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On certain permutation groups and sums of two squares
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1 Introduction

The present note does not contain new results. It may be considered as an addendum to [6],
presenting several different viewpoints around one of the results proved there, and some
links of this result with classical works. In particular, we provide a new reading of the
proofs of the following known facts:

Theorem 1.1 ([8, 6]). Let d be an integer congruent to 1 modulo 4. Then the following
conditions are equivalent to each other:

(a) d is the sum of the squares of two integers.

(b) There exist permutations oy, 01, 0o € &4 such that:
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(1) 0001 = Tco-
(ii) The cycles in the decompositions of oo, o1, and o, have lengths, respectively,
(L4,....4,1,4,....4),and (1,2, ...,2).
(iii) The subgroup of S, generated by oy, 01, 0 acts transitively on the set
{1,...,d}.

Theorem 1.2 (Fermat-Euler). If p is a prime and p is congruent to 1 modulo 4 then p is
the sum of the squares of two integers.

In this work, we focus on the relation between these purely algebraic results and the theory
of (ramified) covers of surfaces. The latter, in turn, is connected to algebraic geometry in
the following way: every smooth complex algebraic curve can be viewed as a real surface,
and every non-constant morphism between complex algebraic curves can be viewed as a
branched (or ramified) cover of the corresponding topological surfaces. (We shall give
later more precise definitions.) Especially, the algebraic curves coming into play will
be the projective line (topologically the sphere) and genus-one curves, or elliptic curves
(topologically two-dimensional tori).

It is well-known that the crucial point for the classification of integers which are sums of
two squares resides in the above Fermat-Euler theorem, which concerns the representation
of primes. Among the many different proofs of this classical theorem, the one provided by
Ritt [8] in the 1920’s makes use of the construction of three permutations as in Theorem 1.1
and of the corresponding unramified cover of P1(C) \ {0, 1, oc}.

The full Theorem 1.1, for arbitrary d and not only for primes, was established in [6]
using the translation of condition (b) into the geometric question of the existence of a
branched cover over the sphere matching certain prescribed branching data. This is the
real-differential analogue of the algebraic viewpoint of Ritt, with the complex projective
line replaced by the real sphere and covers defined in the sense of differential topology.

In the differential context, a branched cover is a surjective map & between surfaces, locally
modeled on maps of the form (C, 0) > z > z¢ € (C, 0) for some a € N; moreover 0 in
the target C is a branching point of  if @ > 1, in which case a is called the local degree of
s at 0 in the source C, and the branching data of 7 consist of the local degrees of 7 at the
preimages of its branching points. Note that if the map is proper and all local degrees are
equal to one, then the map is a cover in the classical sense of algebraic topology. We also
say it is an unramified cover. A modern treatment of this theory can be found in Fulton’s
book [2].

Given a branched cover & as above, of total degree d, one gets permutations in S, by
considering the monodromy of 7 around the branching points. More precisely, for any
branching point one gets a permutation whose cycle decomposition lengths are the local
degrees of  at the preimages of the point.

Equivalence between (a) and (b) was proved in [6] by interpreting branched covers as cov-
ers between 2-orbifolds, and by showing, using the geometry of orbifolds, that the degree
of an orbifold cover arising from permutations as in (b) must satisfy (a), and conversely. In
this note we will reprove Theorem 1.1 using the fact that, by the Riemann Existence Theo-
rem, any topological branched cover over the sphere can be realized as a ramified cover of
P (C) by a complex algebraic curve (see [3, 12]). Using this complex-algebraic viewpoint
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we will show that the existence of permutations as in condition (b) is equivalent to the
existence of a certain endomorphism of the elliptic curve E with Weierstrass equation
y% = x3—x, namely of the complex torus E = C/Z[i]. Equivalence with condition (a) will
then follow from the fact that the degree of an endomorphismof this elliptic curve is always
the sum of two squares. We mention that the link between branched covers and elliptic
curves already appears implicitly in [10], and especially in [3]. The latter paper, among
many other things, also contains explicit constructions of algebraic covers with mon-
odromy given by the permutations as in condition (b), and of several other similar ones.

As we mentioned, we shall construct in our proofs some branched covers of the sphere,
described algebraically by morphisms P;(C) — P1(C), ramified only above {0, 1, co}.
These covers, which are connected with the celebrated Grothendieck theory of dessins
d’enfants [9], can be described by rational functions of the form P(z)/Q(t), for polyno-
mials P(¢) and Q(¢) such that the product P(¢)Q(¢)(P(t) — Q(¢)) has “a few” distinct
zeros. We take the opportunity to explore this connection, which will lead us to mention
the celebrated abc-theorem for polynomials.

