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0 Introduction and notations

A well-known theorem in geometry of triangles is the following:

If equilateral triangles are erected externally on the sides of any triangle, their
cenires form an equilateral friangle.

This theorem can be found in [3] and is often attributed to Napoleon Bonaparte, although
it is questionable whether he knew enough geometry for this achievement, see [1].

There are several generalisations of this theorem. One is the following, which can be found
in[7,4.]or[1l, Theorem 3.36]:

Seit iiber einem Jahrhundert sind geometrische Transformationen von Dreiecken
Gegenstand mathematischer Untersuchungen. In dem vorliegenden Artikel wird ein
Ausgangsdreieck in ein neues Dreieck transformiert, indem auf jeder der Dreiecks-
seiten ein gleichschenkliges, nach aufien gerichtetes Aufsatzdreieck errichtet wird. Die
Scheitelpunkte der Aufsatzdreiecke bilden die Eckpunkte des neuen Dreiecks. Durch
wiederholtes Anwenden dieser Transformation erhilt man eine Folge von Dreiecken.
Die Form der Dreiecke dieser Folge konvergiert gegen eine charakteristische Dreiecks-
form, von der nachgewiesen wird, dass sie mit jedem Transformationsschritt echt an-
genéihert wird.
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If similar triangles PCB, CQA, and BAR are erecied externally on the sides
of any triangle ABC, their circumcentres form a friangle similar fo the fhree
friangles.

I.M. Yaglom proves in [8, 1.2, 22] the following generalisation of the theorem above:

On the sides of an arbifrary friangle ABC, exterior fo i, isosceles triangles
CB A1, ACBy, BAC, are erecled with angles at the verfices Ay, By, and Cy,
respectively equal fo «, B, and y. lif « + B + v = 27, then the angles of the
triangle A1B|Cy are equal io %o:, %ﬁ, and %y.

Note thatthe case x = g =y = %3’.’.’ is just the same as taking the centres of equilateral
triangles. It is easy to check that these two generalisations are equivalent by decomposing
each external triangle into three isosceles triangles that have a common vertex in the cir-
cumcentre (note that the angles at the circumcentre are just the double of the angles of the
triangle).

Considering the formulation of Yaglom, we drop the condition & + £ + y = 27 and repeat
the transformation to obtain an infinite sequence of triangles. In doing so, the angles «,
B, and y stay fixed. We analyse two cases. In the first case, all three angles are the same.
In the second case, two angles coincide and the third equals 7 (hence, the corresponding
erected triangle is degenerate). Equivalently to the second case, we may erect only two
similar isosceles triangles and take the centre of the remaining side as the third vertex of
the new triangle. We prove that in both cases, the shape of the triangles converge to the
shape of the triangle one would get if the condition « + § + y = 27 were satisfied. That
is an equilateral triangle in the first case and a rectangular isosceles triangle in the second
case.

In this article Ay always denotes the initial friangle with vertices Ag, Bg, and Cy (ordered
counterclockwise). For n € N the points A, 41, By11, and Cy 41 are defined recursively
such that A,Cy By11, BrnAnCuy1, CaBnAy41 are isosceles triangles. The triangle with
vertices A,, By, and C,, is denoted by A,. The side-lengths of A, are denoted by x, =
B,Cy, yn = Cy Ay, and 7, := A, B, and the angles are denoted by &, := ZB,A,Cy,
By = LCyBy Ay, and yy, (= LA, Cy By,

We do not demand the triangle to be non-degenerate. The degenerate case where all three
points are pairwise distinct but on a commeon line will be used to show that some given
bounds are sharp. In the other degenerate cases there have to be vertices of the triangle
that coincide and hence there has to be a side of length 0. Although such a side has no
direction, this does not cause any problems for the iteration since in this case, the erected
triangle always degenerates to a single point. Thus, the new vertex coincides with the two
old ones. As a direct consequence, the degenerate case where all three points coincide is
without any interest since such a triangle is invariant under all transformations introduced
above. Therefore, we exclude the case Ag = By = Cy for all of this article.

1 Equilateral case

In this section, the triangles erected externally on the sides of A, are similar to each other.
More precisely, there is an angle 0 < € < w/2such that LA, 1B,Cy = ZB,CrAp41 =
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- Bn+1

An+1

Fig. 1 Transformation with similar isosceles extemally erected triangles

LBy 1ChAy = ZCAyByy = ZCu 11 AgBy = ZA, B, Cypy1 = 6. 'The so erected trian-
gles are also known as Kiepert triangles, see [2]. The main result of this section can also
be found in [5] where the convergence of this transformation is studied by considering the
dominating eigenvalue. In this paper, we give a different proof of this result, which allows
us a more detailed view at the process of convergence.

