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1 Introduction
The presentnote does not contain new results. It may be considered as an addendum to [6],
presenting several different viewpoints around one of the results proved there, and some

links of this result with classical works. In particular, we provide a new reading of the
proofs of the following known facts:

Theorem 1.1 ([8, 6]). Let d be an integer congruent to 1 modulo 4. Then the following
conditions are equivalent to each other:

a) d is the sum of the squares of two integers.

b) There exist permutations s0,s1, s8 d such that:

Albert Girard machte 1632 die Beobachtung, dass eine ungerade Primzahl p genau
dann Summe zweier Quadrate ist, wenn p 1 mod 4. Da Fermat am 25. Dezember

1640 in einem Brief an Mersenne berichtete, er habe einen Beweis dafür gefunden,
wird der Satz gelegentlich FermatsWeihnachtstheorem genannt. Euler gelang 1749 ein
Beweis mit Hilfe der Methode des unendlichen Abstiegs. Neuere Forschungen zeigten,

dass eine beliebige natürliche Zahl d 1 mod 4 Summe zweier Quadrate ist,
genau dann wenn drei Permutationen von d Objekten existieren, die gewissen einfachen

kombinatorischen Bedingungen genügen. In der vorliegenden Arbeit zeigen die
Autoren dieses Resultat aus einem neuen Blickwinkel und beweisen dabei auch den
klassischen Satz für Primzahlen neu.
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i) s0s1 s8.
ii) The cycles in the decompositions of s0, s1, and s8 have lengths, respectively,

1, 4, 4), 1,4, 4), and 1,2, 2).
iii) The subgroup of d generated by s0, s1, s8 acts transitively on the set

{1, d}.
Theorem 1.2 Fermat-Euler). If p is a prime and p is congruent to 1 modulo 4 then p is

the sum of the squares of two integers.

In this work, we focus on the relation between these purely algebraic results and the theory
of ramified) covers of surfaces. The latter, in turn, is connected to algebraic geometry in
the following way: every smooth complex algebraic curve can be viewed as a real surface,
and every non-constant morphism between complex algebraic curves can be viewed as a

branched or ramified) cover of the corresponding topological surfaces. We shall give
later more precise definitions.) Especially, the algebraic curves coming into play will
be the projective line topologically the sphere) and genus-one curves, or elliptic curves
topologically two-dimensional tori).

It is well-known that the crucial point for the classification of integers which are sums of
two squares resides in the above Fermat-Euler theorem, which concerns the representation
of primes. Among the many different proofs of this classical theorem, the one provided by
Ritt [8] in the 1920’smakes use of the construction of three permutations as in Theorem 1.1
and of the corresponding unramified cover of P1(C) \ {0, 1,8}.
The full Theorem 1.1, for arbitrary d and not only for primes, was established in [6]
using the translation of condition b) into the geometric question of the existence of a

branched cover over the sphere matching certain prescribed branching data. This is the
real-differential analogue of the algebraic viewpoint of Ritt, with the complex projective
line replaced by the real sphere and covers defined in the sense of differential topology.

In the differential context, a branched cover is a surjectivemap p between surfaces, locally
modeled on maps of the form (C, 0) z za (C, 0) for some a N; moreover 0 in
the target C is a branching point of p if a > 1, in which case a is called the local degree of
p at 0 in the source C, and the branching data of p consist of the local degrees of p at the
preimages of its branching points. Note that if the map is proper and all local degrees are

equal to one, then the map is a cover in the classical sense of algebraic topology. We also
say it is an unramified cover. A modern treatment of this theory can be found in Fulton’s
book [2].
Given a branched cover p as above, of total degree d, one gets permutations in d by
considering the monodromy of p around the branching points. More precisely, for any
branching point one gets a permutation whose cycle decomposition lengths are the local
degrees of p at the preimages of the point.