Our version of the proof of the classical Fermat-Euler theorem follows the mentioned idea
from the old work by Ritt [8], and it builds on Theorem 1.1 and on the different viewpoints
on branched covers developed to show it. Of course, such a proof has a small interest in
itself, since it relies on deep results, whereas many elegant and simple proofs are known.
However, the connection seems a striking one to us, and it raises the question whether a
direct proof exists in purely combinatorial terms related to permutations as in condition (b).

This paper is organized as follows: in Section 2 we spell out the correspondence between
condition (b) and branched covers, introducing the reader to the more general context
of the Hurwitz existence problem. Then we exploit the Riemann Existence Theorem to
interpret and reprove Theorem 1.1 in terms of the endomorphisms of an elliptic curve.
In Section 3 we show how the algebraic and geometric machinery thus developed can be
employed to prove the Fermat-Euler theorem. We conclude the paper by describing an
alternative approach to the geometric version of Theorem 1.1, based on the notion of uni-
versal ramified cover with signature. We note that universal ramified covers with signature
appear implicitly also in [6], where they are presented in the language of 2-orbifolds and
defined making use also of the metric. Once again, we present the link between different
viewpoints about the same objects.

2 Certain branched covers of the Riemann sphere

As announced in the Introduction, we begin by providing a geometric translation of con-
dition (b) in Theorem 1.1. To do so we will need some definitions and notation. Let
7 : ¥ — ¥ beabranched topological cover between real, closed, and connected surfaces.
We say that & has branching type (ay, ..., a,) over apoint P € X, where ay, ..., a, are
positive integers, if 7~L(P) consists of r distinct points Q1, ..., O, such that locally at
Q; the map = may be represented as z — z%, on viewing X and ¥ as locally home-
omorphic to the complex plane, with P and Q; corresponding to 0. Note that & has a
well-defined total degree d and that the branching type of any point of X is a partition of
d. The branching data of r is given by the collection of all these partitions.
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By considering the monodromy of a branched cover (a representation of the fundamental
group of the complement of the branching points into the symmetric group &, on the d
letters {1, ..., d}, already employed in [4], see also [10, 12]), one gets the following:

Proposition 2.1. Condition (b) in Theorem 1.1 is equivalent to:

(b)) There exists a branched cover ¥ - P1(C) of degree d, ramified over three points,
with branching data (1,4, ...,4), (1,4,...,4), (1,2,...,2).

Proof. Suppose a cover « : ¥ — P;(C) as in (V') exists. Without loss of generality we
can assume that the branching points in P{(C) are 0, 1, co. Setting X = P;(C) \ {0, 1, o0}
and X = 7~ 1(X) we see that 7 induces a genuine degree-d cover X — X. Moreover,
choosing loops around the points removed from P;(C) we see that 1 (X) has a natural
presentation as (Yo, ¥1, Yool Y0¥1 = Yoo). Upon fixing a basepoint Py in X and identifying
n_l(Po) with {1, ..., d} we then get the monodromy representation p : 71(X) —> &g,
obtained by lifting to X the loops in X. We now set o, = p(y;) forz = 0, 1, oo, and we
prove that o9, o1, o satisfy the points (i)-(iii) of condition (b) in Theorem 1.1. Point (i)
follows from the fact that p is a representation. Moreover o, has one cycle for each point
in 771(z), and the length of the cycle is the local degree of 7 at that point, whence (ii).
Finally point (iii) follows from the fact that X is connected.

We have shown that condition (b") implies condition (b) in Theorem 1.1, and we now prove
that (b) implies (b") by reversing the construction. Given oy, o1, 0 € Sy as in (b), by
point (i), if we set p(y;) = o; for z = 0, 1, co, we get a representation 71(X) — &g,
whence a cover X — X, that is connected by (iii). We then get the desired cover by gy
P;(C) by adding to X one point for each cycle of o, forall z =0, 1, co. O

Remark 2.2. For a branched cover & — P1(C) of degree d = 4k + 1 and ramified over
three points, the branching data (1,4, ...,4), (1,4,...,4), and (1,2, ..., 2) force ¥ to
be P (C) too. In fact the partitions have lengths k + 1, K+ 1, and 2k 4 1, and the Riemann-
Hurwitz formula shows that if the genus of ¥ is gthen2(1—-g)—Gk+1) —(k+1) —
2k + 1) = (4k + 1) - (2 — 3), which implies that g = 0.

