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1 Introduction

The classical circle packing problem asks for an arrangement of nonoverlapping circles in
R? so that the largest possible proportion of the space is covered by them. This problem
has a long and fascinating history with its origins in the works of Albrecht Diirer and
Johannes Kepler. The answer to this is now known: the largest proportion of the real
plane, about 90.7%, is covered by the arrangement of circles with centers at the points
of the hexagonal lattice. The first claim of a proof was made by Axel Thue in 1892,
and then once again in 1910, It is generally believed however that the first complete
flawless proof was produced only in 1940 by 1.4sz16 Fejes-Toth (see [2], [10] for detailed
accounts and bibliography). On the other hand, the fact that the hexagonal lattice gives the
maximal possible circle packing density among all latfice arrangements has been known

Die Aufgabe, die dichteste Packung der Ebene bzw. des Raumes mit nicht tiberlap-
penden, kongruenten Kreisen bzw. Kugeln zu finden, ist ein klassisches Problem,
mit dem sich bereits Johannes Kepler befasst hat. Im Falle der Ebene liegt seit 1940
durch Laszl6 Fejes-Toth ein vollstindiger Beweis der Tatsache vor, dass die dichteste
Kreispackung der Ebene aus einem hexagonalen Gitter, d.h. aus einem Bienenwaben-
muster, hervorgeht und damit ca. 90,7% der Ebene iiberdeckt werden. In dem nachfol-
genden Beitrag gibt der Autor einen elementaren Beweis des in diesem Kontext wich-
tigen Teilergebnisses, dass unter den Kreispackungen der Ebene, die aus Gittern her-
vorgehen, das hexagonale Gitter zur optimalen Losung fithrt. Was die dichteste Kugel-
packung des Raumes, die sogenannte Keplersche Vermutung, anbetrifft, so wurde diese
im Jahr 1998 durch Thomas C. Hales unter Verwendung des Computers bewiesen.
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much earlier: all the necessary ingredients for the first such proof were present already in
the work of Lagrange, although he himself, while aware of the circle packing problem, may
not have realized that he essentially had a proof for the optimal lattice packing in hands.
In fact, the notion of a lattice has not been formally introduced until the work of Gauss in
1831. A detailed history and overview of these and other developments in the direction of
the circle packing problem and its (much more difficult) three-dimensional analogue, the
Kepler conjecture, can be found in the excellent recent book of G.G. Szpiro [12].

In this note we concentrate on the lattice circle packing problem. Let us first set up the
basic notation and describe the problem. Recall that a lattice A in R? is a free Z-module
of rank two, so A = XZ? for some matrix X = (x1 x2) € GLy(R), where the column
vectors x1, x2 of X form a basis for A and X is referred to as the corresponding basis
matrix. The determinant of A, denoted by det(A), is defined to be | det(X)|, which does
not depend on the particular choice of a basis for A. Let us now construct a circle packing
associated to A. Define the Voronoi cell of A to be

Viy={yeR*: |y <lly —x|| V& e Al

where we write || || for the Euclidean norm on R2. In other words, V(A) is the closure of
the set of all vectors in the real plane which are closer to 0 than to any other vector of A.
The area of the Voronoi cell is equal to det(A), and

R*= | v+,
yeA

meaning that the real plane is tiled with the translates of V(A). Moreover, as is clear from
the definition, the interiors of these translates are disjoint. Let us inscribe a circle into each
translate V(A) + y of this Voronoi cell by a point of the lattice, and write r(A) for the
radius of this circle. No two such circles overlap, and so we have a circle packing in R?,
called the lattice packing corresponding to A. The density of this circle packing is now
given by

area of one circle ar(A)?

A(A) = = .
(A) area of the Voronoi cell det(A)

The lattice packing problem in R? is to maximize this density function on the space of all
lattices. The answer has been known since the end of the nineteenth century (see Fig. 1):
this density function A on lattices in R? is maximized by the hexagonal lattice

1 41
Ah = jg Zz.
0 %

Here we will present a proof of this fact, emphasizing the particular properties of Ay that
make it a solution to this optimization problem.

