1] and famously [4]
derived by Gauss at age seven to calculate the sum

14244994+ 100= (14 100) 4+ (24+99) + - -- + (50 + 51) = 5050.
Proposition 1. Ifn > 0 is odd and m > 0, then m(m + 1)/2 divides S, (m).

The proof is a modification of Lengyel’s arguments in [5] and [6].

Proof of Proposition 1. Case 1: both n and m odd. Since m is odd we may group the terms
of S, (m) as follows, and as n is also odd we see by expanding the binomial that

(m=1)/2
Semy=m"+ Y (j"Hm—)") = m|Sm).
j=1
Similarly, grouping the terms in another way shows that

1 v 1
Sy =33 (D= ) = T s,
j=1

As m and m + 1 are relatively prime, it follows that m(m + 1) /2| S, (m).

Case 2: n odd and m even. Here

m/2
Sam) =Y (" + (m+1) = ") = (m+ )| Sp(m)
j=1
and
S <m>=1i(j"+<m—j>") — 280
Thus m(m + 1)/2 | S, (m) in this case, too. O

Here is a paraphrase of Lengyel’s comments [5] on Proposition 1:

We note that Faulhaber had already known in 1631 (cf. [2]) that S, (m) can
be expressed as a polynomial in Sy(m) and Sz (m), although with fractional
coefficients. In fact, S, (m)/(2m+ 1) or S, (m) can be written as a polynomial
inm(m + 1) or m(m + 1))2, if n is even or n > 3 is odd, respectively.



184 K. MacMillan and J. Sondow

Proposition 1 implies that if n is odd, then
Up(Sp(m)) = vp(m(m + 1)/2),
for any prime p. When p = 2, Theorem 1 shows that the inequality is strict foroddn > 1.

Theorem 1. Given any positive integers m and n, the following divisibility formula holds:

wmm+1)/2) if n=1 or n iseven,
v2(Sp(m)) = , , (1)
2va(m(m + 1)/2) if n >3 is odd.

The elementary proof given in Section 3 uses a lemma proved by induction.

In the special case where m is a power of 2, formula (1) is due to Lengyel [5, Theo-
rem 1]. His complicated proof, which uses Stirling numbers of the second kind and von
Staudt’s theorem on Bernoulli numbers, is designed to be generalized. Indeed, for m a
power of an odd prime p, Lengyel proves results [5, Theorems 3,4, 5] towards a formula
for v, (S, (m)).

In the next section, we apply formula (1) to a certain Diophantine equation.

2 Equations of Erdos-Moser type

As an application of Theorem 1, we give a simple proof of a special case of a result due to
Moree. Before stating it, we discuss a conjecture made by ErdSs and Moser [11] around
1953.

Conjecture 1 (ErdSs-Moser). The only solution of the Diophantine equation
"+2"+.. .+ (m—-1)"=m"
is the trivial solution 1 +2 = 3.

Moser proved, among many other things, that Conjecture 1 is true for odd exponents n.
(An alternate proof is given in [7, Corollary 1].) In 1987 Schinzel showed that in any
solution, m is odd [10, p. 800]. For surveys of results on the problem, see [3, Section D7],
[8], [9], and [10].

In 1996 Moree generalized Conjecture 1.

Conjecture 2 (Moree). The only solution of the generalized Erdds-Moser Diophantine
equation
1"+2"4+--+(m—1)" =am" )

is the trivial solution 1 +2+ -+ - +2a = a(2a + 1).

Actually, Moree [8, p. 290] conjectured that equation (2) has no integer solution with
n > 1. The equivalence to Conjecture 2 follows from the formula

1
1424 k= k(k+1) 3

withk =m — 1.
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Generalizing Moser’s result on Conjecture 1, Moree [8, Proposition 3] proved that Con-
Jecture 2 is true for odd exponents n. He also proved a generalization of Schinzel’s result.

Proposition 2 (Moree). If equation (2) holds, then m is odd.

In fact, Moree [8, Proposition 9] (see also [9]) showed more generally that if (2) holds and
a prime p divides m, then p — 1 does not divide n. (The case p = 2 is Proposition 2.)
His proof uses a congruence which he says [8, p. 283] can be derived from either the von
Staudt-Clausen theorem, the theory of finite differences, or the theory of primitive roots.

We apply Theorem 1 to give an elementary proof of Proposition 2.

Proof of Proposition 2. It n = 1, then (2) and (3) show that m = 2a + 1 is odd.

If n > 1 and m is even, set d := va(m) = va(m(m + 1)). Theorem 1 implies v (S, (m)) <
2(d—1), and (2) yields S,(m) = S, (m—1)+m" = (a+1)m". But then nd < v2(S,(m)) <
2(d — 1), contradicting n > 1. Hence m is odd. O

3 Proof of Theorem 1

The heart of the proof of the divisibility formula is the following lemma.

Lemma 1. Given any positive integers n, d, and g with q odd, we have

d d—1 if n=1 or n iseven,
v2(82(27q)) = , . “)
2(d—1) if n>3 isodd

Proof. We induct on d. Since the power sum for S, (2¢q) has exactly g odd terms, we have
v2(8,(2¢9)) = 0, and so (4) holds for d = 1. By (3) with k = qu, it also holds for all
d > 1 when n = 1. Now assume inductively that (4) is true for fixed d > 1.

Given a positive integer a, we can write the power sum S,,(2a) as

a a |n/2]
SiQa)y=a"+) ((a— )"+ @+ j)")=a"+2) )" <;)a"‘2"j2f

j=1 j=1i=0
/2l ‘
= 2;; (Zi)a"—zl S$i(a).

If n > 2 is even, we extract the last term of the summation, set ¢ = qu, and write the
result as

-2)/2
S (pd+1 nd . n dSn(ZdQ) 2d+1(n 4 N\ d(n—2i-2) n—2i d
L (2%Tg) = 2Mg" + 2 +22 3 (L )2 q""7 8 (2%).
i=0

2d—1

By the induction hypothesis, the fraction is actually an odd integer. Since nd > d, we
conclude that v2(S, (2¢11g)) = d, as desired.
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Similarly, if n > 3 is odd, then

(n—3)/2

nd n Sn— (2d ) n n—2i— n—2i
Sn(2d+1q)=2 dq +22dnq nzld—-lq +23d+1 Z o 2d{(n—2 3>q 2521.(201[]).
i=0

Again by induction, the fraction is an odd integer. Since nd > 2d, and n and ¢ are odd,
we see that v2(S, (29F1q)) = 2d, as required. This completes the proof of the lemma. [J

Proof of Theorem 1. When m is even, write m = 2%¢, where d > 1 and ¢ is odd. Then
va(m(m + 1)/2) = d — 1, and (4) implies (1).

Itmisodd,setm+ 1= qu, with d > 1 and g odd. Again we have vao(m(m 4+ 1)/2) =
d — 1. From (3) with k = m we get v2(S1(m)) = d — 1, so that (1) holds forn = 1. If
n > 1,thennd > 2(d — 1) > d — 1, and so (4) and the relations

Sy (m) = Sp(m+1) —(m+1)"=S,(m+1) (mod 2")
imply v2 (S, (m)) = v2(S, (m 4 1)) and, hence, (1). This proves the theorem. O
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