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In [1], a family of new convergence tests, the m-th ratio tests, was established. These tests
are stronger than the ordinary ratio test; that is, they succeed in testing many series for
which the ordinary ratio test fails.

The m-th ratio test says that the convergence of the series > - | @, depends upon the val-
ues of the lim inf and the lim sup of the m ratios 2 - Gontl “’"”*—’”1 asn — o0. In the

ap, °’

special case of series with positive decreasing terrns convergence depends only upon the

value of lim %z, The series converges if lim %= < L and diverges if lim %z > L
n—oo0 n n—oo an m n—so00 @n m

In this paper we will generalize the case of the m-th ratio test that applies to series with
positive decreasing terms. We will replace the ratio “’”—n" with the ratio M where ¢ :

ZT — Z7 satisfies 0 < hm ﬁ < 1. Foranym € Z™, the case p(n) = mn is included

in [1]. For this reason our new test is called, for any such ¢, the ¢-ratio test. According
to the main result of this paper, the convergence or divergence of a series Y .- | a, with




The phi-ratio tests 165

positive decreasing terms depends upon the value of lim a%ﬂ as long as that value is not
n—oo

E n
equal to nll)ngo T
In what follows, for ¢ : Zt — Zt and for k € ZF, ¢* will denote the k-th iterate of .
Thus ¢° will denote the identity on Z*.
Lemma. Let ¢ : Zt — Z%1 be such that lim -2~ exists. Denote lim -~ by o and
n— o0 (p(n) n—00 @(n)

suppose 0 < « < 1. Then

(A) There is an N € Z* such that, for any n > N, {o*(n)} is a strictly increasing

subsequence (in k) of ZT.

im £t ) 1
(B) For such N, k1—1>n(;lo m = =

Proof. Since 0 < o < land lim _& = o, we have lim "";") > 1. Therefore there
n—oo n—oo

exists N € Z7T such that @ > 1forall n > N and therefore ¢(n) > n and p(n) > N
for all n > N. This inequality implies the following two inequalities:

(i) Forany n > N and any k € Z+, oF(n) > n.

(ii) Forany n > N and any k € ZF, ¢*(n) > ¢*~1(n).
Inequality (i) follows by induction on k. Inequality (ii) follows from (i) by replacing n, in
@(n) > n, with ¢*~1(n). This is permissible since, from (i), ¢*~1(n) > n > N. Clearly,
(i) proves (A).
To prove (B), we observe that (A) implies klim (pk (n) = oo for any n > N, and thus

—00

lim (pk_l (N) = oo. Therefore,
k—00

PN e e 1
————— m ——— lim =

k—oo @F(N) koo @FK(N)  n—>o n o
and
k—1 k—1
N N
lim—(pk():' —(pkl():imn:oz
k—oo  @*(N) k=0 p(@*~H(N))  n—00 @(n)
Hence .
e
o O g T L i-1 1
k—o0o pF(N) — pF=1(N)  k>o0 | _ &N 1—a o
¢ 4 L=y
This proves (B). O

Theorem (The ¢-ratio test). Let ¢ : ZT — Z7T be such that lim - exists. Denote
n—oo ¥(n)
7

lim 20 by « and suppose 0 < « < 1. Let {a,} be a positive decreasing sequence.
n—oo

Suppose lim 249 — [, Then:
n—oo @n

@ IfL < o, Y 2 | a converges.
() IfL > &, Y ooy an diverges.
(iii) If L = o the test is inconclusive.
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Proof. To prove (i), suppose L < «. Letr be such that L < r < «. Since lim ﬂzﬁ =1L,

n— o0 n

there is an integer N such that %l < rforalln > N.

Therefore ay(ny < ra, for alln > N. In particular, a,yy < ray. We may choose N large
enough to satisfy the hypothesis of the lemma, so that {*(N)}z is strictly increasing.
Thus ¢*(N) > ¢*Y(N) > N forall k € ZT. Since o* " /(N) > N forall k € ZT,
replacing N with ¢*~1(N) gives ANy < Tagh-1yy forall k € Z*. Induction on k gives
ey < rlay forall k e Z7F.

Let Sk = agk(yy + Ak (ny41 T - - - + Qi1 ()1 - Since {a,} is decreasing and (" (N is
increasing, the largest term in the sum S, is ANy also, the number of terms in this sum
is p*t1(N) — ¥ (N). Hence

Sk < [ (V) — " (N)age ).