Let us say that two lattices A and €2 in R? are similar if there exists a real constant « and
a2 x 2 orthogonal real matrix U such that

Q =aUA,
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Fig. 1 Hexagonal lattice with Voronoi cell
translates and associated circle packing

in other words, if £2 can be obtained from A by rotation and dilation. Similarity is readily
seen 1o be an equivalence relation, and it is easy to notice that the packing density function
A is constant on each similarity class. We will prove the following classical result.

Theorem 1.1. Let A be a lattice of rank 2 in R?. Then

it
A(A) < A(Ap) = —= =0.906899.. .. 1
(A) = A(Ap) Wi (D

with equality in (1) if and only if A is similar to Ay,

2 Background and standard notation

We start by setting up some additional notation. Let B be the unit circle centered at the
origin in R?. Given a lattice A, we define Minkowski successive minima A; < A2 of A
to be

A = inf{A € R.g : AN AB contains i linearly independent nonzero vectors} ,

where { = 1,2. By definition of the Voronoi cell of A, its in-radius is equal to one half
of the distance from the origin to the nearest (with respect to Euclidean norm) point of A,
which is precisely A1/2, and so

2
nkl

AA) = 4det(A)

2)

We will say that the vectors x1, x» € A correspond to successive minima M1, Ay if they
are linearly independent and

|1l = A1, llx2]l = A2.

Notice that if x1, xp correspond to successive minima in A, then so do +x7, £x,. From
now on, when we refer to vectors corresponding to successive minima in a lattice in R?,
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we will always mean a pair of such vectors so that the angle ¢ between them is in the
interval [0, 7 /2]. Therefore cosé > 0, and so

xtxy = i |[lx2 cos 6 > . 3)

A lattice A C R? is called well-rounded, abbreviated WR, if its successive minima 1, and
Ao are equal. The hexagonal lattice Ay is an example of a WR lattice with A1 = Ap = 1.
Well-rounded lattices are very important in coding theory [1] and discrete optimization
problems [7]; they also come up in the context of some number theoretic problems, such
as Minkowski’s conjecture [8] and the linear Diophantine problem of Frobenius [5]. For
a detailed study of the distribution of certain types of WR lattices in R? see [3] and [4].
In Lemma 3.7 below we show that the WR property is preserved under similarity, i.e. a
well-rounded lattice in R? can only be similar to another well-rounded lattice, and give a
simple necessary and sufficient criterion for two WR lattices in R? to be similar. Thus The-
orem 1.1 implies right away that only a WR lattice can maximize lattice packing density.

Our proof of Theorem 1.1 emphasizes the importance of WR lattices. Specifically, we first
prove that A must achieve its maximum at a WR lattice, hence this optimization problem
can be restricted to WR lattices only. Next we show that if A is WR, then A(A) is given
by a particularly simple expression, and maximizing it becomes an easy problem. Our
argument is self-contained and requires no background beyond linear algebra. For further
topics in the fascinating subject of lattice packing in dimensions two and higher see [2],
[6], [7], [10], and [11]. We are now ready to proceed.

3 Properties of well-rounded lattices in R?

Our goal here is to prove that the circle packing density function on the space of all lattices
in R? achieves its maximum at the hexagonal lattice. We start with a simple, but very
useful lemma.

Lemma 3.1. Let x1 and x> be nonzero vectors in R? so that the angle 6 between them
satisfies 0 < 6 < m /3. Then

21 — x2f| < max{[|lxq], [[*2]l}.
Proof. Notice that x{x> > 0 by (3). Then, since 6 < 7/3,

f
X X2
— <cosh=—L"=
2 [l 1 ||| ]
and hence
2 ‘ 2 2 '
g —x2||” = (x1 —x2) (X1 —x2) = ||x1]|” + |lx2)|” — 2x7x2
2 2 2
< |l ]” 4+ flxe2ll” — llegfle2]] < max{|[xq|l, ez} O

Lemma 3.1 readily implies that the angle between vectors corresponding to successive
minima in a lattice cannot be < 7 /3.
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Lemma 3.2. Let A < R? be a lattice of full rank with successive minima A1 < iy, and let
X1, x2 be the veciors in A corresponding to ,y, Ao, respeciively. Let 6 € [0, /2] be the
angle between x1 and x,. Then

/3 <6 <m/2
Proof. Assume that 0 < 7/3, then LLemma 3.1 implies that
21 — 22| < |lx2]] = A2,

which contradicts the definition of A, since the vectors x; and x; — x5 are linearly inde-
pendent. O

We can now prove that vectors corresponding to successive minima in a lattice in R? form
a basis.

