Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 66 (2011)

Artikel: Ist die Folge der Primzahl-Quersummen beschrankt?
Autor: Muller, Tom

DOl: https://doi.org/10.5169/seals-283502

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-283502
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Elem. Math. 66 (2011) 146 — 154 © Swiss Mathematical Society, 2011
0013-6018/11/040146-9

DOI 10.417 1/EM/183 I Elemente der Mathematik

Ist die Folge der Primzahl-Quersummen beschrankt?

Tom Miiller

Tom Miiller studierte an den Universitdten Ziirich und Trer. Seine Interessen liegen
in den Bereichen Analysis, Zahlentheorie sowie Geschichte und Philosophie der Ma-
thematik.

1 FEinleitung

Im Rahmen einer einfithrenden Ubung zur analytischen Zahlentheorie stellte mir ein Stu-
dent die interessante Frage, ob man Primzahlen mit Quersummen grofier als eine beliebige
vorgegebene Konstante finden kdnne, oder ob alle Primzahlen Quersummen kleiner als ei-
ne bestimmte obere Schranke hitten? Wenn letzteres der Fall wire, kénnte man daraus
doch ein Kriterium fiir die Zusammengesetztheit grofer Zahlen herleiten. Mir schien es
zwar hochst unwahrscheinlich, dass die Quersummen von Primzahlen beschriankt sein soll-
ten, aber auf Anhieb konnte ich die Frage des Studenten nicht beantworten und vertrostete
thn damit, bis zur nichsten Sitzung der Sache nachzugehen und die Frage zu kliren. Dies
tat ich in der Hoffnung, in der géingigen Lehrbuchliteratur dahingehende Hinweise zu fin-
den. Doch sollte diese Aussicht auf einen raschen Erfolg bald enttiuscht werden. Statt-
dessen fand ich nur eine verschiirfte Version der Frage im Abschnitt A3 des bertihmten
Buches tiber offene Probleme in der Zahlentheorie von Richard K. Guy [4]:

.De Koninck asks for a proof that for £ > 2, k not a multiple of 3, there is
always a prime whose (decimal) digits sum to & [... ]

Allen Lesern ist die Unendlichkeit der Menge der Primzahlen wohl bekannt. Aber wie
steht es mit der Folge der Quersummen der Dezimalziffern der Primzahlen: Ist diese
Folge beschrinkt oder unbeschrinkt? In der vorliegenden Arbeit beantwortet der Au-
tor diese elementare Frage, indem er die Unbeschrinktheit der Folge der Primzahl-
Quersummen nachweist. Dartiber hinaus werden verwandte Fragestellungen unter-
sucht; beispielsweise gibt der Autor Gegenbeispiele zu Vermutungen iiber das Aus-
sehen der kleinsten Primzahlen mit vorgegebenen Quersumimen.
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Weiter berichtet Guy von den Fragen

L1 p(k) 1s the smallest prime with digital sum %, is p(k) = 9 (mod 10) for
k > 257 1Isit = 99 (mod 100) for £ > 387 And = 999 (mod 1000) for
k > 597

Die erste Frage von De Koninck schemt mir eine sehr schwierige Aufgabe zu sein. Die
Behauptungen der beiden letzten Fragen hingegen hielt ich fiir wenig plausibel. Herum-
probieren fiihrte nach wenigen Minuten zum Gegenbeispiel £ = 86. Zu diesem gesellten
sich bald noch sechs weitere Gegenbeispiele mit £ < 580. Diese Resultate kénnen in einer
kurzen Notiz aus dem Jahre 2005 nachgelesen werden [6].

Mittlerweile konnten weitere Gegenbeispiele im Bereich 580 <« k& < 5000 ausfin-
dig gemacht werden. Es gilt p(1286) = 101% — 11, p(1444) = 6 . 10190 _ 11,
p(2306) = 4. 1055 — 11, p(3544) = 9. 103 — 11 und p4535) = 105 — 11
und demnach

p(1286) = p(1444) = p(2306) = p(3544) = p(4535) =989 (mod 1000).