By this remark, from now on we only deal with the case ¥ = P{(C).

Remark 2.3. Up to an automorphism of the target P;(C) one can suppose without loss
of generality that, if a branched cover Py (C) — P;(C) has three branching points, these
points are 0, 1, and co. For a cover as in Theorem 2.4 we will always assume that the
branching types are (1,4, ...,4)overOand 1, and (1, 2, ..., 2) over cc.

Taking into account Proposition 2.1, the following result established as Theorem 0.4 in [6]
is equivalent to Theorem 1.1:

Theorem 2.4. Suppose d = 4k + 1 for some k € N. The following conditions are
equivalent to each other:

(b)) There exists a branched cover by P1(C) of degree d, ramified over three points,
with branching data (1,4, ...,4), (1,4,....4), (1,2,...,2).

@ d=x%+ yzforsome x,yeN
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The proof given in [6] of this result employs the geometry of 2-obifolds. In particular, it
exploits the fact that S2(4,4,2), namely the sphere with three cone points of orders 4, 4,
and 2, bears a Euclidean geometric structure that is rigid up to rescaling. We also men-
tion that [6] contains several other results giving partial solutions to the so-called Hurwitz
existence problem, which asks whether a set of branching data satisfying the necessary
condition given by the Riemann-Hurwitz formula is actually realized by an existent topo-
logical branched cover. We address the reader to [7] for an account of the history of this
old and still not completely solved problem.

We will now illustrate a proof of Theorem 2.4, and hence of Theorem 1.1, in terms of
branched covers of complex algebraic curves. To begin we spell out the following conse-
quence of the Riemann Existence Theorem already anticipated in the Introduction:

Propeosition 2.5. If a topological cover of the sphere onto itself matching certain branch-
ing types exists, it can also be realized as a cover of algebraic curves w : P; — Py,
defined over C or even over the algebraic closure Q) of Q in C.

Note that a map 7 as in this proposition will be a rational function with complex
coefficients of a complex variable 7, and the coefficients may actually be assumed, by
specialization or operating with an automorphism of the domain, to lie in @. This last fact
implies that the absolute Galois group of @ acts on the set of such covers, leading to Gro-
thendieck’s theory of dessins d’enfants, for which the interested reader is referred to [9].

Let us now concentrate on branching types as in Theorem 2.4. To discuss the existence
of a corresponding map 7 as in Proposition 2.5 we further normalize the situation noting
that, up to composition with an automorphism of the domain Py, we can assume without
loss of generality that O (respectively, 1, and c0) is the unique unramified point above 0
(respectively, 1, and co). The branching conditions then imply that the map 7, if any, can
be expressed as

4 4
2(0) = ' N Bl V1 000

R2(1) R2(1)

with deg P(t) = degQ(t) = k, and degR(r) = 2k. More precisely, a cover as
in Theorem 2.4 exists if and only if there exist polynomials P(z), Q(r), R(t) € @[t]
without multiple roots such that P (z), (¢ — 1)Q(¢), and R(¢) are pairwise coprime,
deg P(tr) = deg Q(¢t) = k, deg R(¢) = 2k, and

tPH1) = (t — QY1) + R*(1). (1

Remark 2.6. It is worth noticing that when three such polynomials exist, they provide
an extremal example of the so-called abc-theorem for polynomials, due to Stothers and
Mason. We recall the statement of this result, given for instance in [5, Theorem 7.1]:
Let a(t), b(t), c(t) be relatively coprime polynomials with complex coefficients satisfying
a(t) + b(t) = c(t). Then the number of distinct zeros of a(t)b(t)c(t) is at least

1 4+ max{dega(z), degb(r), degc(t)}.
In our case, setting

a(t)y= (@ —1DQ* ), b1)=R* 1), c@t)=1tP*Q)
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we get that the product a(r)b(f)c(¢) has at most 1 + k& 4+ 2k + 1 + k = 4k + 2 distinct
zeros, while the maximum of the degrees is 4k + 1, so the above bound is attained. The
abc-theorem for polynomials, that admits generalizations to function fields of curves of
arbitrary genus, is nowadays a well-known tool for studying diophantine equations over
function fields. See in this respect [13] and [14]; other extremal examples for the abc-
theorem, still coming from geometric constructions, are treated in [13]. Its analogue for
number fields is the celebrated abc-conjecture of Masser and Oesterlé, which is discussed,
e.g., in [5, Chapter 7]. It is still open, and it is one of the deepest problems in diophantine
analysis.