Equivalence between a) and b) was proved in [6] by interpreting branched covers as covers

between 2-orbifolds, and by showing, using the geometry of orbifolds, that the degree

of an orbifoldcover arising from permutations as in b) must satisfy a), and conversely. In
this note we will reprove Theorem 1.1 using the fact that, by the Riemann Existence Theorem,

any topological branched cover over the sphere can be realized as a ramified cover of
P1(C) by a complex algebraic curve see [3, 12]). Using this complex-algebraic viewpoint
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we will show that the existence of permutations as in condition b) is equivalent to the
existence of a certain endomorphism of the elliptic curve E with Weierstrass equation
y2 x3-x, namelyof the complex torus E C/Z[i]. Equivalencewith condition a) will
then followfrom the fact that the degree of an endomorphismof this elliptic curve is always
the sum of two squares. We mention that the link between branched covers and elliptic
curves already appears implicitly in [10], and especially in [3]. The latter paper, among
many other things, also contains explicit constructions of algebraic covers with
monodromy given by the permutations as in condition b), and of several other similar ones.

As we mentioned, we shall construct in our proofs some branched covers of the sphere,
described algebraically by morphisms P1(C) P1(C), ramified only above {0, 1,8}.
These covers, which are connected with the celebrated Grothendieck theory of dessins
d’enfants [9], can be described by rational functions of the form P(t)/Q(t), for polynomials

P(t) and Q(t) such that the product P(t)Q(t)(P(t) - Q(t)) has “a few” distinct
zeros. We take the opportunity to explore this connection, which will lead us to mention
the celebrated abc-theorem for polynomials.

Our version of the proof of the classical Fermat-Euler theorem follows the mentioned idea

from the old work by Ritt [8], and it builds on Theorem 1.1 and on the different viewpoints
on branched covers developed to show it. Of course, such a proof has a small interest in
itself, since it relies on deep results, whereas many elegant and simple proofs are known.
However, the connection seems a striking one to us, and it raises the question whether a

direct proof exists in purely combinatorial terms related to permutations as in condition b).

This paper is organized as follows: in Section 2 we spell out the correspondence between
condition b) and branched covers, introducing the reader to the more general context
of the Hurwitz existence problem. Then we exploit the Riemann Existence Theorem to

interpret and reprove Theorem 1.1 in terms of the endomorphisms of an elliptic curve.
In Section 3 we show how the algebraic and geometric machinery thus developed can be

employed to prove the Fermat-Euler theorem. We conclude the paper by describing an

alternative approach to the geometric version of Theorem 1.1, based on the notion of
universal ramified cover with signature. We note that universal ramified covers with signature
appear implicitly also in [6], where they are presented in the language of 2-orbifolds and

defined making use also of the metric. Once again, we present the link between different
viewpoints about the same objects.

2 Certain branched covers of the Riemann sphere

As announced in the Introduction, we begin by providing a geometric translation of
condition b) in Theorem 1.1. To do so we will need some definitions and notation. Let

p : be a branched topological cover between real, closed, and connected surfaces.
We say that p has branching type a1, ar over a point P where a1, ar are

positive integers, if p-1(P) consists of r distinct points Q1, Qr such that locally at

Qi the map p may be represented as z zai, on viewing and as locally
homeomorphic to the complex plane, with P and Qi corresponding to 0. Note that p has a

well-defined total degree d and that the branching type of any point of is a partition of
d. The branching data of p is given by the collection of all these partitions.
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By considering the monodromy of a branched cover a representation of the fundamental
group of the complement of the branching points into the symmetric group d on the d
letters {1, d}, already employed in [4], see also [10, 12]), one gets the following:

Proposition 2.1. Condition b) in Theorem 1.1 is equivalent to:

b There exists a branched cover P1(C) of degree d, ramified over three points,
with branching data 1,4, 4), 1, 4, 4), 1,2, 2).

Proof. Suppose a cover p : P1(C) as in b exists. Without loss of generality we

can assume that the branching points in P1(C) are 0, 1,8. Setting X P1(C)\{0,1,8}
and X p-1(X) we see that p induces a genuine degree-d cover X X. Moreover,
choosing loops around the points removed from P1(C) we see that p1(X) has a natural
presentation as .0, .1, .8| .0.1 .8 Upon fixing a basepoint P0 in X and identifying
p-1(P0) with {1, d} we then get the monodromy representation : p1(X) d
obtained by lifting to X the loops in X. We now set sz .z) for z 0, 1,8, and we

prove that s0, s1, s8 satisfy the points i)–(iii) of condition b) in Theorem 1.1. Point i)
follows from the fact that is a representation. Moreover sz has one cycle for each point
in p-1(z), and the length of the cycle is the local degree of p at that point, whence ii).
Finally point iii) follows from the fact that X is connected.