Therefore
S < [N — of (NIrFay

forall k € Z+. Since r < «, by the lemma,

P HN) —pF(N)
1m =
k—oc0 pF(N) — pF=1(N)

1 1
- < -
a r

PN —pF (V)

l l . oy %
Lets be suchthat - < s < . Then there is a positive integer M such that T —FT(N)

s for k > M. Therefore, for k > M, we have
N — F(N)
eM(N) — pM-1(N)
U —F () PN —F ) oMU N — M (N) iy
- k(N — k—lN’ E=1(NY — ok=2(NY " @M (N) — oM-1(N =8
P*(N) — = H(N) @~ H(N) —¢*F==(N) @™ (N) — "~ (N)
Thus fork > M,

PTUN) — (V) < [ (V) — oML ()]sF M,
Therefore for k > M,
Sk < [M(N) — oMLYk gy = [oM(N) — oM=L (V)15 May (sr)*
and therefore
o0 o0 o0
Yo an= ) S <My — oMV May Y (s
n=pM(N) k=M k=M

5 1 o0 k . o0 o .
Since s < -, > 72, (s7)* < o0, and thus the series ) 7| a, converges. This proves (i).

To prove (ii), suppose L > a. Let r be such that L > r > «. Since lggo ”‘;’(") = L, there
n n

is an integer N such that af;—(n”) > r forall n > N. Therefore ay,y > ra, foralln > N.In



The phi-ratio tests 167

particular, a,(y) > ray and induction on k gives ANy > rkay forallk € Z*. Let s be
such that L < s < . As in the proof of (i), by letting

Sk = awk(N) + a(pk(NH_l +...4+ a[pk+1(N)_l,
we can show that there is a positive integer M such that for k > M,

Sk > [pM(N) — M1 (N)Is™May (sr)F L.

Therefore
o o
Yo an=) Sz M WN) — M (NI ay Z(sr)k+1
n:(pM(N) k=M k=M

Since s > 1, 322 1, (sr)**+! diverges. Hence the series > oo | ay diverges.
To prove (iii), use the examples in [1]. O

The following class of examples shows that for every ¢ under consideration here, the ¢-
ratio test is stronger than the ordinary ratio test.

Example 1. Suppose that ¢ : ZT — ZT and « satisfy the hypothesis of the lemma. Then
the ¢-ratio test works on the p-series, for p # 1 (although the ordinary ratio test does not).

Proof. For the p-series > ne | =, a, = 5. Then

P
L= lim 2% — |im (L> = aP.
n—o00 @, n— 00 (p(l’l)

Sincea < 1, L =a <aif p>landL = «? > «if p < 1. So, by the p-ratio test,
¥l 11, converges if p > 1 and diverges if p < 1. (Note that for p = 1, the g-ratio test
gives no information, since L = «.) O

We close this paper with another class of examples which shows that ¢ can be found to

bring « = hm ( ) arbitrarily close to 1. (The m™-ratio tests in [1] show that & = i can

be arb1trar11y close t0 0.)

Example 2. For any fixed & > 0, let ¢, : ZT — Z% be the function defined by ¢.(n) =
[[(1 + &)n]], the integral part of (1 4 ¢)n. Then

14+en—-1<p.(n) <1+ e)n.

Thus i
I+ —-< %—(n)s 1+e.
n n
Therefore hm M = 1+ ¢. We then have « = lim -2~ = —— < 1. Hence ¢,

n—oo Pe (n) 1+5
satisfies the hypothe51s of the theorem and for small enough ¢, « is arbitrarily close to 1.
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There are several further areas of investigations that come to mind. First, how does the
ordinary ratio test fit into all of this? It is not a special case, because if it were, we would
have ¢ (n) = n+ 1, and thus lim -2~ = lim -2— = 1, not less than 1. So are the ¢-ratio
n—oo P T gl ntl

tests a whole different category, rather than a generalization of the ordinary ratio test?
Perhaps the ordinary ratio test is some kind of limiting case? Second, are some ¢-ratio
tests stronger than others? Third, are there other tests of this ilk that are not ratio tests?
More specifically, are there other binary functions F on ZT (besides the quotient/ratio)

for which we can say, analogous to our theorem:

For all positive decreasing sequences {a,}, we have:
lim F(aymy, an) < lim F(n, p(n))
n—o0 n— o0

implies that ), | @, is convergent, and
lim F(apny, an) > lim F(n, @)
n—oo n— 00

implies that "o | @, is divergent?
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