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1 Introduction

This note grew out of a question that a student asked while the first-named author was
giving a lecture on triangle centers in a Geometry class in the fall of 2008. The student,
Shefa'a Bani Melhem, wondered about the point in a given triangle that, when joined to
the midpoints of the sides, divides the triangle into three quadrilaterals of equal area. Few

days later, the aforementioned author asked her to prove that such a point is necessarily
the centroid and to consider the point whoseperpendiculars to the sides divide the triangle
into three quadrilaterals of equal area. This problem turned out to be more difficult than

was expected, and it is the purpose of this note to investigate the existence and uniqueness
of such a point and to describe its trilinear coordinates (or simply, its trilinears), i.e., its

In dem nachfolgenden Beitrag untersuchen die Autoren die naheliegende Fragestellung,

ob es in einem spitzwinkligen Dreieck ABC einen Punkt £ mit der Eigenschaft
gibt, dass die drei Vierecke, die durch das Fällen der Lote von £ auf die Dreiecksseiten

entstehen, fiächengleich sind. Die Autoren beweisen, dass es in einem
spitzwinkligen Dreieck genau einen solchen Punkt £ gibt. Sie bestimmen auch die
Gleichungen, denen die Abstände von £ zu den Dreiecksseiten genügen. Im allgemeinen
ist der Punkt £ vom Umkreis- und Innkreismittelpunkt sowie vom Schwerpunkt und
vom Höhenschnittpunkt verschieden. Fällt der Punkt £ aber mit einem dieser klassischen

Zentren zusammen, so weisen die Autoren nach, dass ein gleichseitiges Dreieck
vorliegt.
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directed distances to the sides of the triangle. The question whether this center can coincide
with any of the traditional centers for a non-equilateral triangle is also addressed. We call
such a point the equiareality center sind we denote it by £.

We show that £ exists and is unique for acute triangles, and we write down equations that
define its trilinears. However, these equations, though quite simple looking and elegant,
are very hard to solve and everything suggests that this center is new. We also prove
that this new center does not coincide with any of the traditional centers except when the

triangle is equilateral.

In the course of investigation, a natural question arose and led to another center that we
denoted by £o. Its properties and relation to other centers are also explored.

Many of the items in this paper can be used as projects, homeworks, examination problems,

and issues for classroom discussion in a first course in Euclidean Geometry. In
particular, dealing with the complexities that arise when one considers obtuse triangles is

expected to generate fruitful discussions and to lead to interesting results.

2 Existence and uniqueness of S for acute triangles
Theorem 3 below establishes the existence and uniqueness of £ for acute triangles.
Lemma 1 is needed in its proof. In this lemma and throughout, the side lengths and angles
of a triangle ABC are denoted by a, b, c, A, B, C, in the standard order, and the symbol
[... ] stands for the area.

Lemma 1. Let ABC be an acute triangle and let X be a point on the side BC. Let XY,
XZ be the perpendiculars dropped from X onto the sides AC, AB, respectively.

(i) If[XYC] > ^p, then [XZB] < ^f^1.
(ii) IfA<B and A<C, then [*zgj+gjyc] < \.

Proof, (i) Suppose that [XYC] > [ABC]/4. Let XC t and let BS, CT he the
perpendiculars dropped from B, C on AC, AB, respectively; see Fig. 1. Then

1 [XYC] [XYC] _
t2

4 - [ABC]
<

[SBC] ~ a2'

Therefore (t/a)2 > 1/4 and hence t/a > 1/2 and (a — t)/a < 1/2. Therefore

[XZB] [XZB] _ /a-t\2 /1\2_1
[ABC] [TBC] \ a J \2/ 4

(ii) Let t, S, T he as in (i) and refer to Fig. 1 again. Suppose that A < B, A < C. Then
[ABC] > 2[TBC], [ABC] > 2[SBC]. It follows that

[XZB] [XYC] [XZB] [XYC] _
t2 (a-1)2 a2

_
1

[ABC]
+

[ABC] - 2[TBC]
+

2[SBC] ~ 2a2 + 2a2 ~ 2a2 ~ 2'

as desired. D
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Fis 1

(P)
Pr

ß(P) (P)

Fis 2

We remark that an interesting elaboration on Lemma l(ii) can be found in [3].

Before proving the main theorem, we introduce notations and definitions that we shall use

throughout.

Definition 2. For any acute triangle ABC, and any point P inside (or on the boundary of)
ABC, we denote by Pa, Pb, Pc the orthogonal projections of P on the sides BC, CA,
AB, respectively; see Fig. 2. We define a(P), ß(P), y (P) by

[APcPPb] [BPaPPc]
ct(P) r,n"\ ß(P)

[ABC] [ABC]
[CPbPPa]

y(P) - —. (1)rv J
[ABC]

K '
Note that if P is on the boundary, then some of these quadrilaterals degenerate into triangles.

