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Ist die Folge der Primzahl-Quersummen beschränkt?

Tom Müller

Tom Müller studierte an den Universitäten Zürich und Trier. Seine Interessen Hegen
in den Bereichen Analysis, Zahlentheorie sowie Geschichte und Philosophie der
Mathematik.

1 Einleitung

Im Rahmen einer einführenden Übung zur analytischen Zahlentheorie stellte mir ein
Student die interessante Frage, ob man Primzahlen mit Quersummen größer als eine beliebige
vorgegebene Konstante finden könne, oder ob alle Primzahlen Quersummen kleiner als eine

bestimmte obere Schranke hätten? Wenn letzteres der Fall wäre, könnte man daraus

doch ein Kriterium für die Zusammengesetztheit großer Zahlen herleiten. Mir schien es

zwar höchst unwahrscheinlich, dass die Quersummen von Primzahlen beschränkt sein sollten,

aber auf Anhieb konnte ich die Frage des Studenten nicht beantworten und vertröstete
ihn damit, bis zur nächsten Sitzung der Sache nachzugehen und die Frage zu klären. Dies
tat ich in der Hoffnung, in der gängigen Lehrbuchliteratur dahingehende Hinweise zu
finden. Doch sollte diese Aussicht auf einen raschen Erfolg bald enttäuscht werden.
Stattdessen fand ich nur eine verschärfte Version der Frage im Abschnitt A3 des berühmten
Buches über offene Probleme in der Zahlentheorie von Richard K. Guy [4]:

„De Koninck asks for a proof that for k > 2, k not a multiple of 3, there is

always a prime whose (decimal) digits sum to k [... ]."

Allen Lesern ist die Unendlichkeit der Menge der Primzahlen wohl bekannt. Aber wie
steht es mit der Folge der Quersummen der Dezimalziffern der Primzahlen: Ist diese

Folge beschränkt oder unbeschränkt? In der vorliegenden Arbeit beantwortet der Autor

diese elementare Frage, indem er die Unbeschränktheit der Folge der Primzahl-
Quersummen nachweist. Darüber hinaus werden verwandte Fragestellungen
untersucht; beispielsweise gibt der Autor Gegenbeispiele zu Vermutungen über das
Aussehen der kleinsten Primzahlen mit vorgegebenen Quersummen.



Ist die Folge der Primzahl-Quersummen beschränkt? 147

Weiter berichtet Guy von den Fragen

„If p(k) is the smallest prime with digital sum k, is p(k) 9 (mod 10) for
k > 25? Is it 99 (mod 100) for it > 38? And 999 (mod 1000) for
k > 59?"

Die erste Frage von De Koninck scheint mir eine sehr schwierige Aufgabe zu sein. Die
Behauptungen der beiden letzten Fragen hingegen hielt ich für wenig plausibel.
Herumprobieren führte nach wenigen Minuten zum Gegenbeispiel k 86. Zu diesem gesellten
sich bald noch sechs weitere Gegenbeispiele mit k < 580. Diese Resultate können in einer
kurzen Notiz aus dem Jahre 2005 nachgelesen werden [6].

Mittlerweile konnten weitere Gegenbeispiele im Bereich 580 < k < 5000 ausfindig

gemacht werden. Es gilt /o(1286) 10143 - 11, /o(1444) 6 • 10160 - 11,

/0(2306) 4 • 10256 - 11, /0(3 544) 9 10393 - 11 und /o(4535) 10504 - 11

und demnach

/0(1286) /0(1444) p(2306) /o(3544) /o(4535) 989 (mod 1000).

Darüber hinaus ist die Zahl P(2 534) 7 • 10281 — 101 die kleinste „probable prime" mit
Quersumme 2534. Sollte diese Zahl tatsächlich eine Primzahl sein, dann würde zusätzlich

/0(2534) 899 (mod 1000) gelten. Nachzutragen aus dem Bereich k < 580 bleibt
zudem noch das Gegenbeispiel /o(358) 1040 - 201 799 (mod 1000). Es ist wohl
davon auszugehen, dass solche Gegenbeispiele auch für bedeutend größere k immer wieder
auftreten.

