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1. Introduction

Let I C R be an interval. The function f : I — R is convex, if the inequality

Jhx+ 0 -y <A@+ A =27 K) (1)

holds for all A € [0, 1] and x, vy e [. If instead < in (1) we have >, such a function is
concave.

In most textbooks convexity is treated within differential calculus. However, we will see
how one can single out convex functions among the basic elementary ones without exploit-
ing differential calculus. This will be achieved by using several inequalities and simple as-
sertions. In addition, some elementary convex functions, as it was pointed out in Jensen’s

Konvexitdt bzw. Konkavitit differenzierbarer Funktionen ldsst sich bekanntlich leicht
mit den Mitteln der Differentialrechnung nachweisen. In der vorliegenden Arbeit
wird ein Werkzeugkatalog zusammengestellt, der es erlaubt, Konvexitat bzw. Kon-
kavitdt von Funktionen zu zeigen, die nicht notwendigerweise differenzierbar sind.
Beispielsweise geniigt es fiir den Nachweis der Konvexitit einer stetigen Funktion f
die Giiltigkeit der Ungleichung f({x + ¥)/2) < (f(x) 4+ f(y))/2 furallex,y € R
zu verifizieren. Mit ihrem Katalog untersuchen die Autoren die Konvexitédt bekannter
elementarer Funktionsklassen in systematischer Weise. Mit Hilte dieses Formalismus
gelingt es ihnen uiberdies, die Konvexitit komplexerer Funktionen relativ leicht einzu-
sehen und daraus bekannte Ungleichungen erneut abzuleiten.
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fundamental paper [5], are not differentiable, such as
n
X le—xil xieR, i=1,...,n).
i=1

Moreover, in the same paper Jensen provided an example (attributed to U. Dini and
J. Liiroth) of a convex function defined on (0, 1), which is not differentiable at any ra-
tional point:

FO =) cilx —xil.
i=1

Here ¢; = 0, the series Zfil ¢; is convergent and {x; : i € N} = QN (0, 1). The proof
follows from the relation

fi) = fLGx) = 2¢;,
where f} are the one-sided derivatives of f.

It should be mentioned that for any convex function f the derivatives fj exist and f/ <
/4 in the interior of I. Furthermore, f = f up to a countable set (see, e.g., [8]).

Besides having the one-sided derivatives, convex functions have another natural property:
continuity. More precisely, if f : I — R is convex, then it is continuous in the interior of
I (see also [8]).

Instead of convex functions defined by (1), Jensen in [5] considered the functions satisfy-
ing (1) only for A = %:

f(ery) < fF&xy+ v .y e D). @)

2 2

It turns out that these functions, which are called Jensen-convex (or J-convex) functions,
are also convex, provided they are continuous. In the proof of this fact Jensen used the
inequality

f(xl+...+xn)<f(xl)+...+f(xn)’ 3)

S
n n

which today bears his name.

Example 1. The function f(x) = % is convex on (0, o0). Indeed, due to continuity it
suffices to prove that f is J-convex, namely,

-
< =

2
<
X+vy

L 0
7 (x,y >0)

and this is obviously true.
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2. Operations with convex functions

We start with an evident assertion.

Theorem 1. If f, ¢ : I — Rare convexand @ 2 0, then [ + g and «f are also convex.

]
The next two simple theorems are stated for the first time in [5].
Theorem 2. Let [ : I — Jand g: J — R, where J C R is also an interval. Then:
| convex, g convexandincreasing = go [ convex;
I convex, g concave and decreasing = go [ concave;
f concave, g concave and increasing = go [ concave;
[ concave, g convex and decreasing = go [ convex.
Proof. Let us prove only the first statement. For all x, v € I, we have in order
JOx+A -y <A+ A =210,
gUfGx+ A —My) < gf)+U -1 fy)
SA(S )+ A —=2)g(fy). O

Theorem 3. Lef [ : 1 — J, J CRwith J = f(I). Then:

(i) f~Visconvex, if f is convex and decreasing or concave and increasing;

(ii) f~Visconcave, if f is convex and increasing or concave and decreasing.