Theorem 3. For any acute triangle, there exists a unique point whose perpendiculars to
the sides divide the triangle into three quadrilaterals of equal area.

Proof. Let ABC he sin acute triangle, and assume without loss of generality that
A<B<C.
Let P he any point on the line segment BC; see Fig. 3. As a point S moves from A to
P, a(S) increases from a(A) 0 to a(P). By Lemma l(ii), a(P) > 1/2. Therefore,
there exists a unique point on AP for which a 1/3. We denote this point by P*.
Thus for every P on BC, P* is the point on AP for which a(P*) 1/3. In particular,
B* is the point on AB whose perpendicular B*U to AC has the property that a(B*)
[B*UA]/[ABC] =1/3; see Fig. 4. Similarly, C* is the point on AC whose perpendicular
C*V to AB has the property that a(C*) [C*VA]/[ABC] 1/3.
Since a(B*) 1/3 > 1/4, Lemma l(i) implies that ß(B*) < 1/4 < 1/3. Similarly,
y (C*) < 1/3. Since a(B*) a(C*) 1/3 and a + ß + y 1, it follows that

*)<\, ß(C*)>^. (2)
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Fig. 5Fig. 3 Fis. 4

By continuity of the function P \->- ß(P*), there exists a point M on SC such that
ß(M*) 1/3. Since a(M*) 1/3, it follows that a (M*) ß(M*) y (M*) 1/3,
and hence M* has the required property.

To prove uniqueness, let P, N he two points with the given property. Then N must lie
in one of the quadrilaterals determined by P, say N lies in CPbPPa\ see Fig. 5. Then

y (N) < y (P) with equality if and only if N P. Since y (N) y (P) 1/3, it follows
that N P. D

Definition 4. For an acute triangle ABC, the point P for which

a(P)=ß(P) y(P)

is called the equiareality center of ABC and is denoted by £.

(3)

3 Trilinears of E

Let ABC he an acute triangle and let x, y, z he the trilinears of the equiareality center £.
Drop perpendiculars £Y,£Z onto the sides AC, AB, respectively. Let A 2§, B 2n,
C 2f. Let AB A£ Ç - p, ZCA£ | + p; see Fig. 6. Then

z
__

y

cot§ tan p

sinfë -
sin(§ +

y-z
y + z

sin^cos/? — cos£ sinp 1 — cot^tan/?
sin^cos/? + cos§ sinp 1 + coti; tan/?

y — z
tan ö tan£.
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Fis 6

2[AZ£Y] yz sin(2§) + y cotfê + p) z cotfê - p) sin 2$

yz sin(2£)(l + cotfê + p) cotfê - /?))

1—tan£ tan/? 1 + tan§tan/?
yz sin(2$) 1

yz sin(2§)

tan § + tan p tan£ — tan /?

(l+tan2£)(l-tan2/?)

2yz sin § cos £

2yz tan£

2yz tan§

tan2 § — tan2 p
sec2§(l — tan2/?

tan2 £ — tan2 p
1 — tan2 /?

tan2 $ — tan2 /?

(y + z)2(l-tan2
(y + z)2 tan2 Ç - (y - z)2 tan2 §

_ (y + z)2-(y-z)2tan2£
2tan§

We may assume that [ABC] 3/2. Then we have

(y + z)2 - (y - z)2 tan2 § 2 tanè,

(1 - tan2£)(y2 + z2) + 2yz(l + tan2§) 2tan£,

(y2 + z2) cos A + 2yz — sin A 0.

We record this in the following theorem.

Theorems. The trilinears x : y : z of the equiareality center £ ofan acute triangle ABC
are defined by the equations

(y2 + z2) cos A + 2yz — sin A 0,

(z2 + x2) cos B -\-2zx -sinB =0, \ (4)

(x2 + y2) cos C + 2*y - sin C 0.
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4 Coincidence of E with the other traditional centers

Let ABC he a triangle and let Q, O, I, H denote its centroid, circumcenter, incenter,
orthocenter, respectively. We shall show that £ cannot coincide with any of these centers

except when ABC is equilateral. For £ to be defined, we assume of course that ABC is

acute.

Note that to study the possible coincidence of £ with a center whose trilinears (xo, yo, zo)
are given, one needs only substitute (x,y,z) k(xo, yo, zo) in. (4) sind then solves the
resulting equations. This may turn out to be difficult and clumsy. In this case, a purely
geometric treatment would be desirable. Also, it may turn out that the (a : ß : y)-
coordinates (as defined in (1)) of a given center P are easy to calculate. One then sets

these equal to (1 : 1 : 1) and solves the resulting equations. All of these approaches are
illustrated below.

