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Elemente der Mathematik

Eine besondere Familie von Polynomen

Werner Hertzog

Werner Hertzog hat an der Universität Freiburg im Üechtland Mathematik studiert.
Heute ist er als Direktor der Pensionskasse des Bundes PUBLICA Schweiz) tätig.

In der Formel für den Tangens eines n-fachenWinkels treten Polynome pn und qn in Z[x]
auf. Diese Polynomfamilien pn)n=1 und qn)n=1 haben unerwartete Eigenschaften, welche

sich mit elementarenMitteln herleiten lassen. Beispielsweise lässt sich mit ihrer Hilfe
die komplexe Wurzelfunktion auf einem maximalen Holomorphiegebiet gebrochen rational

approximieren. Es handelt sich dabei um ein konkretes Beispiel für den allgemeinen
funktionentheoretischen Satz von Runge [1].

Es bezeichne G := C \ {z R | z 0} die eingeschnittene komplexe Ebene und H :=
{z C | Re z > 0} die rechte Halbebene. Wir definieren die komplexe Wurzelfunktion
v durch ihren Hauptwert

v : G H r eif vr eif/2 r > 0 |f| < p)
und beginnen mit den für z G definierten Hilfsfunktionen

hn(z) := 1 +vz
n

kn(z) := 1-vz
n

n 1)

Trennt man hier die geraden und ungeraden Anteile, so erhält man Darstellungen

hn(z) qn(z) +v z pn(z)

kn(z) qn(z)-vz pn(z)
z G)

Der funktionentheoretische Satz von Runge garantiert für jede auf einem beliebigen
Gebiet holomorphe Funktion eine Approximationsfolge von rationalen Funktionen,
welche auf dem jeweiligen Gebiet kompakt konvergiert. Dieser Satz ist eine wichtige
Existenzaussage; wie allerdings im konkreten Fall eine solche Funktionenfolge
konstruiert wird, lässt er offen. Der Autor zeigt im Folgenden, wie eine solche Folge für
die komplexe Wurzelfunktion auf einem maximalen Holomorphiegebiet konkret
konstruiert werden kann. Der Beweis dieses Resultats ist überraschenderweise sehr kurz
und elementar.
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mit Polynomen

qn(z)
hn(z) + kn(z)

2
pn(z)

hn(z)- kn(z)
2vz

1)

die sich rekursiv wie folgt berechnen lassen:

Lemma 1. Für alle n 1 gilt

q1(z) 1, qn+1(z) qn(z) + z pn(z)
p1(z) 1, pn+1(z) qn(z) + pn(z)

Beweis. Man hat q1(z) 12 h1(z) + k1(z) 1 und weiter

qn+1(z)
2

1 +vz hn(z) + 1-vz kn(z)hn+1(z) + kn+1(z)
2

1 + vz qn(z) +vz pn(z) + 1-vz qn(z)-vz pn(z)

2

qn(z) + z pn(z)

Der Beweis für die pn verläuft analog.

Aus

pn(z) 2vz

1 +vzhn(z)- kn(z)
n

2vz
1-

1-vz

1 +vz

n

z G)

zieht man den folgenden Schluss: Die in G gelegenen Nullstellen von pn sind Lösungen
der Gleichung

1 - vz

1 + vz

n

1. 2)

Aus 2) folgt aber 1 - vz)/(1 + vz) e2kpi/n für ein k Z und damit weiter
z - tan2 kp

n /. G. In anderen Worten: Alle Nullstellen von pn liegen auf der negativen

reellen Achse.

Es ist nun keine Überraschung mehr, dass die Polynome pn und qn in der Formel für den

Tangens des n-fachenWinkels auftreten:

tan(nx) tan(x)
pn - tan2(x)
qn - tan2(x)

n 1, qn(- tan2 x)) 0

Der Beweis ergibt sich ohne Schwierigkeit mit vollständiger Induktion und Lemma 1.

Im Folgenden wollen wir zeigen, wie sich die komplexeWurzelfunktion mit Hilfe der
Polynome pn und qn gebrochen rational auf einem maximalen Holomorphiegebiet kompakt
konvergent approximieren lässt. Wir haben hier ein Anwendungsbeispiel für den bekannten

Approximationssatz von Runge vor uns. In seiner einfachsten Form lautet dieser Satz

wie folgt siehe z.B. [1], Kap. VII, §1, Satz 1.1):
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Satz von Runge. Es sei f eine auf der kompakten Menge K C holomorphe Funktion.
Dann gibt es eine Folge fn)n=1 rationaler Funktionen ohne Pole auf K, die gleichmässig
auf K gegen f konvergiert.

Der Satz von Runge ist eine reine Existenzaussage. Wie die Approximationsfolge im
konkreten Fall aussieht, lässt er offen.

Die Funktionen

fn(z) :=
qn(z)
pn(z)

n 1)

sind gebrochen rational und alle in dem Gebiet G holomorph, da die Nullstellen der pn

auf der negativen reellen Achse liegen. Wir setzen

z) :=
1-vz

1 +vz
z G)

Dann folgt aus 1) die Darstellung

fn(z)
qn(z)

pn(z)
vz

1 + .n
1- .n

n 1, z G) 3)

Wie verhält sich
1 + .n
1- .n

wenn n 8? Für festes z r eif mit r > 0 und |f| < p
ergibt sich

|.|
2

·

1 + r -2vr cos(f/2)
1 + r + 2vr cos(f/2) < 1

Somit ist auch |.| < 1, und es folgt limn.8
1 + .n
1- .n

1. Wegen 3) haben wir damit

lim
n.8

fn(z) lim
n.8

qn(z)

pn(z)
vz z G) 4)

bewiesen. Wir können damit unser Hauptresultat formulieren:

Satz 2. Auf dem Gebiet G := C \ {z R | z 0} gilt

lim
n.8

qn(z)

pn(z)
vz

mit kompakter Konvergenz.

Beweis. Die punktweise Konvergenz ist bereits bewiesen. Es sei nun ein beliebiges
Kompaktum K G gegeben. Wir müssen zeigen, dass die qn/pn auf K gleichmässig gegen
v konvergieren. Das heisst: Zu jedem > 0 gibt es ein N mit

qn(z)

pn(z) -vz < z K, n > N)
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Der Beweis besteht aus einer quantitativen Version“ der Überlegungen, die zu 4) geführt”haben. Für beliebige z G gilt nach 3) die Abschätzung

fn(z)-vz vz ·
1 + .n
1- .n - 1 vz ·

2.n
1- .n

5)

Da K kompakt ist, gibt es ein c > 0 mit vz c f ür alle z K und wegen | z)| < 1
auf G K auch ein d < 1 mit | z)| d für alle z K. Hieraus folgt

2.n
1- .n

2|.n |
1- |.n |

2dn

1 - d
z K, n 1) 6)

Zu vorgegebenem > 0 gibt es nun ein N mit c · 2 dn/(1- d) < für alle n > N, so
dass 5) und 6) zusammen genommen die verlangte Abschätzung

fn(z)-vz c
2dn

1- d < z K, n > N)

liefern.

Bemerkung. Die Nullstellen der Polynomfolge pn)n=1 wir haben sie oben bestimmt!)
müssen auf der negativen reellen Achse dicht liegen. Andernfalls könnte nämlich das
gemeinsame Holomorphiegebiet G der fn bzw. der Grenzfunktion v vergrössert werden.
Dies ist bekanntlich für v nicht möglich.
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