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Recall that the Mdbius p-function from elementary number theory is defined so that
um) = (=) ifaisa product of & distinct primes, and p(n) = 0 if n is divisible by
the square of a prime. (So u(1) = (—1)° = 1.) For any arithmetic function f (i.e., any
J 1 N — ), its Dirichlet transform f is defined by

f =" f@),

dln

and its Mobius fransform f by

fm):=>"um/d) fd).

dln

The well-known Mobius inversion formula ([2, Theorems 266, 267]) says precisely that
the M&bius and Dirichlet transforms are inverses of each other: for any f, we have

fefe=y

Es gibt eine Vielzahl von Beweisen zur Unendlichkeit der Menge P der Primzah-
len. Der vermutlich den meisten Lesern bekannte Beweis geht von der Annahme
P = {p1,..., pm} aus und fithrt diese Annahme durch Betrachtung der natiirlichen
Zahln = p1--- ppm + 1 zum Widerspruch, da diese Zahl einen Primteiler p mit
p ¢ [P besitzt; dieser Beweis wird Euklid zugeschrieben. Ein anderer, auf Euler
zurlickgehender Beweis, basiert auf der Eulerschen Produktentwicklung der Riemann-
schen Zetafunktion £(s) und der Tatsache, dass £(s) an der Stelle § = 1 einen Pol
erster Ordnung hat. In der vorliegenden Arbeit finden wir einen weiteren Beweis zur
Unendlichkeit von P, der elementare Eigenschaften arithmetischer Funktionen f, g,
welche die Beziehung f(n) = de g(d) (n € N) erfitllen, verwendet.
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Our proof of the infinitude of primes is based on the following lemma. By the support of
J, we mean the set of natural numbers n for which f(n) 7= O.

Lemma (Uncertainty principle for the Mobius transform). If f is an arithmefic func-
fion which does not vanish identically, then the support of f and the support of [ cannot
both be finite.

Proof. Suppose for the sake of contradiction that both f and f are of finite support. Let
e
F)y=) fmz"
n=1

Then F is entire (in fact, a polynomial function). On the other hand, for |z| < 1, we have

Fz)= Z(Z f’(d))z”

dln

—Zf(af) 2+ 2P Zf(af) (1)

d=1

Here the interchange of summation is justified by observing that

ZZ|f(d>||z| <AZn|z| '|' T

n=1 dn

where A = maxg—1 23, | f(d)].

Since f is not identically zero, neither is f (by Mobius inversion). Let D be the largest
natural number for which f (D) # 0. The expression on the right-hand side of (1) repre-
sents a rational function with a pole at 7 = ¢2*# P This contradicts that F is entire (and
so bounded in the open unit disc). L]

Theorem. There are infinitely many primes.

Proof. Suppose that there are only finitely many primes. Then there are only finitely many
products of distinct primes; i.e., u is of finite support. But u = f , where f is the function
satisfying f(1) =1l and f(n) = Oforn > 1. For this f, both f and fvare of finite support,
conftradicting the lemma. ]

Remarks.

1) We have borrowed the term “uncertainty principle” from harmonic analysis. One of
the simplest manifestations of this principle is the theorem that a nonzero function
and its Fourier transform cannot both be compactly supported. This has a certain
surface similarity to our lemma. The analogy can be more deeply appreciated if
one brings into play the fact, first discerned by Ramanujan [3], that many arithmetic
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functions admit a type of Fourier expansion. For example, if ¢ (n) := de d denotes
the sum-of-divisors function, then

2
aln 7T 1 1
W1 e+ e+,
n 6
where g5
e Z e
l=a<g
ged(a,q)=1

In general, the (natural) coefficients in the Ramanujan-Fourier expansion of f are
intimately connected with the values of f For suitably “nice” f, the support of f is
finite precisely when the sequence of Ramanujan-Fourier coefficients of f is finitely
supported. (Cf. paragraphs 27 and following in [5].)

2) The strategy for our proofs goes back to Sylvester [4], who gave an argument in the
same spirit for the infinitude of primes p = —1 (mod m) whenm = 4 or m = 6.
There is also some resonance with Mirsky and Newman’s demonstration that there
is no exact covering system with distinct moduli greater than 1 (see [1]).
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