Doch zurück zur Eingangsfrage, ob die Quersummen der Primzahlen beschränkt sind oder
nicht. In Ermangelung einer Behandlung dieser Frage in der Lehrbuchliteratur soll hier
bewiesen werden, dass sie negativ zu beantworten ist. Dabei werden ausschließlich Mittel
verwendet, die Studierenden im Grundstudium der Mathematik nach einer Einführung in
die Analysis und die elementare Zahlentheorie zur Verfügung stehen.

2 Die Unbeschränktheit der Folge der Primzahl-Quersununen

Die nachfolgenden Beweisschritte basieren auf einem kombinatorischen Argument über
die Anzahl aller natürlichen Zahlen mit vorgegebener Quersumme unterhalb einer
gegebenen Schranke. Im Vergleich zur Anzahl aller Primzahlen unterhalb derselben Schranke
wird einsichtig, dass die Quersummen der Primzahlen nicht beschränkt sein können.

Im Folgenden bezeichnet N := (1,2, 3,...} wie üblich die Menge aller natürlichen Zahlen.

Zudem findet das Symbol No := N U {0} Verwendung.

Es sei q > 1 eine natürliche Zahl und es sei n eine natürliche Zahl mit der ^-adischen
Darstellung n Yuv=oCv ' #V' ^-h-» °v £ (0,1,2,..., q — 1} für alle v 0,... ,m.
Wir bezeichnen die (#-adische) Quersumme von n mit sq (n). Dies bedeutet, dass sq(n)
X/uLo cv ist- Im Folgenden steht das Symbol Af(x) für die Menge aller natürlichen Zahlen

n < x, die sq(n) k erfüllen. Mit Hilfe dieser Notation erhalten wir das folgende
Ergebnis.
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Satz 2.1. Es sei x > 1 eine reelle Zahl und es sei k eine natürliche Zahl. Dann gilt

\Aqk(x)\<(logq(x) + l)k.

Insbesondere ist demnach die Reihe ^5 (nw ^ der Inversen aller natürlichen Zahlen mit
q-adischer Quersumme k konvergent.

Beweis. 1. Wir beginnen damit, die Behauptung für die Werte x qn mit n g N zu
zeigen. Dabei gründet der Beweis auf der nachfolgenden Beobachtung. Aus der Setzung

Af(x) {m g N : m < x und sq(m) k}

folgt sogleich

Aï(qn) C Y^qnx> - (ni,n2, - - -,nk) e ([0,n - 1] n N0)*

v=l
: Bn. (1)

Dies bedeutet, dass die Anzahl der Elemente von Af (qn) kleiner als oder gleich der Anzahl
der Elemente von Bn ist. Diese letztere Anzahl jedoch ist offensichtlich kleiner als oder

gleich der Anzahl an Möglichkeiten, k Gegenstände (die Exponenten nv) in n Fächer (die
Stellen der #-adischen Entwicklung) zu verteilen. Daraus folgt also \Bn\ < nk. Deshalb
können wir mit (1) schließen, dass

\Af(qn)\ <nk= (logq(qn)f < (log?(^) + l)*

gilt. Es bleibt zu zeigen, dass die Behauptung für alle x > 1 zutrifft. Nach der Definition

der Menge Af(x) ist es klar, dass |A^(x)| eine monoton wachsende Funktion von x
darstellt, d.h. für x > y erhalten wir | Af (x) | > | Af (y) |.

