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Abstract

What is easy and when does it become hard to find a solution of a problem? We give
a sharp answer to this question for various generalizations of the well-known maximum
satisfiability problem. For several maximum v-satisfiability problems we explicitly deter-
mine algebraic numbers 7y (0 < 7y < 1), which separate NP-complete from polynomial
problems. The fraction 7y of the clauses of a v-formula can be satisfied in polynomial
time, while the set of v-formulas which have an assignment satisfying the fraction 7’
(z' > 7y, v/ rational) of the clauses is NP-complete.
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1 Introduction

We continue our study of the (generalized) satisfiability problem [Lieberherr/Specker
(1981), Lieberherr (1982)].

One often recurring theme in computer science is the following: Given an algorithmic
problem, find an algorithm which is optimal with respect to a certain measure. The moti-
vation for looking for such algorithms is that the algorithm designer has a guarantee that
his algorithm is best-possible in a certain precise sense. Some typical measures are time,
space, comparisons, A- T2 etc. For many measures it is hard to prove that a given algorithm
is optimal.

We have analyzed the algorithmic problem of finding good approximate solutions for gen-
eralized satisfiability problems. The measure we used to compare algorithms is the quality
of the approximations which they find. In [Lieberherr (1982)] we describe an efficient al-
gorithm MAXMEAN* which is best possible with respect to our measure for a large class
of problems. In this paper we provide a framework for the analysis of MAXMEAN* and
we apply our method to several special cases.

We investigate combinatorial optimization problems of the following form: Given a se-
quence of constraints, find an assignment which satisfies as many as possible. This con-
straint satisfaction problem appears in many applications like time table scheduling, laying
out graphs in a grid, decoding of linear codes, minimizing PLA’s etc.

Maximization problems of this type are naturally formulated as maximum -satisfiability

problems [Schaefer (1978)].  is a finite set of logical relations Ry, ..., R, which are
used to express the constraints. A -formula S with n variables is a finite sequence of
clauses each of the form R; (x1, ..., Xy;). r; is the rank of R; and x1, ..., x,; are a subset

of the variables of S. The maximum v -satisfiability problem consists of finding, for any
w-formula S, an assignment to the n variables satisfying the maximum number of the
clauses.

Let 7y be the fraction of the clauses which can be satisfied efficiently in any -formula S.
It is shown in [Lieberherr (1982)] that the following algorithm MAXMEAN* guarantees
to satisfy the fraction 7y in time O(|S]| clauses(S)|), where | clauses(S)| is the number of
clauses in S.

Note added in 2012

The paper re-interprets CNFs as polynomials over the real numbers. There is a simpler
access to this re-interpretation based on biased coins which is only hinted at in the paper.
Consider a CNF s with n variables and a coin with bias b which is used to generate random
assignments for the variables of s. What is the expected fraction of satisfied clauses for bias
b? It is a polynomial p(s, b) in b of at most degree n that can easily be computed from the
clauses in s using linearity of expectation. Because p(s, b) is a (weighted) average there
must be an assignment satisfying at least the fraction p(s, b). Using derandomization, we
can find a polynomial-time deterministic algorithm that finds an assignment satisfying at
least the fraction p(s, b). We then find the maximum bias bmax in [0, 1] for which p(s, b)
is maximum. The above easily generalizes to generalized maximum satisfiability problems
and provides a simpler way to derive the appmean function and algorithm MAXMEAN*.
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Algorithm MAXMEAN#*

Input: A r-formula S with n variables.
Output: An assignment satisfying at least the fraction 7y of the clauses.
max_assignment := 0
loop
compute k such that

max meang (S) = meang(S)
0<k'<n

{meang (S) is the average fraction of satisfied clauses in S among all assignments
having exactly k£ ones. meang (S) is a polynomial in £ which can be efficiently com-
puted }

for all variables x € S do
if meang—1(Sy=1) > meang(Sx=0)
thenJ[x] =1,k =k—-1;,85:= 85,1
else J[x]:=0; 5 := S,—o
{mean_; (S) = meano(S), mean,41(S) = mean, ()}
h := SATISFIED(S, J); { SATISFIED(S, J) is the number of satisfied clauses in S
under assignment J }
if 1 > max_assignment then max_assignment := h else exit ;
rename all variables in S which are assigned 1 by J ;

end ;

Already after one iteration of the outermost loop of MAXMEAN#* the fraction 7y of the
clauses is satisfied by assignment J [Lieberherr (1982)].