Before starting the proof that (b') = (a) in Theorem 2.4, we recall some basic facts
about elliptic curves (or complex tori). Every smooth cubic curve has genus one, and
conversely every smooth genus-one curve is isomorphic to a smooth cubic. In turn, such
curves have an algebraic group structure, unique up to the choice of the neutral element,
and conversely every irreducible projective algebraic group of dimension one is a genus-
one curve, whence isomorphic to a smooth plane cubic. Such one-dimensional algebraic
groups are called elliptic curves. From the complex analytic viewpoint, elliptic curves are
complex tori, i.e., quotients C/A, for a lattice A C C. One particular elliptic curve will be
relevant for our purposes: it arises as the quotient £ := C/Z[i] by the lattice of Gaussian
integers, where i = /—1, and it is characterized by the fact of having an automorphism
of order 4 fixing the origin (the neutral element). It can also be defined algebraically as
the projective completion of the affine curve of equation y? = x3 — x, where as the origin
one can take the point at infinity; the automorphism (x, y) +— (—x,iy) sends the curve
to itself, has order 4 and fixes the point at infinity. Alternatively, £ can be defined as the
smooth completion of the affine curve v> = u* — 1. The ring of endomorphisms of E as
an elliptic curve (i.e., the group of the endomorphisms fixing the origin) is isomorphic to
the ring Z[i]; and actually, each such endomorphism is induced by the multiplication by a
complex number A; since the endomorphism sends Z[i] to itself, one necessarily has that
) € Z[i]. The degree of such an endomorphism is then easily seen to be the norm A - A of
the algebraic integer A, that is a sum of squares.

Given an elliptic curve E defined over a field &, the set E (k) of its rational points has a
group structure. When & = Q is the field of rational numbers, E (k) is a finitely generated
group, by a famous theorem of Mordell. When £ is a function field, an analogous result
holds. Also, a height function can be defined in both cases; it is a function H : E(k) — R,
satisfying for every P € E(k) and n € N the identity H(nP) = n>H(P), where nP
denotes the sum P + ... 4+ P, with P taken n-times, with respect to the mentioned group
structure. This function is a semi-definite quadratic form, vanishing on the torsion points,
and it is called the Néron-Tate height.

Proof of (') = (a) in Theorem 2.4. Suppose the relevant branched cover exists, so there
are polynomials P(z), Q(z), and R(r) satisfying equation (1) and the other conditions.
Dividing by 0*(1) in equation (1) we obtain the Q(z)-point

(Lo, ko)
o’ Q%)
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on the genus-1 curve over Q(z) with affine equation y?> = rx* — (+ — 1). Its points over
Q(r) form a finitely generated group, and the involved degrees correspond to the values of
a Néron-Tate height.

In this particular case the elliptic curve turns out to have constant j-invariant (equal to
1728), so the curve can in fact be defined over the constant field @, that allows one to
analyze the situation in a much simpler way than in more general circumstances.

Indeed, consider the curve E which is the normalization of the closure in P> of the affine
curve (still denoted by the same symbol)

E: v=u*-1.

Since it has genus 1, it becomes an elliptic curve E if we choose, €.g., the point O := (0, i)
as origin. As we said, E is isomorphic, as a complex torus, to the quotient C/Z[i ], namely
it admits an automorphism of order 4 fixing the origin, given by (u, v) +— (iu, v). We
shall prove the following result:

Proposition 2.7. Let P(t), Q(t), and R(t) be three polynomials satisfying (1), with
deg P(t) = degQ(t) = k, degR(t) = 2k, such that t - (t — 1) - P(t) - Q(t) - R(t)
has no multiple roots. Then, up to replacing the polynomial R(t) by —R(t), the map
(u,v) = (x,y), where

P@) R() u*
D — _

“oor YTV T2

induces an endomorphism of E (as an elliptic curve) of degree d = 4k + 1.