Lemma 3.3. Let A be a lattice in R? with successive minima h1 < A and let x 1, x5 be
the vectors in A corresponding to L1, Ao, respectively. Then x1, xo form a basis for A.

Proof. Let y; € A be a shortest vector extendable to a basis in A, and let y, € A be a
shortest vector such that y,, y, is a basis of A. By picking +y, £y, if necessary we can
ensure that the angle between these vectors is no greater than 7w /2. Then

O <yl = lly2ll,

and for any vector z € A with ||z|| < |ly,| the pair y,, z is nof a basis for A. Since
x1,xp € A, there must exist integers a1, dz, b1, b2 such that

(t1x2) = (3, ¥2) (‘” bl). )

ay b

Let 6y be the angle between x 1, X2, and 8y be the angle between y, y,, then 7/3 < 0y <
7 /2 by Lemma 3.2. Moreover, /3 < 6y < m/2: indeed, suppose 6y < /3, then by
Lemma 3.1,

ly1— y2ll < lly2ll,

however y;, y; — ¥, is a basis for A since yq, y, is; this contradicts the choice of y,.

Define
D= ‘det (a1 bl)
as bs

then D is a positive integer, and taking determinants of both sides of (4), we obtain

9

[xilllle2llsin@x =Dy [l[ly2ll sin&y. (5)

Notice that by definition of successive minima, |xq|/[x2] < |ly1lll¥2l, and hence (5)
implies that
el el sinGy 2

= — < — <
Iy llly2ll sindy — /3

2,
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meaning that D = 1. Combining this observation with (4), we see that

—1
ar b
(x1x2) (Clz bz) = (y1 }’2),

a1
az
completing the proof. 0

-1
. b ; . : )
where the matrix ( b;) has integer entries. Therefore x 1, x7 is also a basis for A,

Remark. We note that if we replace R? with R? then the statement of Lemma 3.3 is no
longer true for d > 5 (see for instance [9]).

We will call a basis for a lattice as in Lemma 3.3 a minimal basis. The goal of the next
three lemmas is to show that the lattice packing density function A attains its maximum in
R? on the set of well-rounded lattices.

Lemma 3.4. Let A and Q2 be lattices of full rank in R? with successive minima
AM(A), o (A) and A (82), Ao(S2), respectively. Let x1, xp and yy, y, be veciors in A and
2, respectively, corresponding to successive minima. Suppose that x1 = yq, and angles
between the vectors x1, xz and yq, ¥, dre equal, call this common value 6. Suppose also
that

A(A) = Aa(A).
Then

A(A) = A(Q).

Proof. By Lemma 3.3, x1, x, and y;, y, are minimal bases for A and 2, respectively.
Notice that

MA) = ho(A) = [lx1]l = |lx2|l
=yl = 21(82) = [|yall = A2(£2).

Then, by (2),
AA) = mh1(A)? _ 77?»1(1\)2‘ _ JT
4 det(A) 4llx1]|||x2]| sin€  4sind
2 2
T h1(£2) a7 ASD). )

= 4y lllyalsing  4det(2)

The following lemma is a converse to L.emma 3.2.
Lemma 3.5. Let A C R? be a lattice of full rank, and let x 1, x2 be a basis for A such that
1]l = llx2ll,

and the angle 0 between these vectors lies in the interval [ /3,7 /2]. Then x1,x7 is a
minimal basis for A. In particular, this implies that A is WR.
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Proof. 1etz € A, then z = ax; + bx, forsome a, b € Z. Then
21 = a®llx11” + b2 w2 |® + 2abx'xa = (a® + b* + 2abcos ) x|,
If ab > 0, then clearly ||z[|> > ||x1]|?. Now suppose ab < 0, then again
Izl? = @+ b* — abDl|x1|* = 1)),

since cos® < 1/2. Therefore x1, x2 are shortest nonzero vectors in A, hence they cor-
respond to successive minima, and so form a minimal basis. Thus A is WR, and this
completes the proof. O