From the definition of zy it follows that MAXMEAN* is a polynomial (1 — 7y )-ap-
proximate algorithm for the maximum v -satisfiability problem, i.e., MAXMEAN* comes
within 1 — 7y of the optimal assignment. It is an open problem whether there are poly-
nomial €’-approximate algorithms for ¢’ < 1 — 7. However it is shown in [Lieberherr
(1982)] that it is NP-complete to decide whether more than the fraction 7 of the clauses
can be satisfied in a given v -formula.

In the following we outline the contents of this paper. In [Lieberherr (1982)] we reduce
the determination of 7y for a given ¢ to a discrete minimax problem. We show, that the
discrete minimax problem can be reduced to a continuous minimax problem which is
considerably easier to solve (Theorem 2.1).

We determine 7y, for several maximum v -satisfiability problems, each requiring a different
proof technique. In Theorem 3.1 we analyze special systems of linear inequalities, i.e., a
special case of the (0, 1)-integer programming problem.

Theorem 3.1 Let R; be the relation of rank r which holds, if exactly j of the r vari-
ables are assigned one. Let v = {Ry, ..., R.}. Then algorithm MAXMEAN* satisfies

the fraction r% of the clauses in a -formula S in time O(|S|| clauses(S)|). The set of
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W-formulas havi‘ng an assignment satisfying the fraction v’ > r~+1 of the clauses is NP-
complete (7' rational).

The proof first uses the above reduction (Theorem 2.1) and continues with an averaging
trick which simplifies a part of the problem to the computation of an integral. The integral
is solved by partial integration. The mean value theorem from calculus and some further
minimax manipulations complete the proof.

The following theorem analyzes subclasses of the regular satisfiability problem.

Theorem 4.1 Let F(p, q) be the class of propositional formulas in conjunctive normal
form which contain in each clause at least p positive or at least g negative literals (p, q >
1). Let a be the solution of (1 — x)? = x9in (0, 1) and let tp g = 1 — 9. Then algorithm
MAXMEAN* satisfies the fraction t, 4 of the clauses in any formula € F(p, q) in time
O(|S|| clauses(S)|). The set of formulas € F(p, q) which have an assignment satisfying
the fraction v’ > t, 4 of the clauses is NP-complete (t' rational).

The proof is involved and is decomposed into 3 simplifying reductions.

In the last part of the paper we partially solve a problem which was left open in [Lieber-
herr/Specker (1981)]. We give an efficient algorithm which guarantees to satisfy 2/3 of the
clauses in a 3-satisfiable conjunctive normal form.

2 Reduction to a continuous min-max-problem

In the following we sketch how the computation of 7y can be simplified to a discrete
minimax problem involving polynomials (a more detailed explanation is in [Lieberherr
(1982))).

7y is by definition the fraction of the clauses which can be satisfied in all yr-formulas. First
we consider ¥ -formulas with at most n variables and let 7, y be the fraction of clauses
which can be satisfied in all such formulas.

For computing 7, 4 we determine the worst-case formulas, i.e., the formulas where the
smallest fraction of the clauses can be satisfied (by the optimal assignment) among all -
formulas with n variables. It is easy to prove that these formulas are symmetric, i.e., they
are invariant under permutations of the variables, up to a permutation of the clauses.

Fortunately the worst-case formulas have a nice structure and therefore it is easy to com-
pute an optimal assignment for them. For computing an optimal assignment for a symmet-
ric formula we only have to compute the maximum of a polynomial. This polynomial can
be derived by elementary combinatorial analysis.