Proof. From v? = u* — 1 and 1 = u*/v? it immediately follows that u* = -5 and
v? = L. Substituting in the expression for x and y one obtains x* = -+ gi((g and
=4 gi((tt)) which shows that the equality x* — 1 = y? is equivalent to (1). This

proves that the map (#, v) — (x, y) indeed sends E to itself. Since x vanishes at O, the
morphism sends O either to itself or to the point (0, —i), in which case we replace R(¢)
by —R(?), and then get that the morphism fixes the origin, so it is also an endomorphism
of E in the sense of elliptic curves. Its degree is easily seen to be d = 4k + 1. O

Now, condition (a) of the statement follows since, as explained above, the ring End(E) of
the endomorphisms of E (as an elliptic curve) is isomorphic to Z[i], with the degree given
by the square of the absolute value. More precisely, the endomorphism in Proposition 2.7
corresponds to the multiplication by a Gaussian integer A = a + ib and we have d =
a® + b2, concluding the proof. O

Proof of (8) = (V') in Theorem 2.4. Since for every Gaussian integer a + ib there exists
an endomorphismof E of degree d = a® + b?, we must show that every endomorphism ¢
of E of odd degree d can be obtained as above for some polynomials P(z), Q(¢), and R().
(Similar considerations are valid for even degrees, leading to slightly different analogue
conclusions.) Let ¢ € End(F) be an endomorphism of degree d = 4k + 1. We have an
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expression of the form ¢ (u, v) = (x(u, v), y(u, v)) for suitable rational functions x, y €
C(E). Now, the degree-8 map ¢ : E — Py given by r = u*/v? is clearly invariant under
the action of the subgroup G of the automorphisms of E (as algebraic curves) generated by

o (u,v) — (u,v), B (u,v) — (u, —v).

Note that ¢ generates the isotropy group of O, whereas 8 may be also described as the
map p +— & — p where § := (0, —i); of course, « has order 4 and 8 has order 2; note
that B is central in G, and «®+8 : p +> p + & is the (only) central translation in the
automorphism group of E. Since G has order 8, ¢ generates the field of invariants for G.
On the other hand, it is easy to check that 7 o ¢ = x*/y? is invariant under the action of G,
therefore it is a rational function Z(¢) of ¢.

The function ¢ has a divisor on E of the shape 4((O) 4 (8)) —2((Q1) + (@) + (Q-1) +
(Q—-)), where Q; = (I, 0). Also, the divisor of u — i* (fors = 1,...,4)is 2(Q;s) —
(0co4) — (co-), thatof v + u?is 2((0co4) — (co-)) for some labeling of the poles of u, v,
and finally thatof v — i — u?is 2(8) — 2(004). It easily follows that §, oo+ have order 2
on E whereas the Q;’s have order 4.

With this information, considering zeros and multiplicities, we see that Z (1) = x*/y?> =
t P*(¢)/R?(t) for suitable polynomials P(¢) and R(z), where deg(t P*(¢)) > deg R*(r)
— here we use the fact that d is odd, so ¢ fixes § and sends the set of poles of ¢ to itself.
Similarly, we have x4/y2 —1= 1/y2, that we can rewrite as (r — 1) Q% 1)/ R2(1). Finally,
the equation for E shows that P(¢), Q(¢), and R(z) satisfy (1) and thus lead to a cover as
in part (b") of the statement. O

Remark 2.8. As a byproduct of our argument we have obtained a correspondence be-
tween permutations as in Proposition 2.1 and polynomials satistying relation (1). Our proof
actually also produces a relevant field of definition for the coefficients, as in [3].

We recall in passing that a Weierstrass model of the curve E employed above is obtained

. . 2 .
by the inverse transformations ) := %, & 1= = = unandu = % v=1i+ ;7% that lead

to the equation 5% = %(53 — &)

Galois structure. We conclude this paragraph with some extra considerations on the
constructions we encountered so far. First of all we prove the following:

Proposition 2.9. With the above notation (in particular G = {(«, B) is the group defined
in the previous proof), the map t o p = Z(t) =: z defines a Galois cover E — Py, whose
Galois group T (of order 8d) is

I'={pr—gp+k: geG, k eKerg}. )

Before starting the proof, let us recall some classical facts about endomorphisms of elliptic
curves. We already said that the endomorphisms fixing the origin (called isogenies) corre-
spond to scalar multiplications on C: namely, if £ = C/A is given as the quotient of the
complex plane modulo a lattice, then every complex number A with A - A C A defines
an isogeny induced by the map z — Az. Clearly, every translation is also a morphism
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E — FE as an algebraic curve. Every endomorphism ¢ : £ — FE is the product of an
isogeny and a translation, namely is of the form ¢ : P — ¢@(P) + A, where ¢ is an
isogeny and A € E is fixed. The “linear” part ¢ of v can be obtained as the “differen-
tial” of v; more precisely, ¥ acts on the one-dimensional space of holomorphic 1-forms
(which are automatically invariant by translations) and its action only depends on ¢. If ¢
is induced by the multiplication by A on the complex plane, then  also acts on 1-forms
by multiplication by A.