We have shown that condition b implies condition b) in Theorem1.1, and we now prove
that b) implies b by reversing the construction. Given s0,s1, s8 d as in b), by
point i), if we set .z) sz for z 0, 1,8, we get a representation p1(X) d

whence a cover
P1(C) by adding to

X X, that is connected by iii). We then get the desired cover
X one point for each cycle of sz for all z 0, 1,8.

Remark 2.2. For a branched cover P1(C) of degree d 4k + 1 and ramified over
three points, the branching data 1, 4, 4), 1, 4, 4), and 1, 2, 2) force to
be P1(C) too. In fact the partitions have lengths k+1, k+ 1, and 2k+1, and the Riemann-
Hurwitz formula shows that if the genus of is g then 2(1 - g) - k + 1)- k + 1)-2k + 1) 4k + 1) · 2 - 3), which implies that g 0.

By this remark, from now on we only deal with the case P1(C).

Remark 2.3. Up to an automorphism of the target P1(C) one can suppose without loss

of generality that, if a branched cover P1(C) P1(C) has three branching points, these

points are 0, 1, and 8. For a cover as in Theorem 2.4 we will always assume that the
branching types are 1,4, 4) over 0 and 1, and 1,2, 2) over8.

Taking into account Proposition 2.1, the following result established as Theorem 0.4 in [6]
is equivalent to Theorem 1.1:

Theorem 2.4. Suppose d 4k + 1 for some k N The following conditions are
equivalent to each other:

b There exists a branched cover P1(C) of degree d, ramified over three points,
with branching data 1,4, 4), 1,4, 4), 1,2, 2).

a) d x2 + y2 for some x, y N
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The proof given in [6] of this result employs the geometry of 2-obifolds. In particular, it
exploits the fact that S2(4, 4, 2), namely the sphere with three cone points of orders 4, 4,

and 2, bears a Euclidean geometric structure that is rigid up to rescaling. We also mention

that [6] contains several other results giving partial solutions to the so-called Hurwitz
existence problem, which asks whether a set of branching data satisfying the necessary

condition given by the Riemann-Hurwitz formula is actually realized by an existent
topological branched cover. We address the reader to [7] for an account of the history of this
old and still not completely solved problem.

We will now illustrate a proof of Theorem 2.4, and hence of Theorem 1.1, in terms of
branched covers of complex algebraic curves. To begin we spell out the following
consequence of the Riemann Existence Theorem already anticipated in the Introduction:

Proposition 2.5. If a topological cover of the sphere onto itself matching certain branching

types exists, it can also be realized as a cover of algebraic curves p : P1 P1,
defined over C or even over the algebraic closure Q of Q in C.

Note that a map p as in this proposition will be a rational function with complex
coefficients of a complex variable t, and the coefficients may actually be assumed, by
specialization or operating with an automorphism of the domain, to lie in Q This last fact
implies that the absolute Galois group of Q acts on the set of such covers, leading to
Grothendieck’s theory of dessins d’enfants, for which the interested reader is referred to [9].

Let us now concentrate on branching types as in Theorem 2.4. To discuss the existence
of a corresponding map p as in Proposition 2.5 we further normalize the situation noting
that, up to composition with an automorphism of the domain P1, we can assume without
loss of generality that 0 respectively, 1, and 8) is the unique unramified point above 0
respectively, 1, and8). The branching conditions then imply that the map p, if any, can

be expressed as

p(t)
t P4(t)
R2(t)

1 +
t - 1)Q4(t)

R2(t)
with deg P(t) deg Q(t) k, and deg R(t) 2k. More precisely, a cover as

in Theorem 2.4 exists if and only if there exist polynomials P(t), Q(t), R(t) Q[t]
without multiple roots such that tP(t), t - 1)Q(t), and R(t) are pairwise coprime,
deg P(t) deg Q(t) k, deg R(t) 2k, and

t P4 t) t - 1)Q4 t) + R2 t). 1)

Remark 2.6. It is worth noticing that when three such polynomials exist, they provide
an extremal example of the so-called abc-theorem for polynomials, due to Stothers and

Mason. We recall the statement of this result, given for instance in [5, Theorem 7.1]:
Let a(t), b(t), c(t) be relatively coprime polynomials with complex coefficients satisfying
a(t) + b(t) c(t). Then the number of distinct zeros of a(t)b(t)c(t) is at least