Dartiber hinaus ist die Zahl P(2534) = 7. 10%®! — 101 die kleinste ,,probable prime** mit
Quersumme 2 534. Sollte diese Zahl tatsiichlich eine Primzahl sein, dann wiirde zusitz-
lich p(23534) = 899 (mod 1000) gelten. Nachzutragen aus dem Bereich £ < 580 bleibt
zudem noch das Gegenbeispiel p(358) = 10*" — 201 = 799 (mod 1000). Es ist wohl da-
von auszugehen, dass solche Gegenbeispiele auch fiir bedeutend grobere & immer wieder
auftreten.

Doch zuriick zur Eingangsirage, ob die Quersummen der Primzahlen beschrinkt sind oder
nicht. In Ermangelung einer Behandlung dieser Frage in der Lehrbuchliteratur soll hier
bewiesen werden, dass sie negativ zu beantworten ist. Dabei werden ausschliefilich Mittel
verwendet, die Studierenden im Grundstudium der Mathematik nach einer Emfiihrung in
die Analysis und die elementare Zahlentheorie zur Verfligung stehen.

2 Die Unbeschrinktheit der Folge der Primzahl-Quersummen

Die nachfolgenden Beweisschritte basieren auf einem kombinatorischen Argument tiber
die Anzahl aller natlirlichen Zahlen mit vorgegebener Quersumme unterhalb einer gege-
benen Schranke. Im Vergleich zur Anzahl aller Primzahlen unterhalb derselben Schranke
wird einsichtig, dass die Quersummen der Primzahlen nicht beschrinkt sein kénnen.

Im Folgenden bezeichnet N := {1, 2, 3, ...} wie iiblich die Menge aller natiirlichen Zah-
len. Zudem findet das Symbol Ny :— N U {0} Verwendung.

Es sei g > 1 eine natiirliche Zahl und es sei n eine natiirliche Zahl mit der g-adischen
Darstellung n = fozocv ~g¥,dh, ey, € {0,1,2,...,9g — 1} firallev — 0,...,m.
Wir bezeichnen die (g-adische) Quersumme von # mit s, (). Dies bedeutet, dass s;(n) =
Y o ¢y ist. Tm Folgenden steht das Symbol Ag (x) fiir die Menge aller nattirlichen Zah-
len n < x, die so(n) = k erfiillen. Mit Hilfe dieser Notation erhalten wir das folgende
Ergebnis.
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Satz 2.1. Es sei x = 1 eine reelle Zahl und es sei k eine nafiirliche Zahl. Dann gilt
k
| AT | < (log, (x) + 1)

Insbesondere ist demnach die Rethe qu(n):k % der Inversen aller natiirlichen Zahlen mit
g-adischer Quersumme k konvergent.

Beweis. 1. Wir beginnen damit, die Behauptung fiir die Werte x = ¢" mitn € N zu
zeigen. Dabei griindet der Beweis auf der nachfolgenden Beobachtung. Aus der Setzung

Ag(x) ={meN:m < xunds,;(m) = k|
folgt sogleich

k
Ag(g”) - Zq”” S na, .. ae) € (O,n — 11N Ne)* } = By, (1)

v=1

Dies bedeutet, dass die Anzahl der Elemente von Ag (g™) kleiner als oder gleich der Anzahl
der Elemente von B, ist. Diese letztere Anzahl jedoch ist offensichtlich kleiner als oder
gleich der Anzahl an Moglichkeiten, k£ Gegenstinde (die Exponenten n,,) in n Fécher (die
Stellen der g-adischen Entwicklung) zu verteilen. Daraus folgt also |B,| = n*. Deshalb
kénnen wir mit (1) schliefen, dass

|42(g™)| < n* = (log, (M) < (log, (g™ + 1)*

gilt. Es bleibt zu zeigen, dass die Behauptung fiir alle x > 1 zufrifft. Nach der Definiti-
on der Menge Ag (x) ist es klar, dass ‘Ag (x)‘ eine monoton wachsende Funktion von x
darstellt, d.h. fiir x = v erhalten wir ‘Ag (x)‘ = \Ag (y)‘.