In this section we prove a theorem which simplifies the computation of 7y to the solution
of a continuous minimax problem which does not involve a limit operation. Let ¢ =
{R1, Ry, ..., R,} be afinite set of relations and let S be a symmetric -formula in which
the fraction ¢, of the clauses contains clauses involving relation R;. In order to compute
T,y We have to find the worst assignment to the parameters ¢, . . .tg, which makes the
optimal fraction of satisfiable clauses as small as possible.
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m
It follows from the above discussion that (assuming that Y tg, = 1,1, > 0 (1 <i <m))
i=1

Ty = lim 7,
¥ n—00 Bl

m
Tp,y = Min  max E IR, - SATZ(R;)
’ tg, rational O<k=n
{SiSm integer =1

B G5 (R) (k)5 (1 — k) p(R)—s
= r(R)s (M)r(r)

SAT/(R) =

where

tr is the fraction of clauses containing relation R
r(R) is the rank of R
gs(R) is the number of satisfying rows in the truth table of R which contains s ones
(@)p W where «, B are positive integers, « > 8.
Let

m m
), = min max Y g, - SAT(Ry), D oig =11 >0
i=1

tRi real 0=x=1
real  i=1

1<i<m
r(R)
appSAT, (R) = Z gs(R)x* (1 — x)" =3,

s=0

o
Theorem 2.1 7y = Ty -

7y 1s defined as the solution of a discrete minimax problem since the maximization is over
integers. However 7:1;, is expressed as the solution of a continuous minimax problem since
both the minimization and maximization are over reals. Furthermore the formula for r&,
does not involve a limit operation. Therefore the definition of 7:1;, is easier to evaluate.
We need the following definitions for the proof of Theorem 2.1.
Let S be a -formula containing relation R; (1 < i < m) for the fraction g, of the clauses.
Let? = (tg,, ..., IR,).
m
mean” (7) = Z tr; SAT!(R;).
i=1
Let
m
appmean (1) = Z Ig; appSAT  (R;).

i=1

Lemma 2.2 Let v be a finite set of m relations and let 7= (tRys ... IR,) be a vector
whose components add up to 1.
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(1) lim mean]}(?) = appmean, (7
2) Forallreal x (0 <x < 1):

nlggo mean’[lnﬂ & = appmean , @.

Proof. (1) We have to show that
fim GRsG =By _ (5) (1 ~ 5)"{
j—o0 (Jmr n n

L UGk Gk st D <k>

This follows from

j—oo (jmy(jrn—1)...(jn—s+1) \n
and
lim (Jn—k)(jn—k—1...(jn—k)—r+s—1) :< _f)"‘
j—00 (jn=s)(jn—s—1...(jn—r+1) n '

(2) Follows from

. nx
lim [] =X
n—oco n

and (1).
Proof of Theorem 2.1. We have to show that for any 7

A= lim max mean} (7) =
n—o0 0<k<n
integer
B = max appmean (7).
E-y
Let xmax be the maximal x in the definition of B. For each n, define k(n) = [xmax |. Then
by Lemma 2.2(2)

A > nll)ngo meanz(n)(t) = appmean, () = B.

max

Hence A > B.

To show that A < B, define the sequence k(n), n = 1,2, ..., such that meanz(n)(f) =

Omkax meany (r). Let k' (n'), n’ ranging over an increasing subsequence of the natural num-
<k<n

bérs_, be an infinite subsequence of k(n) such that

N A0S
lim =X

wW—oo 1

for some real x. Then by Lemma 2.2(2)

A= n/h_r)noo meanz,m,)(t) = nlg(r)lo mean’rlm] (f) = appmean, (f) < B.
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3 Special (0, 1)-Integer Programming

In this section we analyze special systems of linear equalities. The computation of the
constant 7y for this case requires new methods. One reason is that here we are dealing
with sets of relations which contain r relations (r a variable) and not just two relations.

Let R; be the relation of rank » which holds if exactly j of the r variables are true.