Remark 1.1. The lines Ay A;41, ByBry1, and C,Cy 1 meet in a common point P, see
[2] for a proof. Note that this point is inside the triangle A, if and only if all angles of A,
are < — 6.

We first show how the side-lengths of the triangle A, 11 can be expressed in terms of the
preceding triangle. Regarding the transformation there is no distinction between xj, yu,
and z,. Therefore we state the claims usually for only one instance, but we will use in the
following the analogue statements as well.

Lemma 1.2. Lei E, denote the area of A,. Then the following identities hold:
1 1
i = Etanze 2 2t 7 — tan® 8) - x2 + 2tan@ - Ey, (1.1)

1
Xy = Yap = 7(1—3tan6) (i — v)). (1.2)

Proof. Note that A, Cyhy1 = 1/(2cos8) - z; and A, B,11 = 1/(2cos8) - v,. Hence,
applying the law of cosines to the triangle A, Cy 11 By 41 yields

1 1 1
2 2 2
41 Joot0 T Geosto T 7% Foogrg MninooSE0 Hen)
. %, By cos(28 + ay) ‘
~ 4cos?0 O+ 2) 2cos2g | Hm
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Using the addition theorems for the cosine and the sine we obtain cos(260+ay,) = (cos? 6—
sin® @) cos ay, — 2sin 8 cos @ sin . Applying this and E, = (sinay /2) yu2, to the identity
above leads to

2 5 4. (1 —tan®*6) .
nt1 = 4 cos2 O Y+ 20) — 5 COS Uy - YuZn +tan@sinay, - yuzs
1 —tan®@ y2+z2 —x2
2 2 il 7 n
= - : 2tanf - E
4(:0526‘(%L +Zn) 2 > + Ztan n

1 — cos@ 1 2 B g 1 ) )
=\ Zozg T3 0) Ontz)+ (1 —tan®) x; + 2tan0 -

1 1
= Etanzé‘»(y,%—l—zﬁ)—l— Z(l—tan29)'x§+2tan9‘En.

The second equation is a direct consequence of the first one together with its analogue for
Y1 O

Corollary 1.3. Lef x, = v,. Then

Xnt1 = Yatl if 0= and

NI

Xnt1l = Yut1 if 0=

where equality on the lefi-hand sides holds if and only if 8 = /6 or x;, = yy.

Proof. 'T'his is a direct consequence of (1.2) since tan®(7/6) = 1/3. L]

Remark 1.4. We may assume that in the initial triangle x¢ is the greatest side and zg is the
smallest. If 8 < 7/6, the corollary above implies that x, is the greatest side of A, and z,
is the smallest one for every n. If 8 = 7/6, things are different. For even s, we still have
Xg = Vu = In, Wwhereas x; < vy, < Z, holds for odd n. In the special case & = 7/6, the
triangle A, is equilateral for every n > 0. This observation is a motivation to consider the
two subsequences (Aay ) e and (Aog 11 )y SOmetimes separately.

To study the behaviour of corresponding side-lengths during the iteration, we state some
estimates. First, note the following two simple inequalities, which will be used several
times.

Lemma 1.5. Let r and s be two positive real numbers. Then r* + s% = %(r + )% and
r2 4 52> 2rs.

Proof. Since (r—s)? is positive, we obtain4r2 +4s? = (4r2—(r—s)")+ @52 —(s—r)*) =
Br—s)r 48+ Bs—r)(s+7r) = 2r + 28)(r + ). Subtracting 2(r? + 52) on both sides
implies the second claim. ]
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Lemma 1.6. For the corresponding side-lengths of subsequent friangles, the following
lower bounds hold:

1

Xntl = Exna (1.3)
1

s B B(f)tan“@ 4+ 1) w2 (1.4)

Moreover, if Ay, is non-degenerate, both bounds are sirici.

Proof. By Lemma 1.5 we obtain y? 4 72 > %(yn 4 7)? = %x?% Applying this to (1.1)
yields

1 1 1
By B Etanzﬂx,f + 50 —tan?@) - x2 + 2tané - E, > Zx,f.
Now the first inequality follows directly. In the last step we subtracted 2 tané - E,. Since
tan @ > 0, equality cannot occur if A, is non-degenerate. Using the analogues of (1.1)

provides the following identity:

tan” 6 1 —tan® @
Va1 +Zap =~ Qg £ ¥+ 30+ 05 + 20) +4tand - B,
14 tan? @
:tanzé?‘x;‘;—l—f(y,%—l—zﬁ)—l—ﬂftanB‘En.
We apply this to the analogue of (1.1) for x§+2:
1 1+ tan? @
e Etanzﬂ (tanze'xﬁir +fan(yﬁ +z2) +4tand - En)
1 —tan?@ {tan?8 1 —~tan* @
4 ( 5 (y§+2§)+74 ‘xf—l-QtanQ-En)
tan® @ 8tan* @ + (1 — tan? 8)? 3tan® 6 4 tan @
=——0n+z)+ " X3+ 5  Ey
2 49 _ 2
Ztan 9’x§+9tan 8 — 2tan 9+1‘x§
8 16
1
:Etarf‘@‘xyf—l—ﬁxg.