Fiir jedes x > 1 findet sich nunein n € N, fiir das "' < x < g" gilt. Dies impliziert

sogleichn — 1 < log(17 (x) < n und damit bereits n < logq(x) + 1 firallex > 1. Alles in
allem folgt hieraus

AL)| < [ALg")] < n* < (log, (x) + 1)

2. Bs ist bekannt, dass die Reihensumme

a Zz logq(l)

fiir alle g > 1 endlich ist. Zudem ist die Ungleichung

k
log, (x)+ 1) +1 <
(o8 ) logg (x)
fiir alle geniigend grofen x erfillt. Wir definieren als {rn;};c}y die aufsteigend geordnete
Folge aller natiirlichen Zahlen mit der Eigenschaft s, (s;) = k. Dann gibt es eine natiirliche
Zahl L so, dass
i

logy (1)

=|Alm)| +1 <
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fiir alle ! = L gilt. Dies ist gleichbedeutend zu / ‘log;‘; (ny) < n;. Wegen log, (n;) = log, (1)
folgt also! - logé (I) < ng furalle! = L. Hieraus ergibt sich fiir die Reihensumme tiber die
Inversen der Zahlen r; die Abschiitzung

o1 > 1
—m e ——— = (XD
2 Z 2
o™ Sp o log @)

Nach dem Majorantenkriterium muss folglich die linksseitige Reihe konvergieren. Dies
war zu beweisen. []

Folgerung 2.2. Fiir jede natiirliche Zahl k existiert eine Primzahl p mit s4(p) > k.

Beweis. Essei k eine vorgegebenenatiirliche Zahl. Aus Satz 2.1 wissen wir, dass die Reihe

¥ :
nel @
sgi{n)=t

fiir alle natiirlichen Zahlen f mit 1 < ¢ < k konvergiert, und folglich muss die Summe

k
> Y,
=1 nei
Sgln)=t

ebenfalls endlich sein. Man beachte hierbei, dass die letztgenannte endliche Summe bereits
alle Primzahlen mit Quersummen kleiner als oder gleich & enthilt. Nach einem bestens
bekannten Resultat von Leonhard Euler wissen wir jedoch, dass die Reihe tiber die Inver-
sen aller Primzahlen divergiert. Deshalb muss es eine Primzahl geben, deren Quersumme
grober als & ist. L]

Im Folgenden bezeichnen wir die Menge aller Primzahlen mit P. Im Beweis der Folge-
rung 2.2 haben wir die Divergenz der Reihe > pebP L verwendet, um zu zeigen, dass es zu
jedem vorgegebenen k < N stets eine Primzahl p mit s, (p) > k gibt. Es lassen sich jedoch
auch Primzahlfolgen konstruieren, die diinn genug sind, damit die Reihen tiber die Inver-
sen aller jeweiligen Folgenglieder konvergieren und die zugehérigen Quersummenfolgen
trotzdem nicht beschréinkt sind. Es gilt ndmlich das folgende Ergebnis.

Lemma 2.3. Es seien k und g > 1 naliirliche Zahilen. Es sei A ‘= [a,}, o eine streng
monoton wachsende Folge nattirlicher Zahlen und es sei C die Zahifunktion dieser Fol-
ge, d.h.

Cx)y={lacA:a<xl}|

Jiir x = 1. Wenn fiir alle geniigend grofien x die Abschdizung

(log, ) + 1) — 1
log, (x)

C(x) > (2)

gilt, dann existiert mindestens ein Folgenglied aym < A mit sg(am) = k.
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Beweis. Es sei Ng(x) die Anzahl aller natiirlichen Zahlenn < x mit s, (n) < & fiir x > 1.
Mit der Aussage von Satz 2.1 folgt, dass die Anzahl Ny (x) der Abschitzung

k k
Np(x) < (Z\A‘g(x)\) +1 <> (log,(x) +1)"

v=1 v=0
geniigt. Das Ausrechnen der geometrischen Summe auf der rechten Seite fiihrt dann zu

(log, (x) + 1) — 1

Np(x) < log, (x)

(3)

Nehmen wir an, die Folge A enthielte nur Glieder mit g-adischen Quersumimen kleiner
als oder gleich &, dann muss C(x) = Np(x) fur alle x > 1 gelten. Bin Vergleich der
Abschitzungen (2) und (3) hat jedoch fiir alle gentigend grofien x die Beziehung Ny (x) <
C(x) zur Folge. Aus diesemn Widerspruch folgt die Behauptung des Lemimas. L]