Theorem 3.1 Let v = {Ro, Ry, ..., R/}. Then

(1) In any vr-formula the fraction H_Ll of the clauses can be satisfied.

(ii) There is a polynomial algorithm MAXMEAN™* which finds an assignment satisfying
at least the fraction ﬁll of the clauses in a -formula.

y ’ 1 i 4 5Bk
(iii) For any ratlor%al T’ > 7 the set gf W-formulas having an assignment satisfying at
least the fraction t' of the clauses is NP-complete.

Proof of 3.1(i). Since g;(R;j) = 0if s # j and q;(R;) = () we have
r v 5 5
appmean, (S) = th (]) J(1—x)7.
j=0

By Theorem 1 it is sufficient to show that

! i ) fy 1
= min max appmean i = 1.
r+1 tjreal 0=x=1 e xR J
O<j<r teal j=0

¥ has the property that it is not necessary to choose the maximal x in the above formula in

order to compute 7y = ¢11 Therefore we perform an averaging process in the following
lemma.
Lemma 3.2

1
il =y iy = ——
/0 x/(1—x)"dx (;)(r—i—l)

Proof. Let
1
fir = / x! (1 —x)"1dx.
0

We show the lemma by induction.

! (1 —xy+| =
1 0

i)
= [ d—xydx=-———
B /0< X dy = ——

r+1°



Complexity of Partial Satisfaction IT

141

For the induction step we use partial integration

_ 1 x]+1
]+1
w = x7
v=(1-x)"J

v'= =0 - Hd—xyI!

1 1 1 r—
/ wvdx = uv‘ —/ uv'dx = —
0 0 Jo Jj+1

J
Sfi+t,r

=
I

Hence,

J+1 .
fi+1r= - Fiir O=j<r
r—1J
and therefore inductively

J+1 Al jGobe L1

fj—i—l,r =

Lemma 3.3 Let
#
= (to, 11, ... 1) <th:1)
j=0

and let

r

appmean, (1) = Y _t; <;)xj(1 —x)y .

j=0
Then there is xo (0 < xg < 1) such that

- 1
appmean, (1) = Py

Proof. Consider

1 r L .
f appmean , (?)dx = Z tj (;) / x/ (1— X)V—] dx
0 0

j=0

1
_Z () (r—|—1) B

The claim follows from the mean value theorem of calculus.

Lemma 3.4

1
min max appmean, (7 = max rmn appmean, (7) = ——.
;0x<1pp (D) ot pp ) 1

r—jr(r—l)...(r—j+1)'r+1_(J._VH)‘
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Proof. Let

> 1 1 1 ) ;

b= ; PR, r + 1 dimensional.

r+1 r+1 r+1
Then
—— T Xr: e
= 0 — X = s
bpimediiy r+1 4\ 1

Therefore

1
[ < —
mm Omax appmean ( 0 < g

since for 7 = b only the fraction —— can be satisfied (independent of x).

+1
Also
mgxrrkm appmean, () > ?,
since for 7 = b the minimal x satisfies the fraction -—. On the other hand for any 7 there
is an xq such that
- 1
1)y=——.
appmean, (£) 1
Therefore )
a 1> ——
rntm Ornax ppmean, ( 1 > g
and

. o 1
max min appmean, (f) < ——.
7 0<x<l PP X()_r—i—l

Proof of 3.1(ii) and 3.1(iii). Algorithm MAXMEAN* guarantees to satisfy the fraction
T in polynomial time. It follows from a general result in [Schaefer (1978)] that the -
satisfiability problem is NP-complete (for the v under discussion). Then (iii) follows from
Theorem 1.2 in [Lieberherr (1982)].

4 Satisfiability

Let F(p, g) be the following class of propositional formulas in conjunctive normal form:
Each clause in a formula in F(p, g) contains at least p positive or ¢ negative literals

(p.g=1.
Let « be the solution of (1 —x)? =x7in (0,1) andlet 7, 4 = 1 — 9.