In the last but one step we subtracted (3 tan® @ + tan6)E,/?2. Since 3tan® 6 + tand > O,
equality cannot occur if A, is non-degenerate. ]

The first lower bound given in the previous lemma is sharp as one can check by considering
the degenerate case «y, = 77 and v, = z,. The second lower bound is sharp, too. This can
be seen by considering again the degenerate case «, = 7 and v, = z,; while 8 tends to 0.
As a consequence of these two estimates, we state the following theorems.

Theorem 1.7. for n = 1, the side-lengths of A, are all = 0.
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Proof. We may assume that A,_; is degenerate since otherwise the claim follows directly
from (1.3).

Since Ag has at least one side of length = 0, (1.3) implies that every triangle has at least
one side of length = 0. Suppose x, = 0. Then (1.3) yields x,—y = 0. Thus, £,_; = 0
and consequently, x> = tan @ - (y)f_l -+ z;‘;_l)/Z by (1.1). We know y}f_l + zﬁ_l = 0
since otherwise all vertices of A,_; would coincide. With tan? 8 > 0 we obtain x,, > 0, a
contradiction. L]

Theorem 1.8. We have:

Vs ,
If 0<«<@< P then nl_l}ngoxn = 0.
F Zeo<Z then lim x, = co.
6 2 n—0o
If 6= %, then Xx, =x1 Ya = 0.

Proof. Firstlet 0 < 8 < 7/6. Assume xg = yo = zo. Then x, = v, = z, for every n
by Remark 1.4. Hence, lim,_, o X, = O implies limy .o ¥y = limy_, o 2z = 0. Thus, it
suffices to prove the claim for the case xo = yp > zo. Since x, > v, > 7, we obtain
&y = By = yu by the law of sines. This implies y,, < 7/6 and hence, sin y,; < \@/2. With
Ey = (sinyy/2)x,yn, we obtain by (1.1)

2
xn—l—l

[ A

1 1 V3
Etanzé" (y£+zﬁ)+ Z(l—tanzé‘)w?%—l— 7tan9~xnyn

V3

1 3
< (4+4tan28+2tan9) 'xg.

Now 6 < 7/6 implies tané < +/3/3 and consequently }t - 43—11:.51112 g + § tan@ < 1. The
claim follows.

Now let /6 < € < z/2. Assume xg < yg < Zo. Then x2; < y2, < Zz2, for every
i by Remark 1.4. Hence, limy .o, X2, = oo implies limy .o ¥2r = liMy— o0 224 = 00.
Thus, to prove limy_sco X2, = o0 il suffices to consider the case xo < yg < zo. Let n be
even. Since x; < y, < Iy, we obtain o, < B, < y,. This implies y, = 7/6 and hence,
siny, = x/g/Q. With E, = (sin y/2)X, vy, we obtain by (1.1)

1 1 3
Z;‘;H = Etanzﬁ @ + Yo + 1(1 ~THR* B2 4 xg_tané?oxny,?I

1 3 V3
> (Z—I—EtanzG—I—TtanQ) ‘xﬁ.

Now 6 < 77/6 implies tan 8 < +/3/3 and consequently x ‘= }1 - f—ltanzé‘ + ? tan@ > 1.
2
n+1-

Thus, xﬁ 5 B ,fczx},% whenever n is even and consequently limy,_ o X2, = 00. By analogous

reasons we obtain limy .« X24+1 = o0 and the claim follows.

Since ;41 < Vor1 = Xu41 by Remark 1.4, we conclude analogously x§+2 > Kz
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In the last case, we conclude by Corollary 1.3 that for every n = 0 the triangle A, is
equilateral. Furthermore, tan 8 = \/5/3. Thus, forn > 0, (1.1) yields x§+1 == x;‘;. UJ

Due to the unbounded growth of the triangles for & = 7/6 and the fact that for 8 < 7/6,
the triangle sequence collapses to a single point, the only reasonable case to study seems
to be the case where & equals /6. However, since we are interested in the shape of the
triangle, the size of the triangle does not matter.

We state another two simple inequalities for our further estimates.

Lemma 1.9. Leir, s, and { be posifive real numbers all smaller than 1. Then 1 — s <
r(1 — £2) implies (1 — 8) < r(1 — ).