Das eben gezeigte Resultat lisst sich auf einige, wesentlich ,,ausgediinnte” Teilfolgen der
Primzahlen anwenden. Dazu fithren wir noch einige Notationen ein. Es bezeichne { py }cy
die aufsteigend geordnete Folge aller Primzahlen. Mit sw(x) wird tiblicherweise die Zahl
der Primzahlen angegeben, die kleiner als oder gleich x sind. Ein beriihmter Primzahlsatz
von T'schebyscheff besagt, dass es zwei Konstanten O < €y < > gibt, so dass

Clx ( ) ng
logx) ~ 7 T logx)

fiir alle x > 2 gilt (vgl. dazu etwa Theorem 7 im [ehrbuch von Hardy und Wright [5]).
Eine grundlegende Konsequenz dieses Satzes ist eine Abschiitzung der Gréfenordnung
der n-ten Primzahl. Es gibt nimlich zwei Konstanten 0 < ¢; < ¢2, so dass

cinlog(n) < py < canlog(n) 4)

fiir alle n > 1 gilt (vgl. dazu Theorem 9 bei Hardy und Wright [5]). Damit stehen alle
Instrumente zur Verfiigung, die den Beweis des folgenden Satzes ermoglichen.

Satz 2.4. Es seien k und g = 1 natiirliche Zahlen. Dann enthdlt jede der beiden Folgen
Py = {pp,inew und Py = {py2inen ein Glied mit einer g-adischen Quersumme, die
grofer als k isi.

Beweis. 1. Wir behandeln zunichst die Folge P; ausfiihrlich; die Aussage fiir P> folgt
analog. Das Einsetzen der Primzahl p,, in die Ungleichung (4) liefert

c1palog(ps) < Pp, <C2Pn log(pn)-
Abermals mit (4) ergibt sich hieraus die Abschitzung

c%n log(n)log(cinlog(n)) < pp, < c%n log(n) log(can log(n))
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fiir alle geniigend groffien n € N. Man beachte hier, dass die Grenzwertbezichung

limy s oo k’g(lccilg%m)) = 1 gilt. Dies impliziert die Existenz zweier Konstanten ¢z, ¢4 > 0

mit
csnlogi(n) < DPp, < C4nl log® (1) (5)

fiir alle gentigend grofien n < N. Es sei nur kurz angemerkt, dass diese Abschitzung
bereits die Konvergenz der Reihe 3 00 p;jnl nach sich zieht.

Fiir unsere Zwecke wandeln wir den rechtsseitigen Teil von (5) um zu

ppn
Cq log2 (n) '

Dan < pp, ist, erhalten wir damit schliefilich

ppre
c4log? (ppm)

=

fiir alle gentigend grofen n < IN. Weiter folgt fiir pp, < x < pp,., die Abschiitzung

c3n logz(n) <Xx<cgm+1) logz(n + 1).

(n+1) logg(n—l—l)

Wegen limy, . o A Tog )

= 1 gibt es folglich eine Konstante ¢5 > 0 mit

03n10g2(n) < X < C5n10g2(n)

fiir alle gentigend groflenn < IN. Hier ist an die Tatsache zu erinnern, dass # < pp, < x
1st. Bs ergibt sich demnach die Ungleichung

X X

= Ty 2
cslog“(m)  cslog”(x)
fiir alle gentigend grofien n. Die Zihlfunktion 7y (x) ‘= ‘{m eN: pp, < x}‘ erfuillt flir
allex < [pp,. Pp,,,) somit
X

wp(0) = 7p (Pp.) =1 > clog?(x)

mit der Konstanten ¢ := max{c4, c5}. Fiir jedes vorgegebene £ < N und fiir jedes vorge-
gebene 1 < g < N gilt die Grenzwertbeziehung

E+1
- X - (logq ®+1)" -1 .
X 00 clogz(x) 1qu (xX) ,

dh.
(log, () + 1) — 1

o
log, (x)

mp(x) >
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fiir alle gentigend grofien x. Mit Lemma 2.3 folgt sogleich die Aussage des Satzes fiir die
Folge P;.