Theorem 4.1

(i) In any formula in F(p, q) the fraction t,, 4 of the clauses can be satisfied.

(ii) There is a polynomial algorithm MAXMEAN™* which finds an assignment satisfying
at least the fraction t, 4 of the clauses in a formula in F(p, q).

(ili) For any rational t' > t, 4 the set of formulas in F(p, q) having an assignment
satisfying at least the fraction t' of the clauses is NP-complete.
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This theorem and its proof extend the results and methods given in [Lieberherr/Specker
(1981)]. The proof of Theorem 4.1(i) is given by a sequence of simplifying reductions.
Each reduction is presented as a Proposition j. The corresponding Lemma j claims that
Proposition j implies the previous proposition (in the first step: Theorem 4.1(1)).
Theorem 4.1(ii) is a special case of a general result proven in [Lieberherr (1981)]. The
proof of Theorem 4.1(iii) is based on a result by [Schaefer (1978)] and the technique given
in [Lieberherr/Specker (1981)].

Simplifying Reductions

Proposition 4.2 For all integers n > min(p, q) and for all positive integers t1, t2 there is
an integer k (0 < k < n) such that gpxact(n, k, t1, ) =
(,i—l)p(n —kp+ (,i—ﬁq(k)q
=l-1pq
h+n

Lemma 4.2 Proposition 4.2 = Theorem 4.1(i).

Proof. Using the techniques given in [Lieberherr/Specker (1981)] it is easy to show that
the class F(p, q) can be reduced to F'(p, q) = {formulas having only clauses containing
either exactly p positive literals or exactly g negative literals}. Furthermore, it is sufficient
to consider only symmetric formulas in F/(p, q).
Let S be a symmetric formula in F’(p, ¢) which contains #; clauses of the form A; v
Ay V.-V A, and 1 clauses of the form—A; vV —=A> v ... v —A,. Then the fraction of
unsatisfied clauses if k variables are set to 1 is, by elementary counting methods, given by
gEXACT (1, k, 11, 12).
Note that gpxact(n, k, 11, 12) is the expected fraction of unsatisfied clauses among all
assignments which set & variables to 1. It is denoted by mean; (S) for a given formula S.
First we give an outline of the proof for Proposition 4.2.
Outline of the proof. Let x = % and substitute r* for any expression of the form (r), in
gEXACT(7, k, 11, 12). The resulting expression for the fraction of unsatisfied clauses is
1l —x)? + x4
8APPROX (X, I1, ) = ————————.
h+n

Since for all positive integers r, k, n (k < n)
®r _ ( k ) |
(n)r n

k
8exacT(, k, 11, 12) < gAPPROX <;, 1,0

the inequality

holds. Therefore it is sufficient to show that for all n and all positive integers 71, > there is
an integer & such that

k
8APPROX | = 11,2 ) S 1 —1p 4.
n

W.lo.g. we set t, = 1, since gapprox is homogeneous in ¢, #.



144 K. Lieberherr and E. Specker

Take the derivative of gapprox With respect to x, set it to zero and solve for #;:

qg x97!

HH=——.
T p - op T
Substitute for 71 in gapprOX:

g-x471 (1 —x)P 4 p-x9(1 —x)P~!
q-x77' 4 p(1 —x)p~!

gapp(x) =

gapp has the following intuitive meaning. Consider a formula S in F'(p, ) with n vari-
ables and define kpyi, by

. / _ /
Orfr}clgn mean; (S) = meankmm(S).

In any such a formula S at most the fraction gapp( k‘;‘m) of the clauses can be unsatisfied.

This holds since the second derivative of gapprox With respect to x is positive if p > 1 or
g > landt; # 0and 1, # 0. Therefore it is sufficient to show that for all positive integers
andallrealx (0 <x < 1)

gAPP(x) <1- Tp,q-
Compute the extremal points of gapp with respect to x in (0, 1). There is only one which
is given by the solution of (1 — x)? = x9.
Substituting x? for (1 — x)? in ggxact yields

gexact = 1 — x4,

Therefore the fraction 7, ;, = 1 — o4 can be satisfied in any formulain F/(p, ¢).