Proof We obtain 1 — 5% < 1 —¢? and therefore s > . Thus, (1 —s) = (1 —s2)/(1+5) <
r{l— P+ 83 =l <220 5 =rl —1), O

The following general proposition applies separately to the two triangle sequences, i.e. the
one with the even and the one with the odd indices. As in Remark 1.4 we assume xo = yo
for the following proposition.

Proposition 1.10. Lef xo > yo. Then for every angle 0, there is a constant 0 < x < 1
such that
1_ Yn+2

Xn+2

Vn
Xy

Kl

O<‘

<K‘1

where equality holds if and onlyif 8 = /6 or vy = Xy.

Proof. First note that for n = 1, Theorem 1.7 states x, > 0. Furthermore, since xp > yg
and the case Ao = By = (Y is excluded, we obtain x¢ > 0. Now, (1.2) provides

2 2 1 3 2 2 2 2
X2 — Va2 = Z_Ztane '(n_yn)

and hence,

T P

. Yayz _ (1—3tan?@)?  x2 (1_ y_g)
xn—I—Z

Thus, we may assume x, 7 v, since otherwise we are done. Applying (1.4) yields

. vio| (1 —3tan?)? 32
x§+2 1+ 9tan* @ b

Since 0 < (1 — 3tan®6)? < 1 4 9tan* 8 the claim follows for xc := (1 — 3tan® )%/ (1 +
9 tan* @) by Lemma 1.9. Note that & = 0 if and only if 8 = 7/6. ]

For & = m/4, the ratio of side-lengths tends to 1 in every step of the iteration. In other
terms, the function n — 1 — min{x,, v,}/ max{x,, v, } is strictly decreasing as long as the
values differ from 0. Note that for 8 > z/6, the role of the smaller side-length alternates.
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Proposition 1.11. Lefxg > yg and 8 = 7 /6. Then there is a positive constant x < 1 that
only depends on 6 such that the following holds:

0<1—y”“gfc(1—y—”) i 0<2
Xn+1 Yn L, 7 7
0<1-— <Kkl|ll—-——=— ? — <0< — and n even,
Yo+l ( xn) / 6 — o
0<1—y”+15;c(1—x—”) if T <0<Z andn odd.

Proof. First note that x, > O and v, = O forn > 1 by Theorem 1.7. Moreover, xo = 0
since xo = yp and the case Ag = By = C is excluded.

We set @ := 1 — 3tan® 6. First assume 6 < 7/6. Then x, > y, by Corollary 1.3. Further-
more, 0 < tan? 6 < 1/3 and therefore 0 < @ < 1. By (1.3) we know x,, < 2x,41. Hence,

dividing both sides of (1.2) by x)f 1 provides

2z 2 2 2
yn-l—l W Xn Y Y
-5 =72 —2)seli-3)
n+l n+l1 n Fl

Now the claim follows from Lemma 1.9 by setting ¥ = .

For 8 > m/6, we know by Corollary 1.3 that x, > v, if n is even and y,, > x, other-
wise. We restrict ourselves to the case where # is even. The other case can be obtained by
exchanging x,, with y,, X541 with yu41, and zo with z;. Note that w < O for @ > #/6.

We assume /6 < 8 < m/4. Thentan’8 < 1. Hence, (1.1) yields y;‘;H = %(x}% +

z2) tan? 6. Furthermore, tan®# < 1 implies —o < 2tan® §. We divide both sides of (1.2)
by —yﬁ 1 and obtain

2 2 2
2 - 2 2
yn+1 4 yn+1 X

tan? @ 057 y2
: 1 2%
2 (x? + z2)tan? 6 52

| A

Now set ¢ := min{l, (zo/x¢)?}. Then Proposition 1.10 together with induction implies
z;‘; > sx}f. The claim follows for « := 1/(1 4 &) by using Lemma 1.9. ]

Remark 1.12. For 8 > m/4 and x; > vy, it is possible that 1 — x,41/vq41 exceeds
1 — yu/xn, especially if € is close to 7r/2. However, in this situation there is another
observation one can make: While € tends to 7/ 2, the angle a2, tends to «y foreveryn < IN.
Analogously, limg .2 B2 = Po and limg_. /2 ¥2n = yo. Hence, the shape of A, tends
to the shape of Ag. On the other hand limg . ;2 X1 = limg s 2 y1 = liMy 55221 = 00
as long as Ay is non-degenerate. Thus, one cannot speak of a limit triangle.
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To avoid the enormous growth of the triangles, one can dilate each transformed triangle
after the iteration with the reciprocal of the largest side-length. Equivalently, one can apply
this dilation before the step of iteration. By doing so, Aj converges pointwise while &
tends to 7/2 as long as we take a fixed centre for the dilations. Thus, we obtain a limit
triangle which we call A”l. Repeating this process leads to two sequences of pairwise
similar triangles A5, and A5 . The triangles Ag and A} do not have to be similiar.