Für jedes x > 1 findet sich nun ein n g N, für das qn~l < x < qn gilt. Dies impliziert
sogleich n — 1 < log„(x) < n und damit bereits n < log„(x) + 1 für alle x > 1. Alles in
allem folgt hieraus

\Af(x)\ < \Af(qn)\ <nk < (log^CO + 1)*

2. Es ist bekannt, dass die Reihensumme

1

'=£
für alle q > 1 endlich ist. Zudem ist die Ungleichung

(logq(x) + 1)K + 1 <
logfc)

für alle genügend großen x erfüllt. Wir definieren als {n/}/eN die aufsteigend geordnete
Folge aller natürlichen Zahlen mit der Eigenschaft sq (ni) k. Dann gibt es eine natürliche
Zahl L so, dass

' * '

logJ(n/)
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für alle / > L gilt. Dies ist gleichbedeutend zu / • log2 (ni) < ni- Wegen log„(«/) > log„(/)
folgt also / • log2 (/) < ni für alle l > L. Hieraus ergibt sich für die Reihensumme über die
Inversen der Zahlen n/ die Abschätzung

co 1 CO
1

< OO.

Nach dem Majorantenkriterium muss folglich die linksseitige Reihe konvergieren. Dies

war zu beweisen. D

Folgerung 2.2. Fürjede natürliche Zahl k existiert eine Primzahl p mit sq(p) > k.

Beweis. Es sei k eine vorgegebene natürliche Zahl. Aus Satz 2.1 wissen wir, dass die Reihe

Sq(n)=t

für alle natürlichen Zahlen t mit 1 < t < k konvergiert, und folglich muss die Summe

k

E E -
t=l neN

Sq(n)=t

ebenfalls endlich sein. Man beachte hierbei, dass die letztgenannte endliche Summe bereits
alle Primzahlen mit Quersummen kleiner als oder gleich k enthält. Nach einem bestens
bekannten Resultat von Leonhard Euler wissen wir jedoch, dass die Reihe über die Inversen

aller Primzahlen divergiert. Deshalb muss es eine Primzahl geben, deren Quersumme
größer als k ist. D

Im Folgenden bezeichnen wir die Menge aller Primzahlen mit P. Im Beweis der Folgerung

2.2 haben wir die Divergenz der Reihe XlpeP \ verwendet, um zu zeigen, dass es zu

jedem vorgegebenen £ g N stets eine Primzahl p mitsq (p) > k gibt. Es lassen sich jedoch
auch Primzahlfolgen konstruieren, die dünn genug sind, damit die Reihen über die Inversen

aller jeweiligen Folgenglieder konvergieren und die zugehörigen Quersummenfolgen
trotzdem nicht beschränkt sind. Es gilt nämlich das folgende Ergebnis.

Lemma 2.3. Es seien k und q > 1 natürliche Zahlen. Es sei A := (fln}neN e^ne streng
monoton wachsende Folge naturlicher Zahlen und es sei C die Zahlfunktion dieser Folge,

d.h.

C(x) := \{a g A : a < x}\

für x > 1. Wennfür alle genügend großen x die Abschätzung

(log,(*) + 1)*+1 - 1

C(x) > ^-=? '- (2)
logçW

gilt, dann existiert mindestens ein Folgenglied am e A mit sq(am) > k.
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Beweis. Es sei Nk (x) die Anzahl aller natürlichen Zahlen n < x mit sq(n) < k für x > 1.

Mit der Aussage von Satz 2.1 folgt, dass die Anzahl Nk (x) der Abschätzung

w*) ± (EIAvW|) +1 < E(iog?w + i)v
\v=l / v=0

genügt. Das Ausrechnen der geometrischen Summe auf der rechten Seite führt dann zu

(log-Oc) + lf+1 - 1

Nk(x) < ±-%- f. • (3)
logçW

Nehmen wir an, die Folge A enthielte nur Glieder mit #-adischen Quersummen kleiner
als oder gleich k, dann muss C(x) < Nk(x) für alle x > 1 gelten. Ein Vergleich der

Abschätzungen (2) und (3) hat jedoch für alle genügend großen x die Beziehung Nk(x) <
C(x) zur Folge. Aus diesem Widerspruch folgt die Behauptung des Lemmas. D