1 + max{deg a(t), deg b(t), degc(t)}.
In our case, setting

a(t) t - 1)Q4 t), b(t) R2 t), c(t) tP4 t)
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we get that the product a(t)b(t)c(t) has at most 1 + k + 2k + 1 + k 4k + 2 distinct
zeros, while the maximum of the degrees is 4k + 1, so the above bound is attained. The
abc-theorem for polynomials, that admits generalizations to function fields of curves of
arbitrary genus, is nowadays a well-known tool for studying diophantine equations over
function fields. See in this respect [13] and [14]; other extremal examples for the
abctheorem, still coming from geometric constructions, are treated in [13]. Its analogue for
number fields is the celebrated abc-conjecture ofMasser and Oesterlé, which is discussed,
e.g., in [5, Chapter 7]. It is still open, and it is one of the deepest problems in diophantine
analysis.

Before starting the proof that b a) in Theorem 2.4, we recall some basic facts
about elliptic curves or complex tori). Every smooth cubic curve has genus one, and

conversely every smooth genus-one curve is isomorphic to a smooth cubic. In turn, such
curves have an algebraic group structure, unique up to the choice of the neutral element,
and conversely every irreducible projective algebraic group of dimension one is a genusone

curve, whence isomorphic to a smooth plane cubic. Such one-dimensional algebraic
groups are called elliptic curves. From the complex analytic viewpoint, elliptic curves are

complex tori, i.e., quotients C/ for a lattice C. One particular elliptic curve will be

relevant for our purposes: it arises as the quotient E := C/Z[i] by the lattice of Gaussian
integers, where i v-1, and it is characterized by the fact of having an automorphism
of order 4 fixing the origin the neutral element). It can also be defined algebraically as

the projective completion of the affine curve of equation y2 x3 - x, where as the origin
one can take the point at infinity; the automorphism x, y) (-x, iy) sends the curve
to itself, has order 4 and fixes the point at infinity. Alternatively, E can be defined as the
smooth completion of the affine curve v2 u4 - 1. The ring of endomorphisms of E as

an elliptic curve i.e., the group of the endomorphisms fixing the origin) is isomorphic to
the ring Z[i ]; and actually, each such endomorphism is induced by the multiplication by a

complex number .; since the endomorphism sends Z[i] to itself, one necessarily has that

Z[i]. The degree of such an endomorphism is then easily seen to be the norm · of
the algebraic integer that is a sum of squares.

Given an elliptic curve E defined over a field k, the set E(k) of its rational points has a

group structure. When k Q is the field of rational numbers, E(k) is a finitely generated

group, by a famous theorem of Mordell. When k is a function field, an analogous result
holds. Also, a height function can be defined in both cases; it is a function H : E(k). R
satisfying for every P E(k) and n N the identity H(nP) n2H(P), where nP
denotes the sum P + + P, with P taken n-times, with respect to the mentioned group
structure. This function is a semi-definite quadratic form, vanishing on the torsion points,
and it is called the Néron-Tate height.

Proof of b a) in Theorem 2.4. Suppose the relevant branched cover exists, so there
are polynomials P(t), Q(t), and R(t) satisfying equation 1) and the other conditions.
Dividing by Q4(t) in equation 1) we obtain the Q t)-point

P(t)
Q(t)

R(t)
Q2(t)
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on the genus-1 curve over Q t) with affine equation y2 tx4 - t - 1). Its points over

Q t) form a finitely generated group, and the involved degrees correspond to the values of
a Néron-Tate height.

In this particular case the elliptic curve turns out to have constant j -invariant equal to
1728), so the curve can in fact be defined over the constant field Q that allows one to
analyze the situation in a much simpler way than in more general circumstances.

Indeed, consider the curve E which is the normalization of the closure in P2 of the affine
curve still denoted by the same symbol)

E : v2 u4 - 1.

Since it has genus 1, it becomes an elliptic curve E if we choose, e.g., the point O := 0, i
as origin. As we said, E is isomorphic, as a complex torus, to the quotient C/Z[i ], namely
it admits an automorphism of order 4 fixing the origin, given by u,v) iu,v). We

shall prove the following result:

Proposition 2.7. Let P(t), Q(t), and R(t) be three polynomials satisfying 1), with
deg P(t) deg Q(t) k, deg R(t) 2k, such that t · t - 1) · P(t) · Q(t) · R(t)
has no multiple roots. Then, up to replacing the polynomial R(t) by -R(t), the map

u,v) x, y), where

x u
P(t)
Q(t)

y v
R(t)

Q2(t)
t

u4

v2

induces an endomorphism of E as an elliptic curve) of degree d 4k + 1.