Clearly, while € tends to 7z/2, the factor of the dilation we apply to Ag tends to 0. Thus,
the vertices A}, By, and C{ of A} lie on the lines through the dilation centre that are
perpendicular to one of the sides of Ay. Moreover, the proportions of the distances from
the dilation centre to A}, By, €} match the proportions of z1, yi, x1. Hence, a triangle
similar to A”l can be obtained by taking three concurrent rays rg, 71, r2 such that ro and ry
span the angle 2aq, ro and r2 span the angle 28y, and r1 and 2 span the angle 2. Taking
the points on rg, #1, 12 at distance zg, vo, Xo, respectively, to the intersection of the three
rays provides a triangle similar to A{.

Since AJ is similar to Ao again, the shape of A} can be seen as some kind of dual shape
to the shape of Ag.

The following theorem is our main result, namely, regarding only the shape of the triangles,
Ay, tends to an equilateral triangle for B — oo.

Theorem 1.13. For every inifial triangle Ao and every angle O < 8 < w2, the following
iwo limils hold:
. Xn . 13
lim — =1, lim o, = —.
n—00 Yy 1—00 3

Proof. The first limit is a direct consequence of Proposition 1.10. The second limit follows
by the first together with the law of sines. L]

We conclude this section by stating two theorems concerning the position and the orienta-
tion of the triangles.

Theorem 1.14. For every n = O, the centroid of A, coincides with the centroid of Ag.

Proof. We consider the Euclidean plane as vector space. For n € IN, let a,, by, and ¢, be
the vectors representing the points A,, By, and Cy, respectively. Let § be the linear trans-
formation that rotates the Euclidean plane by /2. Then a, 1 = % (bp+cy)+ (% tan 8 (b, —
cn))B. Since § is linear, this implies @, 41 + bu41 + Cr41 = @n + by + ¢y Thus, the centroid
of Ay, defined as %(ap1 + by + ¢y) coincides with the one of A, 1. The claim follows by
induction. U

Theorem 1.15. For everyn > 0, the friangle A, is non-degeneraie and counterclockwise
oriented.

Proof. Assume that A, is non-degenerate and counterclockwise oriented. By symmetric
reasons we may assume x, > V, = Iy. Hence, oy = B, = V¥, by the law of sines and
therefore B, < m/2 and y, < /2.



Iterative geometric triangle transformations 77

Let A}, B;, and €/ denote the centres of B,Cy, CyAn, and A, B,, respectively. Since
the triangle A}, C, B;, is similar to A,, we obtain ZCy A, B, = fB,. On the other hand,
let { be the perpendicular bisector of the side Cy Ay, i. e. the line through BjI and By 4.
Since x;, = zy, the line ! intersects x, in a point S. We obtain /C,SBy11 = /2 — vy
Thus, min{Bs, 7/2 — yu} < ZLCuA,Byy1 < max{f,, /2 — y,} and therefore 0 <
LCy AL By 41 < 7/2. Analogously, 0 <= ZCyy1 AL B, < 5/2. This implies that the an-
gles /Cpy1A,Anqy and £ A, 1 A} By are greater than /2 and smaller than 7 and
consequently, £By, 1A} Cpy1 < 7. We conclude that A}, is inside the triangle A, and
Ay 1s counterclockwise oriented since 4An+1A;IBH+1 < 7. Now the claim follows by
induction, U

2 Rectangular isosceles case

As in the previous section, the points B, 1 and C,; 1 are the apices of similar isosceles tri-
angles erected to the outside of A, over the edges y, and z,, respectively. More precisely,
there is an angle 0 « @ <« w/2 such that /B, 1Ch Ay, = ZC ApBy 1 = ZC, 11 AxBy =
ZAnB,Chi1 = 6. Incontrast to the previous section, the point 4,41 is the centre of B, C,
(or, equivalently, the apex of a degenerate isosceles triangle with angle 7).

Again, we first give equations for the side-lengths of the triangle A,y in terms of A,.
Regarding the transformation there is no distinction between y, and z, except for the
orientation. Therefore we state the claims usually for only one instance, but we will use
the analogue statements as well in the following.

Lemma 2.1. Lei E,, be the area of Ay. Then the following idenlifies hold:

1 1

A2 gy 2 51;31129 ) 741 —tan? 8) - x2 + 2tan@ - Ey, (1.1
1 1

Yep1 = 3 Vit gt 82} 4 tan6 - Ey. 2.1)

Bn+1

Fig. 2 Transformation with two similar isosceles externally erected triangles and one midpoint of a side
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Proof. The first equation is obtained in precisely the same way as in the proof of
Lemma 1.2.