Proof. Suppose that f is convex and increasing. Then f —1ig increasing. Consequently,
for all x1, xp € I and yv1 = f{x1), y» = f(x2), it follows that

IR Ox + 0 = 0x2) < SO ) + (=2 f (),
that is,

MO+ A =0T ) < FTT0Y+ (L= ).
One similarly proceeds with the remaining statements. L]
As an immediate consequence of Theorem 2 and Example 1, we have

1

7 is convex. O

Theorem 4. If | : I — (0, 00) is concave, then

An analogous assertion for a convex function does not hold in general. For example,
f(x) = x?+ 11is convex on R, but % is neither convex nor concave.
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3. Some important inequalities

In the sequel we will employ the following inequalities:

”al...angwﬂ, 420 G=1,....n); )

a*b' " <ra+ 1 —0b, rel0,1], a,b=0; (5)
b [0 bC\{

(“;F )“g“; , «>1, a,b30. 6)

The first inequality is the celebrated inequality between the arithmetic and geometric mean
(AM-GM). More than one hundred proofs are known, and one of them, Cauchy’s original
proof is included in the beautiful book [1].

The second inequality, often called Young’s inequality, is a consequence of (4): assuming
first that A = = (m, n € N, m < n) is rational, we obtain

nga+(ﬂ—m)b’

7

or equivalently,

ampl-% <Py (1 _ ﬂ)b. 7
n l

Passing to the limit in (7), we conclude that (5) holds also for irrational A € [0, 1].
Concerning the proof of the third inequality, note that

ath ™ +ayby ™t < (a1 + a) (b1 + b)) (8)

for all positive a;, b; (i = 1, 2). Indeed, applying inequality (5), we have
a) + az b1+ b2 ar+ az b1+ b2
ai by ay b2 )
<A + (1 —-A + A +(1—x
(Cll-i-clz) ( )(b1+b2) (Gll-i-az) ( )(b1+b2

= T,

If we set
1 1 1

alzia“, azziba, D1 :b2:57 k:E
in (8), we obtain (6).
In 1888, H. Simon published a paper with the proof of an inequality slightly more general
than (6). There he made the remark that I.-J. Bienaymé had stated in 1840 similar results,

however, without proofs.

4. Convexity of elementary functions

Since elementary functions are continuous on their domain of definition, convexity in this
case reduces to J-convexity. We will see now how one can establish convexity (or concav-
ity) of the most common elementary functions by applying the results from the previous
sections.
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1. Power function

Let f(x) =x" and n € N. Then

X+y ”<x”+y”
2 2

holds on [0, c0) by virtue of (6). Now, it is a simple matter to prove that f is convex on
the whole of R for n even and concave on (—o0, 0] for n odd.

2. Root function

Taking into account that f(x) = &/x is the inverse of the power function, Theorem 3
applies.

3. Exponential function

Thanks to the AM—GM inequality for n = 2, we have

Xty e* + e
2 =+ereY £ 2 :

€

and, consequently, exp is convex on R,

The function f(x) = a* (a > 0) is also convex on R as being a composition of the
increasing convex function exp and the convex (linear) function x +— (Ina)x.

4. Logarithmic function

Again, since f(x) =log, x (@ > 0, a # 1) is the inverse of the convex function x — a*,
we simply employ Theorem 3 to deduce concavity for g > 1 and convexity for0 < a < 1.

5. Generalized power function

For f(x) = x* (x > 0) we distinguish the following cases:
(a) ¢ = 1;

The corresponding inequality (2) for f is exactly (6).
)0 <ao<1:

/e i increasing and, according to (a), convex.

In this case f is concave, since f 1 (x) = x
(©) o <0;

Utilizing convexity of x + « lnx, it follows from f(x) = e®!™* that f is convex.
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6. Trigonometric functions

(a) The function sin is concave on [0, 7]. Indeed, for x, y € [0, ], we have sin +y = 0.

Therefore,
K 5 — X+
sinx 4+ sin y = 2 sin ycos 4 < 2sin y.
2 2 2
Hence, ‘ _
X sin x + sin
sin i = a y.
2 2
Applying sin(x 4+ 7) = — sin x, we see that sin is convex on [, 27 ].

(b) From (a) and
T
COs X = sin (x + 5) ;

T 3

we conclude that cos is convex on [7, 7] , and concave on [0, Z] and [37”, 2.