2. Analog ergibt sich flir 77,2 (x) := ‘{n eN: p: =< x}‘ mit einer geeigneten Konstanten
¢ > 0 und fiir alle geniigend grofien x die Beziehung

Jx

clog(x)’

T2 (X) >

Da diese letzte Funktion von x abermals erheblich schneller gegen Unendlich wéchst als
der Quotient aus Ungleichung (2) ist es auch hier klar, dass zu jedem gegebenen k € ¥
stets eine Primzahl der Form p,» existiert, die s, (p,2) > k erfiillt, O

3 Primzahlen mit groBen Quersummen

Wenn die Folge der Primzahl-Quersummen jedoch nicht beschrinkt ist, so dringt sich die
Frage auf, welches die gréfite bekannte (dezimale) Primzahl-Quersumme ist? Hinsichtlich
einer Beantwortung dieser Frage scheint es sinnvoll, bestehende Primzahllisten nach dem
Motto ,Je grofer die Primzahl umso grofier ist wahrscheinlich auch ihre Quersumme™ zu
durchsuchen.

Die Zahlen, deren Quersummen am einfachsten zu ermitteln sind, sind sicherlich die Rep-
units R, = Zﬁ;é 1 = 10”9—1 . Diese ,bestehen nur aus Einsen, weshalb flr die Quer-
summe stets s10(R,;) = n gilt. Diese Zahlen sind prim fiir n = 2, 19, 23,317, 1031.
Dubner, der zusammen mit Williams auch den Nachweis der Primeigenschaft von Rj 31
erbringen konnte [8], hat zudem auch R49031 als ,,probable prime* beschrieben [2]. Zwei
weitere Primzahlkandidaten wurden mit Rp fiir p = 86453 und p = 109 297 in der Zwi-
schenzeit gefunden (vgl. die Ganzzahlfolge A004023 in Sloanes OEIS [7]). Nach dem
heutigen Stand der Forschung kommen wir mit Repunits also maximal zu ,potentiellen*

Primzahlen mit einer Quersumme von 109 297.

Die zweite Familie von Primzahlen, die hinsichlich grofier Quersummen von Interesse ist,
sind die so genannten Proth-Primzahlen. Es sind dies Zahlen der Form 2" - & 4 1. Dabei
bedeutet r eine natiirliche und 4 eine ungerade Zahl, welche die Ungleichung A < 27
erfiillt.

Diese Zahlen sind aufgrund ihrer Bauart verhiltnisméfig einfach auf die Primeigenschaft
hin zu untersuchen, weshalb sie mit zu den grobten iliberhaupt bekannten Primzahlen
gehoren. Gilt nimlich A < 27 und gibt es eine Primzahl p so, dass 27 - & + 1 ein qua-
dratischer Nichtrest modulo p ist, dann ist 2" - £ + 1 genau dann eine Primzahl, wenn

PP =1 (mod (2 -k + 1)

gilt (vgl. Hardy und Wright [5], Theorem 102). Keller und Ballinger haben alle bekannten
Proth-Primzahlen mit & < 300 auf ihrer Internetseite zusammengefasst [1]. In Anbetracht
der Fiille an Daten, die beziiglich dieser Zahlen mittlerweile zusammengetragen worden
sind, miissen wir uns hier auf eine kleine Auswahl beschriinken. Da besonders fiir klei-
ne A recht grobe Exponentenbereiche erschlossen sind, behandeln wir stellvertretend nur
die drei Werte h — 3, 8 — 5und i — 15, fiir die alle Primzahlen mit » < 3941 000,
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r < 5330000, bzw. r < 1500000 bekannt sind (Stand: 23. Mirz 2009). Bereits die
Primzahl 2°° . 15 + 1, die mit 273 Dezimalstellen deutlich kleiner als Ry 031 ist, besitzt
die vergleichsweise grofe Quersumme von 1204, Die Primzahl 2°8%% . 15 + 1 ,sprengt*
mit ihren 1 172 Dezimalstellen die Grenze von 5 000 mit der Quersumme 5 065. Doch es
geht noch sehr viel grofer. Auch die Millionengrenze lisst sich knacken. Die Parameter
r = 1229600 und & = 15 fiihren zu einer Primzahl mit 370 148 Dezimalstellen und der
Quersumme 1666 906, die Parameter » = 1418605 und A = 15 sogar zu einer 427 044-
stelligen Primzahl mit Quersumme 1 922314. Die Primzahl 21777315 . 5 1 1, die zur Zeit
grobte bekannte mit 4 — 5, besitzt 535 087 Dezimalstellen und die Quersumme 2401 727.
Die grofte bekannte Primzahl mit # = 3 trigt den Exponenten r = 2478785, besitzt
746190 Dezimalstellen und hat eine Quersumme von 3 358 897.