Let C/, bethe centre of A, By,. Then Cy 1 C) = %tan@ Zpand Ay 1 C) = % - Y. Applying
the law of cosines to the triangle A, C; Cy, 41 (possibly degenerate for ¢, = /2 and
oriented clockwise for ¢, > 7/2) yields

1 1 1 7
yﬁﬂ:1'y,%—l-Z1:r:11128uz;‘;—2~Zrtan&ynzncos(E —|—,Bn—|—yn).

With cos(m/2 + Bn + va) = sin(—pBy — yYu) = sin{lay — 7/2) = —sin(ay) and £, =

% sin &y - YuZs, the second identity follows. O

The following identities are immediate consequences of the previous lemma.

1
Yars — = 31— tan’0) - (3 — 20, 2:2)
Yo SegE :1(1+tan29)‘(2+z2)+2tan9‘E (2.3)
n+1 n+1 4 Yn 7 s s
1
Yot = Yap — Zan = 7 (1 —tan’0) - (5 — ¥ + 23). 24)

Corollary 2.2. Let v, = z,. Then

Va1l = Zn4l if 6< and

Yut+1 < Znil if 0> —,

B H A

where equality on the left-hand side holds if and only if 6 = 7w /4 or v, = Zy.

Proof. This is a direct consequence of (2.2) since tan(z/4) = 1. []

Since A,y is obtained in a different way than B, 1 and Cy 41, there is no corresponding
condition that involves x; and x,y1. Our next step is to give lower bounds for the side-
lengths after two steps of iteration.

Lemma 2.3. For ihe corresponding side-lengths of subsequent iriangles, the following
lower bounds hold:

2
xn+2

Y

1
E(l + tan® 9)x2, (2.5)

1
Yatz = 751+ tan 0)y7. (2.6)
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Proof. We apply (2.3) and (1.1) to the analogue of (1.1) for x§+2:

5 tan?@ {1 +tan® @
X =
i ol 4

- (¥p +2;) + 2tanf - En)

1 tan? @
oyl gy & %

1 —tan? @ {tan? @
4 D

'xg—|—2tan9~En)

tan’® 0 (1 — tan® 6)? tan 6 + tan’ @
= 4 '(y§+2§)+T‘X§+f'En-
Now Lemma 1.5 implies y;% + z;‘; = (yp + zn)2/2 = x?%/Q and thus,
tan? 0 1 — 2tan* 6 + tan* 6
3 2 2
xﬂ+2 Z 8 ‘xﬂ —I_ 16 'xn
1 5 1 4 2
:Exn—l—ﬁtan 8- x,.
Using (2.1) repeatedly yields
2 1, 1 4 2
Yug2 = gryn+1 t Ztan 0 Gy
1 , 1 9 2 1 4 2
> Byn—l—gtan 62,1+ Etan &y
1 5 1 4 2
> — —tan” & - v; . ]

As in the previous section, the lemma above motivates us to consider the sequence of
triangles as two separated sequences.

Theorem 2.4. forn = 1, the side-lengths of A, are all = 0.

Proof. The side-length x, does not depend on 4, and hence, for a given triangle A, _;
and a given angle 8, the side-length x,, is just the same as in the previous section. Thus,
Xy > 0 by Theorem 1.7.

For y, and z,, we may assume that A,_; is degenerate since otherwise the claim follows
directly from (2.1).

Since Ag has at least two sides of length > 0, (2.1) implies y; > 0 and analogously,
71 > 0. Now the claim follows by induction using (2.1). ]

We proceed by studying the ratio of corresponding side-lengths.

Proposition 2.5, Lef yo = zo. Then for every angle O < 0 < z /2, there is a constant
0 < i < 1 such that

In42
Ynt2
where equalily holds if and only 0 = /4 or y, = zy.

1%
¥n

0<|1-—

= K

5
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Proof. Note that y, = 0 forn = 1 by Theorem 2.4. Moreover, yy > 0 since otherwise
70 = yo = U and hence, 49 = Bg = Cyp. Now, (2.2) provides

11 2
Vi — Zna = (gr - Ztaﬂz 9) =2,

and hence,

. Ziyp  (1—tan?0)®  y2 ( - i)
2 2 2
yn—|—2 16 yn—|—2 Vi
We may assume y, # I since otherwise we are done. Applying (2.6) yields
L - tan? 8)?
14 tan* @

Z;

2
2
Ya

2
yn+2

Since 0 < (1 —tan? #)? < 1 + tan* @ the claim follows for « ;= (1 — tan? 8)2/(1 + tan* 6)
by Lemma 1.9. Note that « = O if and only if 6 = /4. ]

Proposition 2.6. For every angle 0, there is a constant O < x < 1 such that

2 2
1 — yn—|—2 + Zn—I—Z -
i o
n+2

0=

where equality holds if and only @ = 7 /4 or xﬁ — y},% -+ z;‘;.