(¢) tan is convex on [0, %). To see this, we utilize concavity of cos on [0, %) and the
AM-GM inequality to obtain

COSX +cosy X+y

JCOSXCOs Y € — < COoS —

Finally, for x, y € [0, ), it follows that

tan (x —i—y) . smﬂ 2sin sin(x+y)  tanx +tany

2 oS % 2 cos2 = T 2cosxcosy %

+}/ +)’

cos &

As an odd function, tan is concave on (—%, 0].

7. Inverse trigonomelric functions

Here the application of Theorem 3 and previous results allow us to deduce intervals of
convexity and concavity for the functions arcsin, arccos, arctan.

8. Hyperbolic functions
(a) The function sinh is convex on [0, +o¢). This follows from
X+ X — x+
sinh x + sinh y = 2 sinh (_y) cosh (_y) 2si h( y)
2 2 )
sinh is concave on {—o0, 0], since it is an odd function.

(b) The function cosh is convex on R being a sum of two convex functions. Note that
Incosh is also convex on R by virtue of Theorem 2. Inequality (2) for this function

implies that
x
cosh (%) < y/coshxcosh y. (9
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(¢) From (9) one infers that for all x, y = 0,

X—I—y) _ 2Siﬂh%008h¥ - sinh(x +y)  tanhx 4tanhy

tanh ( — 7
2cosh? X2 7 2coshxcoshy 2

which means that tanh is concave on [0, co). Convexity on (—o0, 0] follows from
the fact that it is an odd function.

5. Applications to inequalities

5.1 Henrici’s and Ky Fan’s inequalities

Two interesting inequalities can be derived by using concavity of tanh on [0, o0). First,
1

note that the function f(x) = = is convex on [0, o¢), due to

£ 1 1t hx
X) = — — —tanh —.
2 2 2

Jensen’s inequality (3) for f reduces to the inequality of P. Henrici [4]

n
n 1
< x; =21, i=1,...,n).
L+ 37 \g;1+m e
Note further that f is decreasing. Therefore,
I —x

FHx) =1n

is convex on (0, %). Jensen’s inequality (3) applied to f~! leads to the inequality of Ky

Fan i .
1 Xi (1 —x; 1
IE*‘ < Ur“ D gexm<s G=1,...
Qi x0T i (L —x))” 2
This shows how closely related the inequalities of Henrici and Ky Fan are.

Interestingly, Henrici’s inequality was posed as problem No. 245 in Elemente der Math-
ematik in 1955. On the other hand, Ky Fan’s inequality has originally been stated without
proof in [2] as an unpublished result of Ky Fan, accompanied with a hint of using mathe-
matical induction.

L 7).

5.2 Several geometric inequalities

Let us denote by P the area of a triangle with the side lengths a, b, ¢, the angles «, 8, v,
and the height lengths hg, Ap, fic.

Thanks to concavity and positivity of the function sin on (0, 7 ), we conclude by virtue of
Theorem 4 that the function 1/sin is convex on the same interval. Jensen’s inequality (3)
with n = 3 in this case yields

1 1 1
+ sin 8 + sin y

1 sin o
~
sin Y 3
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Therefore,

1 1 1
— + —— + —— 223,
sine  sinf  siny

Now, from

2 3 2 ! 1 L
a“+b-+c >ab+bc+ca:2P(' + — + — ),
sinae  sinf siny

we get Weitzenbidck’s inequality [9]
43P <a? + b2+
Note that from
6P = ahy + bhp + che < ab +be +ca < a? +b* + ¢2

follows
3
43IP < —@®+ 1%+ A, (10)

NE

Consequently, Weitzenbock’s inequality is an improvement of the trivial inequality (10).

Many estimates for 44/3 P are known. For example, Pélya and Szegd proved in [6] that

43P < 3V a2h2e2., (11)
Having in mind that
3va2h2c? < a® + b2 + 2,

we see that the estimate (11) is sharper than Weitzenbock’s inequality. Here we show a
proof of (11), which partially employs ideas of H. Flanders [3].

The function f = lnsin is a composition of two concave functions with ln additionally
being increasing. Thus, f is concave. Jensen’s inequality applied to — f implies

B3
sin « sin B sin y < g\/g

and (11) easily follows from the evident identity
3 1 9 ; .
P’ = g(abc) sin ¢ sin B sin y.

We leave as an exercise to prove the inequality (see [7]):

o o p oy 1
$in — sin — sin — < —.
2 2 2 8
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