For the reader's convenience, we list below trilinears and barycentrics of the traditional
centers. For these and anything that has to do with triangle centers, we refer the reader to
[4] and [5].

Center Trilinears Barycentrics

Centroid Q A i i\
\a ¦ b ¦ c (1:1:1)

Circumcenter Ö (cos A : cos B : cos C) (sin2A : sin2ß : sin2C)

Incenter T (1:1:1) (a : b : c) (sin A : sin B : sinC)

Orthocenter H (sec A : sec B : sec C) (tan A : tanS : tanC)

In the next theorems, we refer to (1) for the definitions of a, ß, y.

Theorem 6. If ABC is an acute triangle in which £ I or £ Ö, then ABC is

equilateral.

Proof. Using the facts that

(a(T) : ß(T) : y(T)) (cot| : cot | : cot |
(a(ö) : ß(ö) : y(ö)) (sin2£ + sin2C : sin2A + sin2C : sm2A + sin 25),
(a(£):ß(£):y(£)) (1:1:1),

we conclude that

I=£
ö £

ABCcot — cot — cot —
2 2 2

> A B C,

sin2S + sin2C sin2C + sin 2A sin 2A + sin2ß

sin2A sin25 sm2C =^ A B C.

The last implication follows from the fact that the possibility 2B + 2C it leads to
A ti/2, contradicting the assumption that ABC is acute. This will be freely used
later. D
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Theorem 7. If ABC is an acute triangle in which £ Q, then ABC is equilateral.

Proof. It is obvious that the medians AA', BB', CC of ABC divide ABC into six triangles

of equal areas; see [1, Theorem 5]. Therefore the quadrilaterals QCAB', QA'BC,
GB'C A' have equal areas. Also, the orthocenter H of ABC must lie in one of these

quadrilaterals, say in GB'CA'; see Fig. 7. Then

,71 ,71:bb'c < -, ZAA'C < -.~ 2 - 2
(5)

Hence the orthogonal projections J, I oî G onto the sides CA, CB, respectively, lie in
the quadrilateral GB'CA', and thus QICJ lies inside GB'CA'. If £ G, then these

quadrilaterals have the same area and hence B' J sind A' I. Thus the medians BB',
AA' are perpendicular to the respective sides and the triangle is equilateral, as claimed. D

4

\b!

/ Qy * \

/y^^L^^v H \
i*^ / h T \

A1 I V

Fig. 7

!£

Fig. 8

Theorem 8. If ABC is an acute triangle in which £ H, then ABC is equilateral.

Proof. Let AV, BS, CT he the altitudes oî ABC (necessarily through H); see Fig. 8.

Clearly the triangles CSV and CBA sire similar with similarity ratio CS/CB cosC.
Therefore [CSV]/[CBA] cos2 C. Similarly, [BVT]/[CBA] cos2B. Hence

[CSV] _
cos2 C

[BVT] ~ cos2 B ' (6)

Also, it follows from the cyclicity of the quadrilaterals ATHS, BVHT, CSHV that the
angles of VST are given by

y 7T-2A, S 7t-2B, T=7t-2C,
and that AV, BS, CT are the angle bisectors of the triangle VST. Therefore

[VSH]
_ (VS)(VH)sinZ.HVS _

VS
_

smT
_

sinf^r - 2C)
_

sin2C

[VTK] ~ (VT)(VH) sinZ.HVT ~ VT ~ sin S ~ sinf^r - 2B) ~ sin25

(T)

(8)
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Note also that

sin2C-sin25 2cos(C + 5)sin(C - B) -2 cos Asin(C - B). (9)

Suppose now that C > B. Then it follows from (8) and (9) that [VSH] < [VTH]. It also

follows from (6) that [CSV] < [BVT]. Adding, we obtain [CSHV] < [BVHT]. Thus

we have proved that
C >B=$-y(H) <ß(H). (10)

Suppose now that £ H. Then y (H) ß(H) and hence C B. Similarly B A and

A5C is equilateral. D

Remark 9. It is well-known that if any two of the centers G, X O, H of a triangle
coincide, then the triangle is equilateral; see [2] and the references therein. It also goes
without saying that all centers of an equilateral triangle coincide.

In view of Remark 9 above, Theorems 6,7, 8 can be summarized in the next theorem.

Theorem 10. An acute triangle is equilateral if and only if two (and hence all) of the

centers £, G, X O, H coincide.