Noch grofiere Quersummen sollten bei den grofiten tiberhaupt bekannten Primzahlen zu
finden sein. Es sind dies bekanntlich die so genannten Mersenne-Primzahlen von der
Form M, := 27 — 1 mit einer Primzahl p. Die grofite bisher bekannte Mersenne-
Primzahl (entdeckt 2008), Mp mit p — 43112609 (vgl. hierzu z.B. die Internetseite des
GIMPS-Projekts [3]), besitzt 12978 189 Dezimalstellen und die Quersumme s10(Mp) =
58416 637.

Eine kuriose Begebenheit begegnet einem, wenn man die Quersummen der bekannten
Mersenne-Primzahlen durchsucht. Die Primzahlen 2229 — 1 (664 Dezimalstellen) und
22381 _ 1 (687 Dezimalstellen) besitzen beide die gleiche Quersumme 3 106. Diese Ei-
genschaft scheint ein Unikum fiir die Primzahlen des Mersenne-Typs zu sein; zumindest
in Anbetracht der bisher bekannten Vertreter dieser Primzahlfamilie. Man beachte hierbei
allerdings, dass das Phinomen allgemein bei Mersenne-Zahlen M, = 2" — 1 (n € N)
doch ziemlich hiufig ist. So besitzen neben den hier angegebenen Mersenne-Primzahlen
auch die Mersenne-Zahlen 22277 — 1 und 22371 — 1 die Quersumme 3 106. Betrachtet man
die Exponenten n, m < [2, 3000] N N, so gibt es insgesamt 1 548 verschiedene geordnete
Paare (n, m) mit n < m derart, dass s1o(M;) = s10(My,) gilt. Das kleinste dieser Paare
ist gegeben durch (3, 9) mit s10(7) = §10(511) = 7; das grofte Paar ist (2 880, 3 000) mit
den zugehorigen Quersummen vom Wert 3 870.

Zur Berechnung der hier vorgestellten Quersummen wurden die einzelnen Dezimalstellen
der gegebenen Primzahlen zunichst explizit berechnet und dann sukzessive aufaddiert.
Die Berechnung der gréfiten bekannten Primzahlquersumme benétigte dabei knapp drei
Tage auf einem PC, der von einem AMD Sempron 2600 XP+ Prozessor beirieben wird.

Die hinsichtlich ihrer Quersumme wohl ,ergiebigsten” Primzahlen diirften jedoch dieje-
nigen sein, die aus moglichst groben Ziffern zusammengesetzt sind. Da eine Zahl, die aus-
schlieflich mit der Ziffer 9 gebildet wird, stets zusammengesetzt ist, sind die ersten Kandi-
daten jene Zahlen, die bis auf eine Dezimalstelle aus Neunen bestehen. Die Ausnahmezif-
fer ist dabei idealerweise gleich 8, bzw. 7 falls sie am Ende der Zahl steht. Beispielsweise
sind die Zahlen 107%°—3 und 10! ¥%7 —3 sehr wahrscheinlich Primzahlen mit 990 und 1 887
Dezimalstellen. Thre Quersummen sind mit § 908 und 16981 verhiltnisméibig gigantisch.

Wie lange wird es dauern, bis man Primzahlen mit Quersummen gréfer als 100 Millionen
entdeckt? Wann wird die ,,Schallmauer* von 10? durchbrochen? Es ist davon auszu gehen,
dass theoretische Erfolge, u.a. zu der in der Einleitung angesprochenen Vermutung von De
Koninck, diesen Prozess erheblich beschleunigen konnten.
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