Proof. From v2 u4 - 1 and t u4/v2 it immediately follows that u4 t

t-1 and

v2 1

t-1 Substituting in the expression for x and y one obtains x4 t

t-1
P4(t
Q4(t and

y2 1

t-1
R2(t
Q4(t

which shows that the equality x4 - 1 y2 is equivalent to 1). This

proves that the map u,v) x, y) indeed sends E to itself. Since x vanishes at O, the
morphism sends O either to itself or to the point 0,-i in which case we replace R(t)
by -R(t), and then get that the morphism fixes the origin, so it is also an endomorphism
of E in the sense of elliptic curves. Its degree is easily seen to be d 4k + 1.

Now, condition a) of the statement follows since, as explained above, the ring End(E) of
the endomorphismsof E as an elliptic curve) is isomorphic to Z[i], with the degree given
by the square of the absolute value. More precisely, the endomorphism in Proposition 2.7
corresponds to the multiplication by a Gaussian integer a + ib and we have d
a2 + b2, concluding the proof.

Proof of a) b in Theorem 2.4. Since for every Gaussian integer a + ib there exists
an endomorphism of E of degree d a2 + b2, we must show that every endomorphism.
of E of odd degree d can be obtained as above for some polynomials P(t), Q(t), and R(t).
Similar considerations are valid for even degrees, leading to slightly different analogue

conclusions.) Let End(E) be an endomorphism of degree d 4k + 1. We have an
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expression of the form u, v) x(u, v), y(u, v)) for suitable rational functions x, y

C(E). Now, the degree-8 map t : E P1 given by t u4/v2 is clearly invariant under
the action of the subgroup G of the automorphisms of E as algebraic curves)generated by

a : u, v) iu, v), ß : u, v) u,-v).

Note that a generates the isotropy group of O, whereas ß may be also described as the
map p d - p where d := 0,-i); of course, a has order 4 and ß has order 2; note
that ß is central in G, and a2 ß : p p + d is the only) central translation in the
automorphism group of E. Since G has order 8, t generates the field of invariants for G.
On the other hand, it is easy to check that t x4/y2 is invariant under the action of G,
therefore it is a rational function Z(t) of t.
The function t has a divisor on E of the shape 4((O) + d))- 2((Q1) + Qi + Q-1) +
Q-i where Ql l,0). Also, the divisor of u - i s for s 1, 4) is 2(Qis -

(8+)- (8-), that of v + u2 is 2((8+)- (8-)) for some labeling of the poles of u,v,
and finally that of v- i - u2 is 2(d)-2(8+). It easily follows that d, 8± have order 2
on E whereas the Ql’s have order 4.

With this information, considering zeros and multiplicities, we see that Z(t) x4/y2

tP4(t)/R2(t) for suitable polynomials P(t) and R(t), where deg(tP4(t)) > deg R2(t)
– here we use the fact that d is odd, so fixes d and sends the set of poles of t to itself.
Similarly, we have x4/y2- 1 1/y2, that we can rewrite as t - 1)Q4(t)/R2(t). Finally,
the equation for E shows that P(t), Q(t), and R(t) satisfy 1) and thus lead to a cover as

in part b of the statement.

Remark 2.8. As a byproduct of our argument we have obtained a correspondence
between permutations as in Proposition2.1 and polynomialssatisfying relation 1).Our proof
actually also produces a relevant field of definition for the coefficients, as in [3].