The following simple heuristic method, which was also observed by John Scranton, gives
the correct result.

Choose x such that the fraction of satisfied clauses is independent of 71, . The resulting
condition for x is

(1—x)? =x1.

For such an x, the fraction of satisfied clauses is independent (in the limit) of the formula
we consider and itis z, 4.

Now we continue with the proof of Proposition 4.2.

Proposition 4.3 For all integers n > min(p, q) and all positive integers t1, t2 there is an
integer k (0 < k < n) such that

11 (1 —x)P + x4
gAPPROX(X, 11, ) = ———— <1 —1p 4.
nh+n

Lemma 4.3 Proposition 4.3 = Proposition 4.2.
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Proof. Note that for all positive integers r, k, n (k < n) since
®), _ ( k )
)y — \n

(=0) (-2 (=) = (-2 (-0)(-57),

If we let x = % and replace m&ij" by (1 — x)? and % by x9 we increase gpxACT-

Therefore gexact < gapprox Which proves Lemma 4.3.

Proposition 4.4 For all real x (0 < x < 1)

x4 — )P~ g1 = x) + px)

q
g xt T pa—mpT -

8APP =

Lemma 4.4 Proposition 4.4 — Proposition 4.3.

Proof. W.l.o.g. we set 1p = 1 since gapprox 1s homogeneous in f1, 2. Take the derivative
of gapprox With respect to x, set it to zero and solve for #1:

g xi”!
HH=——
p(1-x)p-t

If we substitute for 71 in gapprox We get gapp. Note that the second derivative of gapprox
with respect to x is

nep-(p-DA-x)2+1nq-(q—DHx72
which is positive forany x (0 < x < 1),if p > land#; #0org > land , # 0.

Proof of Proposition 4.4. We show first that the derivative of gapp(x) is zero in (0, 1) iff
x satisfies (1 — x)? = x4.

Let A=x9, B=(1—x)?. Then

A'B— AB’
gAPP(X) = A _B
The numerator of the derivative of gapp(x) is
(A"B'— A'B"Y(A — B).
The first factor
A"B' — AB" = —pq(q — Dx?72(1 — )P~ — gp(p — Dx471 1 — x)P 72
=211 - 0P (=g = DA —x) = (p = D)

has no zeros in (0, 1).
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Since (1 — x)? = x9 has only one solution « in (0, 1) the rational function gapp(x) has
one extremal point in (0, 1) with value gapp(«) = «4. Since gapp(0) = gapp(1) = 0 the
function gapp(x) is maximal for x = «.

The proof of Proposition 4.4 uses differentiation. We give now a different proof which
does not use differentiation and which provides further insight into the problem.

Proposition 4.5 Forallreal x,B (0 <x,B < 1)
g, p)=x[1-x)P(px —gx+q¢)+ (1 - pPqx - D] -1 —x)Pp?-p.x <0.
Lemma 4.5 Proposition 4.5 = Proposition 4.4.

Proof. Multiply both sides of gapp(x) < «? by the denominator of gapp(x) and shift all
terms to the left of the inequality sign. The resulting inequality is g2(x, 8) < 0if we make
liberal use of (1 — «)? = «4 (a crucial point) and if we substitute 8 for «.

Proof of Proposition 4.5. So far a proof of Proposition 4.5 was obtained only for special
cases.

I) p=1,g > 1. Note that

q—1

2206, B) =& —-p?Y x17"i—q)ph.

i=1

Hence g>(x, B) is non-positive for 0 < x, 8 < 1.

Example: (p = 1)

g2(x, B) is proportional to (the deleted factor has a positive sign)

—(x —B)2forg =2.

—(x — B)%(2x + B) for g = 3.

—(x — B)’(Bx? + 2xa + o) for g = 3.

ID p =2. g2(x, B) is proportional to (the deleted factor has a positive sign)

(x — B (x(x —4)+2B8(x — 1)) forqg = 3.