Lemma 3.6. Let A be a lattice in R* with successive minima 1, o and corresponding
basis vectors x 1, x», respectively. Then the lattice

A
AWR = (xl —le) Zz
A2
is WR with successive minima equal to hq.

Proof. By Lemma 3.2, the angle 8 between x1 and x» is in the interval [7/3, 7 /2], and
clearly this is the same as the angle between the vectors x1 and %xz. Then by Lemma
3.5, Awr is WR with successive minima equal to Ay. J

Now combining L.emma 3.4 with Lemma 3.6 implies that
A(Awr) = A(A) (7

for any lattice A < R?, and (6) readily implies that the equality in (7) occurs if and only
if A = Awr, which happens if and only if A is well-rounded. Therefore the maximum
packing density among lattices in R? must occur at a WR lattice, and so for the rest of this
section we talk about WR lattices only. Next observation is that for any WR lattice A in
R?, (6) implies:
T
AA(A)’

meaning that sin @ is an invariant of A, and does not depend on the specific choice of the
minimal basis. Since by our conventional choice of the minimal basis and I.emma 3.2, this
angle 6 is in the interval [7r/3, 7 /2], it is also an invariant of the lattice, and we call it the
angle of A, denoted by 8(A).

sinf =

Lemma 3.7. Let A be a WR laitice in R?. A lattice 2 € R? is similar to A if and only if
Q2 isalso WR and 0(A) = 0(82).

Proof. TFirst suppose that A and 2 are similar. Let x, x> be the minimal basis for A.
There exist a real constant & and a real orthogonal 2 x 2 matrix U such that £ = cUA.
Let yq, y, be a basis for £2 such that

(¥ ¥2) =alU(xq x2).
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Then ||y{|| = |ly»ll, and the angle between y; and y, is 6(A) € [ /3, 7 /2]. By Lem-
ma 3.5 it follows that yq, y, is a minimal basis for €2, and so 2 is WR and 6(£2) = 6(A).

Next assume that €2 1s WR and 6(£2) = 8(A). Let A(A) and A(82) be the respective values
of successive minima of A and €2. Let x, x» and y, y, be the minimal bases for A and

£2, respectively. Define

A(A) AA)
At 2T
Then x1, x2 and 21, zp are pairs of points on the circle of radius A (A) centered at the origin
in R? with equal angles between them. Therefore, there exists a 2 x 2 real orthogonal
matrix U such that

21 Yo

( )——)LQ ( )——MQ)U( )
= = x] x7),
Y1)z Y )lez ) 1 X2
and so A and §2 are similar lattices. This completes the proof. 0

We are now ready to prove the main result.

Proof of Theorem 1.1. The density inequality (7) says that the largest lattice packing den-
sity in R? is achieved by some WR lattice A, and (6) implies that

A(A) = (8)

4sin6(A)’

meaning that a smaller sin&(A) corresponds to a larger A(A). Lemma 3.2 implies that
O(A) = n /3, meaning that sin 0(A) > \/§/2. Notice that if A is the hexagonal lattice

I N
Ap = N
0 5

then sind(A) = +/3/2, meaning that the angle between the basis vectors (1,0) and
(1/2, \/3/2) is & = /3, and so by Lemma 3.5 this is a minimal basis and 8 (A) = 7 /3.
Hence the largest lattice packing density in R? is achieved by the hexagonal lattice. This
value now follows from (8).

Now suppose that for some lattice A, A(A) = A(Ap), then by (7) and a short argument
after it A must be WR, and so

s

AN = — 2 — A(A) = T

4sinG(A)

Then & (A) = /3, and so A is similar to A, by Lemma 3.7, This completes the proof. [
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