We recall in passing that a Weierstrass model of the curve E employed above is obtained

by the inverse transformations :=
u

v-i :=
u2

v-i u. and u v i + .2 that lead

to the equation .2 1
2i

3 -
Galois structure. We conclude this paragraph with some extra considerations on the
constructions we encountered so far. First of all we prove the following:

Proposition 2.9. With the above notation in particular G a, ß is the group defined
in the previous proof the map t Z(t) =: z defines a Galois cover E P1, whose
Galois group of order 8d) is

p gp + : g G, Ker 2)

Before starting the proof, let us recall some classical facts about endomorphisms of elliptic
curves. We already said that the endomorphisms fixing the origin called isogenies)
correspond to scalar multiplications on C: namely, if E C/ is given as the quotient of the
complex plane modulo a lattice, then every complex number with · defines
an isogeny induced by the map z .z. Clearly, every translation is also a morphism



On certain permutation groups and sums of two squares 177

E E as an algebraic curve. Every endomorphism : E E is the product of an

isogeny and a translation, namely is of the form : P P) + A, where is an

isogeny and A E is fixed. The “linear” part of can be obtained as the “differential”

of .; more precisely, acts on the one-dimensional space of holomorphic 1-forms
which are automatically invariant by translations) and its action only depends on If

is induced by the multiplication by on the complex plane, then also acts on 1-forms
by multiplication by

We begin with a preliminary result:

Lemma 2.10. Let G a, ß be the group defined above. Let : E E be an isogeny
of odd degree. Then for every g G one has g g.

Proof. Clearly commutes with a, since both are isogenies. To prove that commutes
with ß, we shall prove the equivalent fact that commutes with a2 ß, which is the
translation by d. To this end, it is useful to think in terms of the actions of and a2 ß on the
complex plane C. The latter corresponds to the multiplication by 1+i

2 while corresponds

to the multiplication by a Gaussian integer a + ib with a2 + b2 1 mod 2). Now, we
have to prove that the functions C z a+ ib)z+ 1+i

2 and C z a+ ib)(z+ 1+i
2

coincide modulo Z[i ]. This is equivalent to the fact that a + ib) 1+i
2 - 1+i

2 Z[i ], which

easily follows from the hypothesis that a2 + b2 is odd.

Proof of Proposition 2.9. The map z t : E P1 induces a field extension
Q E)/Q z) of degree 8d. Let us prove that it is invariant under the action of the group

defined above. Let p E, g G, and Ker Clearly, gp + gp);
now, by Lemma 2.10, we have gp) g( p)) and since t is invariant by G we have

z(p) t p) z(gp + as wanted. It remains to prove that has order 8d; this
is due to the fact that has odd degree, so Ker has odd order. Then the subgroup of
translations in has order 2 deg.; more precisely is also given as the extension

{0} d Ker {1,i,-1,-i} {1},

where the map {1,i,-1,-i} denotes the action on the invariant differentials. From
this representation, it is clear that its order is 8d. Hence is the Galois group of the cover
z t : E P1.

Proposition 2.9 implies in particular that the Galois closure of the equation in t over Q z)
given by Z(t) z is contained in the above extension Q E)/Q z). However, the Galois
closure, whose Galois group is generated by the permutations s0, s1, s8 corresponding to
our cover as in Proposition 2.1, is actually smaller: in fact, as already noticed, the element

:= a2 ß acts on u,v) as u, v) (-u,-v), namely as a translation by d, and hence
fixes the field Q t). We have also already remarked that is in the center of Therefore
the said Galois closure is contained in the fixed field of and is in fact equal to it, because

no subgroup of G larger then is normal in This fixed field of is easily seen to be

Q u2,v2, uv). Ifwe set s := v/u3 and t :=-1/u2 we find that s and t generate this field
and s2 t3-t This is aWeierstrass equation for an elliptic curve E* again isomorphic
to E) which is the quotient of E by the order-2 group of automorphisms generated by
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Remark 2.11. Equation 2) yields an explicit representation of the group generated by
our three permutations s0, s1, s8, which is isomorphic to / and has order 4d.

Remark 2.12. Alternative proofs based on techniques similar to those employed here are

possible also for Theorems 0.5 and 0.6 in [6].

3 Sums of two squares

In this section, as announced in the Introduction, we follow an idea of Ritt [8], that we
present in a modern language, leading to a proof of the Fermat-Euler Theorem 1.2.
According to the implication b) a) in Theorem 1.1, to show that a prime number d
congruent to 1 modulo 4 is a sum of two squares, it is sufficient to show that there exist
permutations s0,s1, s8 d satisfying condition b) of the theorem. We also note that

if such s0, s1, s8 exist then they necessarily generate a group of order 4d. Our explicit
construction of the permutations for prime d is essentially the same as Ritt’s one:

Proposition 3.1. Let p be a prime congruent to 1 modulo 4. Then the group *p has an

element of order 4. Consider the affine automorphisms L and T of the line 1 over p

defined by L(x) x and T x) x + 1, and the permutations

s0 := L, s1 T-1LT, s8 := LT-1LT

of the set p 1( p). Then s0, s1, s8 satisfy condition b) of Theorem 1.1 with d p.