Das eben gezeigte Resultat lässt sich auf einige, wesentlich „ausgedünnte" Teilfolgen der
Primzahlen anwenden. Dazu führen wir noch einige Notationen ein. Es bezeichne {pn }n^
die aufsteigend geordnete Folge aller Primzahlen. Mit rc(x) wird üblicherweise die Zahl
der Primzahlen angegeben, die kleiner als oder gleich x sind. Ein berühmter Primzahlsatz

von Tschebyscheff besagt, dass es zwei Konstanten 0 < Ci < C2 gibt, so dass

Cix C2X
< 7l(x) <

log(x) logOO

für alle x > 2 gilt (vgl. dazu etwa Theorem 7 im Lehrbuch von Hardy und Wright [5]).
Eine grundlegende Konsequenz dieses Satzes ist eine Abschätzung der Größenordnung
der n-ten Primzahl. Es gibt nämlich zwei Konstanten 0 < ci < C2, so dass

cinlogOO < pn < c2nlog(n) (4)

für alle n > 1 gilt (vgl. dazu Theorem 9 bei Hardy und Wright [5]). Damit stehen alle
Instrumente zur Verfügung, die den Beweis des folgenden Satzes ermöglichen.

Satz 2.4. Es seien k und q > 1 natürliche Zahlen. Dann enthält jede der beiden Folgen
Px '•= {PpnìneN und Pi '-= {Pn2)neN e^n Glied mit einer q-adischen Quersumme, die

größer als k ist.

Beweis. 1. Wir behandeln zunächst die Folge Pi ausführlich; die Aussage für P2 folgt
analog. Das Einsetzen der Primzahl pPlt in die Ungleichung (4) liefert

Cipnlog(pn) < ppn < C2pn log(/?«).

Abermals mit (4) ergibt sich hieraus die Abschätzung

c\n log(n) log(ci« log(n)) < pPn < c\n log(n) log(c2n log(n))
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für alle genügend großen n e N. Man beachte hier, dass die Grenzwertbeziehung
jcnlogj
log(ji)lim^^co wffi 1 gut. Dies impliziert die Existenz zweier Konstanten es, C4 > 0

mit
c3nlog2(n) < pPn < c4nlog2(ra) (5)

für alle genügend großen n e N. Es sei nur kurz angemerkt, dass diese Abschätzung
bereits die Konvergenz der Reihe YlnLi Ppl nacn sich zieht.

Für unsere Zwecke wandeln wir den rechtsseitigen Teil von (5) um zu

Pv,
n > -

c4log2(n)

Da n < ppn ist, erhalten wir damit schließlich

n >
c4log2(pPn)

für alle genügend großen n g N. Weiter folgt für pPn < x < pPn+1 die Abschätzung

c$n log2(n) < x < C4(n + 1) log2(n + 1).

Wegen lim«-*«» (n+1)lof <"+1> 1 gibt es folglich eine Konstante C5 > 0 mit
/ilogz(n)

C3» log (n) < a: < C5»log («)

für alle genügend großen n g N. Hier ist an die Tatsache zu erinnern, dass n < pPn < x
ist. Es ergibt sich demnach die Ungleichung

x x
n >

es log2 (n) C5log2(*)

für alle genügend großen n. Die Zählfunktiontzp(x) := \{m e N : pPm < x}\ erfüllt für
alle* e [pPn, pPn+1) somit

7tp(x) 7Tp(ppn) n >
clog2(*)

mit der Konstanten c := max{c4, C5}. Für jedes vorgegebene k e N und für jedes
vorgegebene 1 < q g N gilt die Grenzwertbeziehung

^°o\clog2(*) log^OO /
d.h.

(loggfr) + l)*+1 - 1

M*> > ^—j TT + 1

log«*:*)
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für alle genügend großen x. Mit Lemma 2.3 folgt sogleich die Aussage des Satzes für die
Folge Pi.