(x —BPx%(x —3)+2Bx(x — 1)+ B>(x — 1)) for g = 4.

(x =B x33Bx —8)+6Bx%(x — 1) +48%x(x — 1) +283(x — 1)) forg = 5.
Unfortunately this technique does not generalize for p > 3 but it is conjectured that Propo-
sition 4.5 holds in general.

The formulas obtained by the alternate proof method have interesting applications. The
following theorem allows us to predict which fraction of the clauses can be satisfied in
every formula if the index of the maximal meang(S) is fixed.

Theorem 4.6 Let S be a formulain F'(1, q) (g > 1) for which

max mean(S) = meang(S).
0<k=<n
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Then assignment Jar1, o, which assigns false to all variables satisfies all clauses. In gen-
eral, if m’?X meang(S) = meany (S) then the assignment which assigns true to k' vari-
0<k<n

ables satisfies at least the fraction
Ve 2 q_l . . v q_i_l
(7o) B0 (%)
i=1

N\g—1
q~<%> +1

1—of -

of the clauses.
Proof. Consider gapp(x) — « for p = 1 (after multiplying with g - x4~% 4 1):

q—1
gx? M —x)+x1—a? . (g- x4+ 1) = (x —a)? qu_i_l(i —q)L
i=1
Let
q-1 . .
(x — 06)2 Z xq—z—l(i _ q)az—l
i=1

h =
(x) 7 111

Now.

>

h(0) = o?(=1-a97%) = —af.

Proof of Theorem 4.1(ii). Algorithm MAXMEAN* guarantees to satisf’y the fraction , 4
in polynomial time.

Proof of Theorem 4.1(iii). The fact that the satisfiability problem for formulas in F(p, q)
is NP-complete follows from a general result of [Schaefer (1978)]. Then the proof can be
adapted from [Lieberherr/Specker (1981)].

Extensions

The technique used to prove Theorem 4.1(i) is suitable to determine ty,, for other sets
which contain only two relations. The fraction of satisfied clauses in a symmetric formula
which contains 71 clauses with the first relation and 7, clauses with the second relation is
given by (in approximated form)

HR1(x)+ Ry (x)

hi(x, 11, 2) =
H+n

where R; and R; are polynomials which depend on the two relations.
W.lo.g. n = 1. If we take the derivative of /& with respect to x and solve for #; we get
—R(x)

Ri(x)

=
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Substituting in #; we get

e ) R (x)R2(x) — R1(x)R)(x)
2 R[(x) — Ry(x) :

The numerator of the derivative of />(x) is given by
(Ri(x) = Ra(x)(RY (x) Ry (x) — Ry (x) R (x)).

If the second factor has no zeros in (0, 1) then the fraction R;(«) can always be satisfied,
where « is the solution of Ry (x) = Ra(x) in (0, 1) which is the global minimum of 4.

5 Partial Solution of the 3-Satisfiability Problem

In [Lieberherr/Specker (1981)] the following problem was left open. A formula S of the
propositional calculus in conjunctive normal form (cnf) is said to be 3-satisfiable, it any
triple of clauses is satisfiable. We find a lower bound on the fraction 73 of the clauses
which can always be satisfied in a 3-satisfiable formula by showing in the following that
73 > 2/3. Unfortunately we have not been able to determine 73 exactly. The motivation for
studying k-satisfiable formulas is the relationship to polynomial approximation schemes
for satisfiability [Lieberherr/Specker (1981), Huang/Lieberherr (1981)].

The problem with 3-satisfiable formulas is that they are not closed under symmetrization.
If we take a 3-satisfiable formula S and symmetrize it with the full permutation group then
the symmetrized formula is in general not 3-satisfiable.