Proof. Existence of *p of order 4 readily follows fromthe assumption p 1 mod 4).
Let us proceed and prove that the permutations s0, s1, s8 defined in the statement satisfy
the items i)–(iii) of condition b) in Theorem 1.1; i) asserts that s8 s0s1, which is

indeed true by definition.

The cycle type of s0 is clearly 1,4, 4), because 2 -1, whence L and L2 have 0 as

a fixed point and act injectively on *p. Since s1 is conjugate to s0, it also has such a cycle

type. Turning to s8, and using again the fact that 2 -1, we see that s8 takes the form

s8(x) -x + c, for a suitable c p actually c - - 1). Therefore it is an affine)
involution of the line 1, and since p 2 its cycle type is of the form 1,2, 2), which
completes the proof of condition ii).
To establish iii) we note that the commutator [s0,s1] is a nontrivial translation, so it acts

transitively on p.

Combining Theorem 1.1 and Proposition 3.1 one readily deduces the well-known Fermat-
Euler theorem, stated in the Introduction as Theorem 1.2. As already mentioned, the
resulting proof of this classical result is extraordinarily demanding: a closer look shows that,
in addition to the construction of the permutations in Proposition 3.1, it depends also on:

A) The topological construction of a finite cover of P1(C) \ {0,1,8} such that lifting
three simple disjoint loops based at a point P0 and encircling 0, 1,8 one obtains the
given permutations s0, s1, s8 on the fiber over P0. This construction appears, e.g.,
in [12, Theorems 4.27 and 4.31]; it may be provedby patching local covers or taking
a suitable quotient of the universal cover of P1(C) \ {0,1,8}.
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B) The Riemann Existence Theorem, used to realize the said topological cover as the
unramified part of a ramified cover of complex algebraic curves. This step is delicate

and requires fairly hard analysis, based either on the Dirichlet principle or on
the vanishing of suitable cohomologyof holomorphic sheaves on Riemann surfaces.
See again [12, Theorem 4.27].)

C) The structure of the endomorphism ring of the elliptic curve E of Section 2, namely
its identification with Z[i ]. Recall that E may be identified with the torus C/Z[i] and

that it is characterized by the property of having a vanishingWeierstrass invariant g3

an easy direct computation which amounts to showing that Z[i]\{0} .-6 is 0
– see [11] for careful proofs of all of these facts).

In conclusion, all of these steps involve some nontrivial mathematics, and B) is particularly

delicate. Combining the self-contained) proof of Proposition 3.1 with the arguments
used in [6] to establish Theorem 2.4, one gets instead a proof of Theorem 1.2 based on
item A) above and on the existence and rigidity up to scaling) of a Euclidean structure
on the orbifold S2(4, 4, 2).

On the other hand there exist many few-lines self-contained proofs of the Fermat-Euler
result. Nevertheless, one cannot say that the proof given above contains, from the logical
viewpoint, any classical proof, as for instance the argument based on the unique
factorization of Z[i]. In fact, although this ring plays an implicit role in item C) above, its
factorization properties are not employed, neither explicitly nor implicitly.

Ramified covers with signature. An alternative approach to Theorem 2.4, to which the
argument in [6] is closer and that does not require items B) and C) above, is described in
a sketchy but complete fashion in [10, pp. 60–63]. This avoids the viewpoint of complex
algebraic curves altogether, being based on the notion of ramified cover with signature
which, roughly speaking, consists of a topological cover of a space deprived of finitely
many points, together with a ramified structure above the remaining points, of the same

type as a map of the shape z zn. It corresponds to what is called geometric universal
cover in the language of 2-orbifolds used in [6].