Proof. By Theorem 2.4, the only possibility where one of the fractions is not defined is
the case n = 0 and x¢ = 0. In this case, the term on the right-hand side can be understood
as a term of inifinite value, which makes the claim obviously true for this case. Formula
(2.4) provides

1 1 “
x§+2 - y§+2 - Z§+2 = (Z - ;1‘?3112 9) (= Ye —7h)

and hence,

1

2 2 2
_ Ynp2 T%go (1-tan*6)" 7 (1 B Vi -I-Zﬁ)

2 16 52 x2

xn +2 xn +2

We may assume x> # y? + z2 since otherwise we are done. Applying (2.5) yields

et (Q-—wne? | ¥4z
N 1 + tan* @ x2

For x := (1 —tan?0)%/(1 +tan* 6), the claim follows since 0 < (1 —tan® )% < 1+tan*0.
Note thatx = Oif and only if 8 = = /4. L]

We are now ready to state our main result. Regarding only the shape of the triangles, A,
tends to a rectangular isosceles triangle for n — co.
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Theorem 2.7. For every inifial friangle Ao and every angle 0 < 8 < 7 /2, the following

limits hold:
7 2
ez
im 255 gim = T
n—co  x2 A—00 2
im 22 =1,  lim B8, = =
A—>CO 7, H—>00 4

Proof. The limits on the left-hand side are immediate consequences of Propositions 2.5
and 2.6. By the law of cosines we know cos a, = %(y,% + Z;‘; — xf)/(ynzn). Now the limits
on the left-hand side imply lim,_,. cosa, = O and hence, lim,_, o &y = 71/2. The last
limit follows from limy,_,.o ¥4/2s = 1 together with the law of sines. O]

As in the previous section, the size of the triangles becomes stable for only one specific
choice of 8. For every greater angle, the triangles grow unboundedly and for every smaller
angle, the triangles collapse to a single point.

Theorem 2.8.
I 0<0<2, then  lim xy= lim y, =0
4 n—co n—-co

T i : ;
If — <8 < —, then lim x; = lim y, = oo.

4 2 n—co n—r00

7

If 9:2, then xn:xlzx/iyl:x/ayn Yu > 0.

Proof. Firstlet U0 < 8 < w/4. Thentan & < 1 and hence, (2.3) implies
1 .
ny + Z;‘;H < §(y§ - z;‘;) + tan @sinay - Yuin
1 2 2
i Q(y” o Zn) +tan @ - Ynln -

With Lemma 1.5 we conclude y§+1 —I—Z;‘;H < %(1 —|—tan9)(y§—|—z;‘;). Since %(1 +tan@) < 1,
this implies limn_wo(y;‘; + Z;‘;) = 0 and hence, limy o0 ¥y = liMy—c0 2z = 0. The claim
follows.

For m/4 < 6, we obtain tan® > 1. Let ¢ > O such that tan® > (1 4 ¢)2. By Theorem
2.7 there are natural numbers #; and #n, such that (1 + ¢/2)z, > v, for every n > n; and
(1+e/2)sinay > 1 for every n > n,. Set ng := max{n;, n,}. Then for every n > no,
(2.1) implies

1 1 .
Y2iq > 'y,%+Z<1+e>4‘z§+<1+e)2'§s1nan~ynzn

1 1

Vit A+ i+ 50
&

1—|—§)y§

Thus, lim;—. o ¥ = o0. Now lim, . o X; = o0 follows from Theorem 2.7.

=

=

R - S
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For the last case, Corollary 2.2 implies y, = z, for every 1 = 0. The rest follows
from (2.4). L]

We conclude this section with a statement concerning the orientation of the triangles Ay,.

Theorem 2.9. For every n > O, the triangle A, is non-degenerate and counterclockwise
oriented.

Proof. Assume that A, is non-degenerate and counterclockwise oriented. By symmetric
reasons we may assume v, > Z,. Let B;l and C;l denote the centres of C, A, and A, B,
respectively.