We begin with a preliminary result:

Lemma 2.10. Let G = («, B) be the group defined above. Let ¢ : E — E be an isogeny
of odd degree. Then for every g € G one has gop = o g.

Proof. Clearly ¢ commutes with «, since both are isogenies. To prove that ¢ commutes
with B, we shall prove the equivalent fact that ¢ commutes with «? o 8, which is the trans-
lation by 8. To this end, it is useful to think in terms of the actions of ¢ and «” o 8 on the
complex plane C. The latter corresponds to the multiplication by % while ¢ corresponds
to the multiplication by a Gaussian integer a + ib with a®> + b*> = 1 (mod 2). Now, we
have to prove that the functions C > z +— (a+ib)z + % andC>z+— (a+ib)(z+ %)
coincide modulo Z[i]. This is equivalent to the fact that (@ + ib) - — I e Z[i], which

easily follows from the hypothesis that a® + b2 is odd. O

Proof of Proposition2.9. The map z = top : E — [P induces a field extension
Q(E)/Q(z) of degree 8d. Let us prove that it is invariant under the action of the group
I' defined above. Let p € E, g € G, and « € Kerg. Clearly, p(gp + k) = ¢(gp);
now, by Lemma 2.10, we have ¢(gp) = g(@(p)) and since ¢ is invariant by G we have
2(p) = (top)(p) = z(gp + «) as wanted. It remains to prove that I' has order 8d; this
is due to the fact that ¢ has odd degree, so Ker ¢ has odd order. Then the subgroup of
translations in I" has order 2 deg ¢; more precisely I is also given as the extension

{0} > )@ Kerp -1 — {1,i,—1, —i} — {1},

where the map I' — {1, i, —1, —i} denotes the action on the invariant differentials. From
this representation, it is clear that its order is 8d. Hence I' is the Galois group of the cover
z=top: E— Py. O

Proposition 2.9 implies in particular that the Galois closure of the equation in ¢ over Q(z)
given by Z(¢) = z is contained in the above extension @(E ) /@(z). Howeyver, the Galois
closure, whose Galois group is generated by the permutations o, o1, 0 corresponding to
our cover as in Proposition 2.1, is actually smaller: in fact, as already noticed, the element
Y= a? of acts on (u, v) as y (u, v) = (—u, —v), namely as a translation by §, and hence
fixes the field Q(z). We have also already remarked that y is in the center of I". Therefore
the said Galois closure is contained in the fixed field of y, and is in fact equal to it, because
no subgroup of G larger then (y) is normal in I'. This fixed field of y is easily seen to be
Qu?, v2, uv). If we set o := v/u’ and v := —1/u® we find that o and = generate this field
and o2 = 73 — ¢ This is a Weierstrass equation for an elliptic curve E* (again isomorphic
to E) which is the quotient of £ by the order-2 group of automorphisms generated by y .
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Remark 2.11. Equation (2) yields an explicit representation of the group generated by
our three permutations oo, o1, 0o, Which is isomorphic to I'/{y), and has order 4d.

Remark 2.12. Alternative proofs based on techniques similar to those employed here are
possible also for Theorems 0.5 and 0.6 in [6].

3 Sums of two squares

In this section, as announced in the Introduction, we follow an idea of Ritt [8], that we
present in a modern language, leading to a proof of the Fermat-Euler Theorem 1.2. Ac-
cording to the implication (b) = (a) in Theorem 1.1, to show that a prime number d
congruent to 1 modulo 4 is a sum of two squares, it is sufficient to show that there exist
permutations g, 01, 0o € &4 satisfying condition (b) of the theorem. We also note that
if such o9, o1, oo €xist then they necessarily generate a group of order 4d. Our explicit
construction of the permutations for prime d is essentially the same as Ritt’s one:

Proposition 3.1. Let p be a prime congruent to 1 modulo 4. Then the group IF’;, has an

element £ of order 4. Consider the affine automorphisms L and T of the line A' over F »
defined by L(x) = {x and T (x) = x + 1, and the permutations

o0 =L, o1 =T7'LT, 00 = LTILT
of the set [, = Al(]Fp). Then oo, 01, 0o satisfy condition (b) of Theorem 1.1 with d = p.