2. Analog ergibt sich für 7ini(x) := |{re e N : pni < x}\ mit einer geeigneten Konstanten

c > 0 und für alle genügend großen x die Beziehung

Jx
7tnl(x) >

clog(x)

Da diese letzte Funktion von x abermals erheblich schneller gegen Unendlich wächst als
der Quotient aus Ungleichung (2) ist es auch hier klar, dass zu jedem gegebenen k g N
stets eine Primzahl der Form pni existiert, die sq (pni) > k erfüllt. D

3 Primzahlen mit großen Quersummen
Wenn die Folge der Primzahl-Quersummen jedoch nicht beschränkt ist, so drängt sich die
Frage auf, welches die größte bekannte (dezimale) Primzahl-Quersumme ist? Hinsichtlich
einer Beantwortung dieser Frage scheint es sinnvoll, bestehende Primzahllisten nach dem
Motto „Je größer die Primzahl umso größer ist wahrscheinlich auch ihre Quersumme" zu
durchsuchen.

Die Zahlen, deren Quersummen am einfachsten zu ermitteln sind, sind sicherlich die Rep-
units Rn 5Zv=o 10v ^q-1- Diese „bestehen" nur aus Einsen, weshalb für die
Quersumme stets sio(Rn) re gilt. Diese Zahlen sind prim für re 2,19, 23,317,1 031.

Dubner, der zusammen mit Williams auch den Nachweis der Primeigenschaft von Ri 031

erbringen konnte [8], hat zudem auch #49081 als „probable prime" beschrieben [2]. Zwei
weitere Primzahlkandidaten wurden mit Rp für p 86453 und p 109 297 in der
Zwischenzeit gefunden (vgl. die Ganzzahlfolge A004023 in Sloanes OEIS [7]). Nach dem

heutigen Stand der Forschung kommen wir mit Repunits also maximal zu „potentiellen"
Primzahlen mit einer Quersumme von 109 297.

Die zweite Familie von Primzahlen, die hinsichlich großer Quersummen von Interesse ist,
sind die so genannten Proth-Primzahlen. Es sind dies Zahlen der Form 2r • h + 1. Dabei
bedeutet r eine natürliche und h eine ungerade Zahl, welche die Ungleichung h < 2r
erfüllt.

Diese Zahlen sind aufgrund ihrer Bauart verhältnismäßig einfach auf die Primeigenschaft
hin zu untersuchen, weshalb sie mit zu den größten überhaupt bekannten Primzahlen
gehören. Gilt nämlich h < 2r und gibt es eine Primzahl p so, dass 2r h + 1 ein
quadratischer Nichtrest modulo p ist, dann ist 2r • h + 1 genau dann eine Primzahl, wenn

/?2r-1Ä__1 (mod (2r • re + 1))

gilt (vgl. Hardy und Wright [5], Theorem 102). Keller und Ballinger haben alle bekannten
Proth-Primzahlen mit h < 300 auf ihrer Internetseite zusammengefasst [1]. In Anbetracht
der Fülle an Daten, die bezüglich dieser Zahlen mittlerweile zusammengetragen worden
sind, müssen wir uns hier auf eine kleine Auswahl beschränken. Da besonders für kleine

h recht große Exponentenbereiche erschlossen sind, behandeln wir stellvertretend nur
die drei Werte h 3, h 5 und re 15, für die alle Primzahlen mit r < 3 941000,
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r < 5330000, bzw. r < 1 500000 bekannt sind (Stand: 23. März 2009). Bereits die
Primzahl 2900 ¦ 15 + 1, die mit 273 Dezimalstellen deutlich kleiner als R1031 ist, besitzt
die vergleichsweise große Quersumme von 1204. Die Primzahl 23888 - 15 + 1 „sprengt"
mit ihren 1172 Dezimalstellen die Grenze von 5 000 mit der Quersumme 5 065. Doch es

geht noch sehr viel größer. Auch die Millionengrenze lässt sich knacken. Die Parameter

r 1229 600 und re 15 führen zu einer Primzahl mit 370148 Dezimalstellen und der

Quersumme 1666 906, die Parameter r 1418 605 und re 15 sogar zu einer 427 044-
stelligen Primzahl mit Quersumme 1 922314. Die Primzahl 21777515 -5+1, die zur Zeit
größte bekannte mit re 5, besitzt 535 087 Dezimalstellen und die Quersumme 2 401727.
Die größte bekannte Primzahl mit « 3 trägt den Exponenten r 2478785, besitzt
746190 Dezimalstellen und hat eine Quersumme von 3 358 897.