In our case we have a universal covering with signature 4, 4, 2), meaning a space Y that
is obtained by suitably completing the quotient of the universal cover of P1(C)\{0,1,8}
by the normal subgroup N of p1(P1(C) \ {0, 1,8}) generated by c40, c41, c28 where c0,

~

c1, c8 are the simple disjoint loops already mentioned above. As stated in [10, p. 63],
one realizes Y as the Euclidean plane C, with covering group given by the rigid motions
of the plane preserving the orientation and the lattice Z[i ]; it is then easy to check that

p1(P1(C) \ {0,1,8})/N. This covering has the following universal property: Let
P1(C) be a ramified cover, of degree d, unramified over P1(C) \ {0, 1,8} and

with ramifications of order dividing 4 over 0 and over 1, and dividing 2 over 8. Then
there exists a subgroup H < of index d such that C/H; in addition, the cover
C .C/ P1(C) factors as C C/H C/ P1(C).

An explicit description of the elements of as affine transformations of the complex line
is as follows:

{C z uz + : u {1, i,-1,-i}, Z[i ]}. 3)
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There are three orbits of points in C having non trivial stabilizers: the first one is Z[i],
where each point has a stabilizer of order 4; the second one is 1+i

2 + Z[i], also having

a stabilizer of order 4; the third one is 12 + Z[i ] i2 + Z[i ] having a stabilizer of

order 2.

~

They correspond to the pre-images of 0,1,8.
Theorem 3.2. The group defined by equation 3) is the universal group of type 4,4, 2).

Proof. We confine ourselves to a sketch. Let G be a group of type 4,4,2), so G is
generated by two elements a, ß with a4 ß4 aß)2 1. It is immediate from this
presentation that the congruence class modulo 4 of the length of a word representing an

element of G only depends on that element. Also, it is easily checked that the words of
length divisible by 4 commute and can be generated by u := a3ß and v := aß3. Hence
we always have a group homomorphism G Z/4Z whose kernel is an Abelian normal)
subgroup generated by two elements. So we have an exact sequence {0} u,v
G Z/4Z where u, v Z/aZ ×(Z/bZ for integers a, b possibly zero or one) and

the last morphism which need not be surjective) is the reduction modulo 4 of the word
length. We note that the action by conjugation) of G on u, v is uniquely determined by
the initial relations a4 ß4 aß)2 1. Coming back to our group let us consider
the three elements c0, c1, c8 of defined by c0(z) iz, c1(z) 1+ iz, c8(z) -z +i
Then c4

0
c4

1 c28 1 and c0c1 c8. Clearly, ũ := c30c1 and ṽ := c0c3
1 act as

u(˜ z) z + i and v(˜ z) z - 1, so they generate the subgroup of translations, isomorphic
to Z[i ]~= Z2. Hence we have the exact sequence

{0} Z2 Z/4Z {0}.
Note that the action of on Z[i] is compatible with the action of G on u, v in the natural
sense: for instance we have in G the relation aua-1 v-1, which corresponds in to the
relation c0uc-˜

1
0 v-˜ 1. From this fact it easily follows that G is a quotient of

Let us get back to the setting of Theorem 2.4, and let us use the universal covering with
signature 4, 4, 2), denoted by Y as above. A cover X of the Riemann sphere with the
relevant branching types exists if and only if it can be realized as the quotient of Y by a

subgroup of of odd index d in The permutations s0, s1, s8 then correspond to
the images of c0, c1, c8 in the permutation representation of on the right cosets /
One easily sees that if exists then it must contain an element s of order 4, which must
be a rotation of p/2 around some point. The orbit of the origin by is a lattice stable
under s, which corresponds to an ideal in Z[i]. This ideal is principal, and we find again
the conclusion that d is a sum of two squares. As a matter of fact, to conclude one can also
avoid invoking the principal-ideal ring structure, by observing that the said lattice must
have a basis of type v, sv, whence its index is necessarily a sum of two squares.

Remark 3.3. When the degree is an odd prime p, this approach also allows one to
elucidate the structure of the group G generated by the permutations s0, s1, s8. In fact, as

stated in the proof of Theorem 3.2, the group generated by the words of length 4 in s0, s1
is commutative. Hence G has an Abelian subgroup G0 of index at most 4. Since G is a

transitive subgroup of p it contains a p-cycle g, which must lie in G0. Then G0 must be

the group generated by g.
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Università di Udine
Via delle Scienze, 206
I-33100 Udine, Italy
e-mail: pietro.corvaja@dimi.uniud.it
Carlo Petronio
Dipartimento di Matematica Applicata
Università di Pisa
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