Proof. Existenceof { ]F;‘, of order 4 readily follows from the assumption p = 1 (mod 4).
Let us proceed and prove that the permutations og, 01, 0 defined in the statement satisty
the items (i)—(iii) of condition (b) in Theorem 1.1; (i) asserts that 6o = oo, Which is
indeed true by definition.

The cycle type of oy is clearly (1, 4, ..., 4), because #2 = —1, whence L and L2 have O as
a fixed point and act injectively on ]F;. Since o7 is conjugate to oy, it also has such a cycle

type. Turning to o, and using again the fact that £2 = —1, we see that o, takes the form
00 (X) = —x + ¢, for a suitable ¢ € F,, (actually ¢ = —¢ — 1). Therefore it is an (affine)
involution of the line A!, and since p # 2its cycle type is of the form (1, 2, .. ., 2), which
completes the proof of condition (ii).

To establish (iii) we note that the commutator [og, o1] is a nontrivial translation, so it acts
transitively on I . O

Combining Theorem 1.1 and Proposition 3.1 one readily deduces the well-known Fermat-
Euler theorem, stated in the Introduction as Theorem 1.2. As already mentioned, the re-
sulting proof of this classical result is extraordinarily demanding: a closer look shows that,
in addition to the construction of the permutations in Proposition 3.1, it depends also on:

(A) The topological construction of a finite cover of P1(C) \ {0, 1, oo} such that lifting
three simple disjoint loops based at a point Py and encircling 0, 1, oo one obtains the
given permutations o, o1, 0 On the fiber over Py. This construction appears, €.g.,
in [12, Theorems 4.27 and 4.31]; it may be proved by patching local covers or taking
a suitable quotient of the universal cover of P{(C) \ {0, 1, co}.
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(B) The Riemann Existence Theorem, used to realize the said topological cover as the
unramified part of a ramified cover of complex algebraic curves. This step is deli-
cate and requires fairly hard analysis, based either on the Dirichlet principle or on
the vanishing of suitable cohomology of holomorphic sheaves on Riemann surfaces.
(See again [12, Theorem 4.27].)

(C) The structure of the endomorphism ring of the elliptic curve E of Section 2, namely
its identification with Z[i]. Recall that £ may be identified with the torus C/Z[i] and
that it is characterized by the property of having a vanishing Weierstrass invariant g3
(an easy direct computation which amounts to showing that 3 <z (0) o %is0
—see [11] for careful proofs of all of these facts).

In conclusion, all of these steps involve some nontrivial mathematics, and (B) is particu-
larly delicate. Combining the (self-contained) proof of Proposition 3.1 with the arguments
used in [6] to establish Theorem 2.4, one gets instead a proof of Theorem 1.2 based on
item (A) above and on the existence and rigidity (up to scaling) of a Euclidean structure
on the orbifold $%(4, 4, 2).

On the other hand there exist many few-lines self-contained proofs of the Fermat-Euler
result. Nevertheless, one cannot say that the proof given above contains, from the logical
viewpoint, any classical proof, as for instance the argument based on the unique factor-
ization of Z[i]. In fact, although this ring plays an implicit role in item (C) above, its
factorization properties are not employed, neither explicitly nor implicitly.

Ramified covers with signature. An alternative approach to Theorem 2.4, to which the
argument in [6] is closer and that does not require items (B) and (C) above, is described in
a sketchy but complete fashion in [10, pp. 60-63]. This avoids the viewpoint of complex
algebraic curves altogether, being based on the notion of ramified cover with signature
which, roughly speaking, consists of a topological cover of a space deprived of finitely
many points, together with a ramified structure above the remaining points, of the same
type as a map of the shape z > z”. It corresponds to what is called geometric universal
cover in the language of 2-orbifolds used in [6].