To show that 73 > 2/3 we construct a class RED; of formulas so that

1. RED; contains all 3-satisfiable formulas (but some are not 3-satisfiable)

2. in any formula in RED; at least the fraction 2/3 of the clauses can be satisfied.
Consider any 3-satisfiable formula S. Without loss of generality we assume that clauses
of length 1 only contain positive literals (this can be enforced by renamings). Now we
partition the variables into two classes. The first class contains only variables which occur

in clauses of length 1. The second class contains all other variables. A clause is said to be

type Tg if its j variables are in class ¢ and i of them are positive. A clause is said to be of
type Tl.fr.l n if it contains j; variables of class ¢ and j» variables of class r and if i1 of the
J1 variables are positive and ip of the j» variables are positive.

Definition RED; is the following subset of cnfs: The variables are partitioned into 2
classes (A-variables and B-variables) and only the following clause types occur:

1 1 12 12 2 ) 2
Tll’ T03’ TOl 11- TOIOI’ T02’ Tl2’ T22'

This definition is of interest since for proving that t3 > 2/3 it is sufficient to minimize
among the formulas in RED;.
Theorem 5.1

(1) In any 3-satisfiable cnf at least the fraction 2/3 of the clauses can be satisfied.

(ii) There is a polynomial algorithm to find such an assignment.
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Proposition 5.2 In any cnfin RED| at least the fraction 2 /3 of the clauses can be satisfied.
Lemma 5.2 Proposition 5.2 = Theorem 5.1(i).

Proof. Any 3-satisfiable cnf is easily reduced to a formula in RED; by deleting literals.
Deleting literals makes a formula harder for satisfying many clauses.

Definition Let RED»> be the subset of cnfs of RED; which do not contain clauses with
types TOZZ, T122 and T222.

Proposition 5.3 In any cnfin RED> at least the fraction 2 /3 of the clauses can be satisfied.
Lemma 5.3 Proposition 5.3 = Proposition 5.2.

Proof. In a cnf containing clauses of exactly length 2 at least the fraction 3/4 of the
clauses can be satisfied (a random assignment satisfies 3/4). Therefore deleting clauses of
the above three types does not make it easier to satisfy many clauses.

We prove now Proposition 5.3 by a sequence of further reductions. Let S be a formula
in RED, which contains # clauses of type 7}, # clauses of type Ty, t3 clauses of
type TOI3 and #4 clauses of type T011211' The worst-case formulas (regarding the fraction
of satisfiable clauses) in RED are those which are symmetric in the A-variables and B-
variables. Among those formulas the formulas with /, = 14 are hardest. In a formula in
RED; with t» = 14 the fraction

k
4o+ 5+ g ()
n+2n+n

of the clauses are satisfied if k£ of the n A-variables are set to 1.
Therefore, we have to show

Proposition 5.4 For all integers n and for all positive integers ty, t2, t3 there is an integer
k (0 < k < n) such that

B —k)+ 2k + (%(k)s
h+2n+1t

1
2 —
-3
Lemma 5.4 Proposition 5.4 =—> Proposition 5.3.

Proof. Given above.

Proposition 5.5 For all integers n and for all positive integers t1, 12, t3 there is an integer
k (0 < k < n) such that

Lin—k) + 2k+ 36 1
= < —,
i o+ 26+ 13 =3

Lemma 5.5 Proposition 5.5 = Proposition 5.4.

Proof. Observe that % < ’;—: ifk <n.
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Proposition 5.6 For all x (0 < x < 1) and all positive integers 13

1-— 2t3x3

p=————— <
3+ 13(1 — 6x2)

1
3
Lemma 5.6 Proposition 5.6 = Proposition 5.5.

Proof. Wlo.g. let 1 = 1 and substitute x for % in wq. Take the derivative of wq with
respect to x, set it to zero and solve for #,:

nh=1- 313x2.
By substituting 1 — 3t3x2 for 1, in wy we get wo.
Proposition 5.6 is easily proven directly by case analysis.

Added 2012

The topic of local versus global satisfaction continues to generate interesting papers. The
most surprising result was the paper by Luca Trevisan [Trevisan (2004)] which showed
that the global satisfaction ratio only approaches 3/4. Links to several other related papers
are on the page [Lieberherr (2012)].
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