Noch größere Quersummen sollten bei den größten überhaupt bekannten Primzahlen zu
finden sein. Es sind dies bekanntlich die so genannten Mersenne-Primzahlen von der
Form Mp := 2^—1 mit einer Primzahl p. Die größte bisher bekannte Mersenne-
Primzahl (entdeckt 2008), Mp mit p 43 112 609 (vgl. hierzu z.B. die Internetseite des

GIMPS-Projekts [3]), besitzt 12978 189 Dezimalstellen und die Quersumme sxo(Mp)
58416637.

Eine kuriose Begebenheit begegnet einem, wenn man die Quersummen der bekannten
Mersenne-Primzahlen durchsucht. Die Primzahlen 22203 — 1 (664 Dezimalstellen) und
22 281 _ y (687 Dezimalstellen) besitzen beide die gleiche Quersumme 3 106. Diese
Eigenschaft scheint ein Unikum für die Primzahlen des Mersenne-Typs zu sein; zumindest
in Anbetracht der bisher bekannten Vertreter dieser Primzahlfamilie. Man beachte hierbei
allerdings, dass das Phänomen allgemein bei Mersenne-Zahlen Mn 2n — 1 (re g N)
doch ziemlich häufig ist. So besitzen neben den hier angegebenen Mersenne-Primzahlen
auch die Mersenne-Zahlen 22299 — 1 und 22371 — 1 die Quersumme 3 106. Betrachtet man
die Exponenten n,m e [2, 3 000] n N, so gibt es insgesamt 1548 verschiedene geordnete
Paare (re, m) mit re < m derart, dass sio(Mn) sio(Mm) gilt. Das kleinste dieser Paare

ist gegeben durch (3, 9) mit Jio(7) Jio(511) 7; das größte Paar ist (2 880,3 000) mit
den zugehörigen Quersummen vom Wert 3 870.

Zur Berechnung der hier vorgestellten Quersummen wurden die einzelnen Dezimalstellen
der gegebenen Primzahlen zunächst explizit berechnet und dann sukzessive aufaddiert.
Die Berechnung der größten bekannten Primzahlquersumme benötigte dabei knapp drei
Tage auf einem PC, der von einem AMD Sempron 2600 XP+ Prozessor betrieben wird.

Die hinsichtlich ihrer Quersumme wohl „ergiebigsten" Primzahlen dürften jedoch diejenigen

sein, die aus möglichst großen Ziffern zusammengesetzt sind. Da eine Zahl, die
ausschließlich mit der Ziffer 9 gebildet wird, stets zusammengesetzt ist, sind die ersten Kandidaten

jene Zahlen, die bis auf eine Dezimalstelle aus Neunen bestehen. Die Ausnahmeziffer

ist dabei idealerweise gleich 8, bzw. 7 falls sie am Ende der Zahl steht. Beispielsweise
sind die Zahlen 10990- 3 und 101887 -3 sehr wahrscheinlich Primzahlen mit 990 und 1 887

Dezimalstellen. Ihre Quersummen sind mit 8 908 und 16981 verhältnismäßig gigantisch.

Wie lange wird es dauern, bis man Primzahlen mit Quersummen größer als 100 Millionen
entdeckt? Wann wird die „Schallmauer" von 109 durchbrochen? Es ist davon auszugehen,
dass theoretische Erfolge, u.a. zu der in der Einleitung angesprochenen Vermutung von De
Koninck, diesen Prozess erheblich beschleunigen könnten.
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