5 Another related center

Let ABC he an acute triangle. For X on BC, let XY, XZ he the perpendiculars from X
dropped onto the sides AC, AB, respectively. As X moves from B to C, [XZB]/[XYC]
increases from 0 to oo. Thus there exists a unique point, to be denoted by A', for which
[XZB] [XYC]. We define B', C similarly.

Theorem 11. The cevians AA', BB', CO are concurrent. The barycentrics of the point
ofconcurrence are given by

Vsin2A: Vsin25 : Vsin2C, (11)

and the trilinears are given by

Vcot A : Vcot5 : VcotC. (12)

Proof. Observe that if X lies on B C sind if t CA', as shown in Fig. 1, then the condition
[XZB] [XYC] is equivalent to (a - t)2 cos B sinB t2cosCsinC, i.e., (a - t)2 :

t2 sin2C : sin 25. Concurrence of AA', BB', CO follows immediately from Ceva's
theorem. It also follows that if P is the point of concurrence, then [PAB] : [PAC]
(a — t) : t Vsin 2C : Vsin 25. Hence the barycentrics of P are as given in (11). The
statement about the trilinears follows from

'sin 2A Vsin 2A /2 sin A cos A
~ —= / ^ Vcot A. D

a sin A v sinzA
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Definition 12. The point of concurrence will be denoted by £o-

Theorem 13. An acute triangle is equilateral if and only if two (and hence all) of the

centers £, £o, G, 1, O, H coincide.

Proof. In view of Remark 9 above and in view of the symmetry, it is sufficient to show
that each of the assumptions £o G, £o O, £o I, £o H, £o £ leads to A 5.
But

£o G =^ Vsin2A Vsin 25
sin 2A sin 25

£0 O =^>

£o T =^>

£0 n =^>

/sin2A Vsin 25
sin A sin 5

/sin2A Vsin 25
tan A tan 5

A B,

sin 2A sin 25 => A B,

tan A tan 5 > A B,

sin A sin5
Vsin 2A Vsin 25 cos3 A cos3 5

=^ tan A fl + tan2 A\ tan5 (l + tan2 5

=$>¦ A B, because x(1 + x2) is increasing.

It remains to deal with the case £ £o. If £ £o, then a multiple of the trilinears of £o

given in (12) must satisfy the equations (4) for the trilinears of £. Substituting (x, y, z)
X (Vcot A, Vcot5, Vcot C) in the first equation in (4), we obtain

-, / cos5 cosC\ „ -, /cos5 cos C
X2 f — + cos A + 2X2J sin A.

sin5 sinC/ V sin5 sinC

Multiplying by (sin 5 sin C)/X2 sind using the identity cos 5 sin C + sin5 cos C sin(5
C) sin A, we obtain

sin A sin 5 sin C
sin A cos A + 2Vsin 5 cos 5 sin C cos C

X2

Using the double angle formula, we obtain

/ 2 sin A sin 5 sin C
sin 2A + 2Vsin25 sin2C —

X2

Using the other two equations in (4), and letting

u Vsin 2A, i? Vsin25, w Vsin2C,

we obtain
u2 + 2vw v2 + 2wu «?2 + 2uv.

Therefore

(u — v)(u + v — 2m?) (v — w?)(v + m? — 2u) (m? — u)(w -\-u — 2v) 0.
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If no two of u, v, w sire equal, then u-\-v — 2«? v-\-w — 2u 0, and hence u + v + «?

3m? 3u, and the contradiction w u. Ifexactly two of«, i?, «? are equal, say u v ^ w,
then v + tt? — 2u 0 and hence the contradiction w u. We are left with the possibility
u v w?, i.e., sin2A sin25 sin2C. Therefore A 5 C. D

6 The obtuse case

If ABC is an obtuse triangle and if P is a point inside ABC, then the perpendiculars PX,
PY, PZ from P to the sides 5C, CA, A5 do not necessarily fall onto the sides; see Fig. 9.
In this case, parts of the quadrilaterals PYAZ, PZBX, PXCY fall outside the triangle,
and some of these quadrilaterals are self crossing; see Fig. 9. It would be interesting to

X B

Fig. 9

explore possibilities of assigning areas to such quadrilaterals in such a way that the sum
of the areas of PYAZ, PZBX, PXCY is still equal to that of ABC. One would also

like to do the same for points outside ABC. Then one would investigate the existence and

uniqueness of a point P, inside or outside ABC, for which the areas of PYAZ, PZBX,
PXCY sire equal. Calling such a point an equiareality point, one may try to characterize
those obtuse triangles that have an interior equiareality point, and those obtuse triangles
that have an interior equiareality point P for which the three associated quadrilaterals lie
inside ABC.
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