In our case we have a universal covering with signature (4, 4, 2), meaning a space Y that
is obtained by suitably completing the quotient of the universal cover of P1(C) \ {0, 1, oo}
by the normal subgroup N of 71 (P1(C) \ {0, 1, o0}) generated by 3, ¢}, ¢, where co,
€1, Cxo are the simple disjoint loops already mentioned above. As stated in [10, p. 63],
one realizes Y as the Euclidean plane C, with covering group I" given by the rigid motions
of the plane preserving the orientation and the lattice Z[i]; it is then easy to check that
I' = 7P (C) \ {0, 1, 00})/N. This covering has the following universal property: Let
Y — Pi(C) be a ramified cover, of degree d, unramified over P;(C) \ {0, 1, co} and
with ramifications of order dividing 4 over O and over 1, and dividing 2 over co. Then
there exists a subgroup H < T of index d such that ¥ ~ C/H; in addition, the cover
C—>C/T ~2P1(©) factorsasC - C/H =¥ — C/T" ~ P (C).

An explicit description of the elements of I' as affine transformations of the complex line
is as follows:

'={Coz>uz+xr:uc{l,i—1,—i}, » € Z[i]}. 3)
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There are three orbits of points in C having non trivial stabilizers:‘ the first one is Z[i],
where each point has a stabilizer of order 4; the second one is % + Z[i], also having

a stabilizer of order 4; the third one is <% + Z[i ]) U (% + Z[i ]), having a stabilizer of
order 2. They correspond to the pre-images of 0, 1, co.

Theorem 3.2. The group I defined by equation (3) is the universal group of type (4, 4, 2).

Proof. We confine ourselves to a sketch. Let G be a group of type (4,4, 2), so G is
generated by two elements «, B with o* = g* = (¢f)? = 1. It is immediate from this
presentation that the congruence class modulo 4 of the length of a word representing an
element of G only depends on that element. Also, it is easily checked that the words of
length divisible by 4 commute and can be generated by u := o> and v := «f>. Hence
we always have a group homomorphism G — Z/47Z whose kernel is an Abelian (normal)
subgroup generated by two elements. So we have an exact sequence {0} — (u, v) —
G — Z/AZ, where (u, v) = (Z/aZ) x (Z/bZ) for integers a, b (possibly zero or one) and
the last morphism (which need not be surjective) is the reduction modulo 4 of the word
length. We note that the action (by conjugation) of G on (u, v) is uniquely determined by
the initial relations «* = g* = (¢8)> = 1. Coming back to our group I', let us consider

the three elements co, ¢1, ¢oo Of I defined by co(z) =iz, c1(z) = 1 +1iz, co(z) = —z+1.
Then cg = c‘l1 = cgo = 1 and cpc; = co. Clearly, & = 6(3)01 and v = coc% act as

i(z) =z41iand v(z) = z — 1, so they generate the subgroup of translations, isomorphic
to Z[i] = Z2?. Hence we have the exact sequence

{0} > Z> > T — Z/AZ — {0}.

Note that the action of I" on Z[i] is compatible with the action of G on (u, v), in the natural
sense: for instance we have in G the relation cua~! = v=!, which corresponds in I to the
relation colicy ! — =1, From this fact it easily follows that G is a quotient of I'. O

Let us get back to the setting of Theorem 2.4, and let us use the universal covering with
signature (4, 4, 2), denoted by Y as above. A cover X of the Riemann sphere with the
relevant branching types exists if and only if it can be realized as the quotient of ¥ by a
subgroup A of I', of odd index d in I'. The permutations g, o1, 0 then correspond to
the images of ¢y, c1, ¢ in the permutation representation of I' on the right cosets I'/A.
One easily sees that if A exists then it must contain an element o of order 4, which must
be a rotation of 7 /2 around some point. The orbit of the origin by A is a lattice stable
under ¢, which corresponds to an ideal in Z[i]. This ideal is principal, and we find again
the conclusion that d is a sum of two squares. As a matter of fact, to conclude one can also
avoid invoking the principal-ideal ring structure, by observing that the said lattice must
have a basis of type v, o v, whence its index is necessarily a sum of two squares.

Remark 3.3. When the degree is an odd prime p, this approach also allows one to elu-
cidate the structure of the group G generated by the permutations og, o1, 0. In fact, as
stated in the proof of Theorem 3.2, the group generated by the words of length 4 in o9, o1
is commutative. Hence G has an Abelian subgroup G of index at most 4. Since G is a
transitive subgroup of &, it contains a p-cycle g, which must lie in Go. Then Go must be
the group generated by g.
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