First we consider the case x; > y,;. Then o, > B, and «, > y, by the law of sines
and therefore B, < n/2 and y,, < 7/2. Since the triangle A, 41 Cy B;, is similar to Ay,
we obtain /CyA, 1B, = By. On the other hand, let [ be the perpendicular bisector
of the side y,, i.e. the line through B;, and B,;. Since x, > z,, the line [ intersects
B,C, in a point 5. We obtain £CySByy1 = 7/2 — yyu. Thus, min{g,, 7/2 — yy} <
L0 Ap1 By < max{py, m/2 — y,} and therefore 0 < ACyAyy1By41 < 7/2. Analo-
gously, 0 < £y 11 Any1 By < 7/2. This implies £ Cy 41 4,11 By < 7 and the claim holds
for Ay4q-

Now assume x, < y;. Then we obtain analogously to the above 0 < LAHB;; Cop1 < 7/2
and LA, (1B, Cy = ay < /2. Thus, both angles £ A, 1B, By 1 and /B, 1B, Cy 4 are
greater than 7r/2 and smaller than 7 and consequently, £ Cy41 B, An11 < 7w. We conclude
that B;'I is inside the triangle A, and that the claim holds for A, ..

We complete the proof by applying induction. L]

3 Further remarks and outlook

The “missing” case where only on one side, say B, Cy, an isosceles triangle is erected and
for the other two sides the centre is taken 1s not very interesting. Following [.M. Yaglom
[8, 1.2, 22], the distinguished angle for the isosceles triangle would be £ C, Ay 11B;, = 0
and therefore @ = £ A;11B,Cy = ZB,Cy Ay 41 = 7, which is not possible. One gains the
idea that the shape to which the triangles converge should be degenerate. Moreover, since
every possible choice @ is smaller than 7, the triangles should collapse to a single point.
These claims are easy to prove: One can see immediately x,41 = x,/2. Furthermore,
Vat+1 < Vu/24+tan8-x,/2and 7,41 < 7x/2+tan8-x, /2. Thus, the ratios x,, / v, and v, /7,
tend to O while y,/z, converges to 1. After reaching the point tan@ - x, < y,, we obtain
additionally v,1+1 < vy. The analogue holds for z,,. Hence, limy_, o X5 = limy oo ¥4 =
limy s o0 20 = 0.

Consequently, for triangles, the next task would be to consider three different angles 0y, 6y,
and &, for the isosceles triangles that are erected on the sides of A,. Furthermore, instead
of isosceles triangles one can erect arbitrary triangles on the sides of A,. One possibility
to determine the triangles uniquely is to demand besides the angle & (which we now ask
for only one of the two possibilities) also the ratio A in which the side adjacent to the old
triangle is subdivided by the orthocentre. This is in the spirit of [6] where the convergence
of this transformation is studied by using its eigenvalues.
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Another possible generalisation would be to consider instead of the triangle Ag an arbitrary
polyvgon. Of course, the transformation still uses isosceles triangles erected on the sides
of the polygon. The convergence of these transformations has been studied in [5] together
with the first case of this article. A possible application of this transformation is an element
oriented mesh smoothing method based on successively applying this transformation to the
polvgonal bounded elements of triangular element surface meshes [4].

References

(1]

2]
[3]
[4]

(5]

(6]

[7]
(8]

Coxeter, H.SM.; Greitzer, S.L.: Geometry revisifed. The Mathematical Association of America: New
Mathematical Library. Random House, New York 1967.

Kiepert, L.: Solution de question 864. Nouv. Anr. Math. 8 (1869), 40-42.
Rutherford, W.: VII Quest. 1439. Ladies’ Diary 122 (1825), 47.

Vartziotis, D.; Athanasiadis, T.; Goudas, L.; Wipper, J.: Mesh smoothing using the geometric element
transformation method. Comput. Methods Appl. Mech. Engrg. 197 (2008) 4548, 3760-3767.

Vartziotis, D.; Wipper, J.: Classification of symmetry generating polygon-transformations and geometric
prime algorithms. Math. Pannen. 20 (2009) 2, 167-187.

Vartziotis, D.; Wipper, I.: Characteristic parameter sets and limits of circulant Hermitian polygon trans-
formations. Linear Algebra Appl. 433 (2010) 5, 945-955.

Finsler, P.; Hadwiger, H.: Einige Relationen im Dreieck. Comment. Math. Helv. 10 (1937) 1, 316-326.

Yaglom, LM.: Geometric transformations. Random House, New York 1962. (Translated from the Russian
by Allen Shields.)

Dimitris Vartziotis

Institute of Structural Analysis & Antiseismic Research
National Technical University Athens (NTUA)
GR-15780 Athens, Greece

and

TWT GmbH Science & Innovation, Research Department
Bernhiuser Strafe 4042
D-73765 Neuhausen, Germany

e-mail: dimitris.vartziotis@nikitec.gr

Simon Huggenberger

TWT GmbH Science & Innovation, Research Department
Bernhéuser Strabe 4042

D-73765 Neuhausen, Germany

e-mail: simon. huggenberger@twt -gmbh . de



	Iterative geometric triangle transformations

