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1 Introduction

Closing theorems, or theorems of Poncelet type, are considered to be one of the most
fascinating geometric facts. Various approaches to their proofs as well as applications
to problems of elementary geometry, theory of algebraic curves, differential equations,
billiards, elliptic integrals, etc., have been studied in many works (see, for example, [1,
2, 4, 6, 8, 10, 11, 14], and references therein). One can spot the four best known closing
theorems: Poncelet, Steiner, zigzag, and Emch theorems. We do not mention some other
results, such as, for instance, the Ponzag theorem, that are actually reformulations of one
of these four theorems.

This paper consists of two parts. First, in Section 3 we derive a general closing theorem
for families of Euclidean spheres in Rd. Then, in Sections 4-6, we observe some of its

The research is supported by the RFBR grants No 10-01-00293 and No 11-01-00329.

Den meisten Lesern dürften die klassischen Schließungssätze der Elementargeometrie
von Poncelet, Steiner und Emch sowie das Zigzag-Theorem bekannt sein. Beispielsweise

zeigt der Schließungssatz von Poncelet ausgehend von einem «-Eck (n > 2),
das gleichzeitig einem Kegelschnitt C umschrieben und einem anderen Kegelschnitt
D einbeschrieben werden kann, dass es noch unendlich viele weitere «-Ecke mit dieser

Eigenschaft gibt. In der vorliegenden Arbeit beweist der Autor einen allgemeinen
Schließungssatz für Sphären im Rd, aus dem die oben genannten klassischen
Schließungssätze durch geeignete Spezialisierung unmittelbar gefolgert werden können.
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corollaries. One of them, Theorem 2, gives a general closing principle for spheres in the

space R3. The four classical theorems of Poncelet type are its direct corollaries (Section 5).
Another one, Theorem 3, extends the Emch closing theorem to spheres in the Euclidean

space Rd. In the second part of the paper, in Sections 7 and 8, we focus on the elementary
proof of Emch's theorem on circular series. This theorem is the most general one among
these four classical results. The Poncelet theorem in case of two circles, the planar version
of the zigzag theorem, and the Steiner theorem are actually its special cases. This is shown
in Section 7. Therefore it would be interesting to obtain an autonomous (not relying on the
Poncelet theorem) proof of the Emch theorem using only elementary geometrical tools.
Such a proof is given in Section 7. For the sake of simplicity we restrict ourselves to the
case, when the three circles are embedded to each other. That proof is based on two
auxiliary geometric results, Theorem 4 on four circles touching two concentric circles, and

Proposition 1 on two chains of circles inscribed in an annulus, which may be of independent

interest. Finally, in Section 8 we apply this technique to derive a generalization of the
Emch theorem to pencils of circles.

2 Four classical closing theorems

In this section we recall the statements of the four famous Poncelet type theorems. To
formulate them in a unique way it is convenient to introduce the notion of general closing
property for families of circles. This notion will be also used in the next sections, when
we generalize Poncelet type theorems to the space Rd. Suppose a circle 8 and a family
of circles M. are given on the plane ]R2. Straight lines and points are also considered as

circles. We call a point z € M.d singular for the family M if there are more than two circles
from M passing through z. Assume that the two conditions are satisfied:

(a) The circle 8 does not contain singularpointsfor M-
(b) 8 i M.

Let us now consider the following process. Take an arbitrary point Dx on 8 and draw a

circle vi g M through it (we suppose that such a circle exists; if there are two ones, then

we take any of them). Let Di be the second point of intersection of vi and 8 (in case of
tangency we set Di Dx). Draw a circle V2 e M. through Di different from vx (if it does

not exist, then we set V2 vx). Then we denote by D3 the second point of intersection of
V2 and 8, etc. We obtain a series of circles {% }'^=1. The process has period « if %+i v\
or, which is the same, Dn+i Di.

Definition 1. A family of circles M is said to possess the closing property on a circle 8 if
it satisfies conditions (a), (b) and the following condition:
If for some initial point Di the process has period « > 3 and all the points Di,..., Dn are
distinct, then it has the same period for any point D\ e 8 that belongs to a circle from M-

Now we are giving the statements of the four classical closing theorems.

Theorem A. [Poncelet [12]] For any quadric a and a circle 8 on the plane the set of lines
touching a possesses the closing property on 8.
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As usual we call quadric in Rd a set of points x g Rd such that (x, Ax) + (b, x) + c 0,
where A is a self-adjoint operator, b e Rd, e e IR, and •, • denotes the standard inner

product in Rd. We deal with real nonempty quadrics only. A quadric in ]R2 is called plane.
If the quadric a in Theorem A is degenerate (a pair of lines, a single line, or a point),
then one replaces the tangents by parallel lines (in case of a line and of a pair of lines)
or, in case of a point, by lines passing through that point. The Poncelet theorem is usually
formulated for two quadrics a and 8. Nevertheless, it can always be assumed that 8 is

a circle. Indeed, if the quadric 8 is nondegenerate, then one can map it to a circle by
a suitable stereographic projection. Therefore, in this case the Poncelet theorem for two
quadrics follows from Theorem A. If 8 is degenerate, then the Poncelet theorem is trivial,
and the reader will easily prove it.

To illustrate the Poncelet theorem, consider the case, when a and 8 are both circles, and a
lies inside 8. Take a point Dx e 8 and draw a line tangent to a, which intersects the circle 8

for the second time at a point D2. There are two tangents to the circle a passing through
D2. One of them is D2D1. Draw the second one D2D3 (the point D3 lies on 8). Then
we draw the next tangent D3D4 not coinciding with the previous one, etc. The Poncelet
theorem says that if this process cycles after « steps, i.e., Dn+x Dx (Fig. 1), then it

D5

Fig. 1 Poncelet theorem

will cycle for any choice of the initial point Dx with the same number ofsteps n. Thus,
if there is an «-gon inscribed in the circle 8 and circumscribed around the circle a, then
there are infinitely many such «-gons. Moreover, any point of the circle 8 is a vertex of one
of those inscribed-circumscribed «-gons. A beautiful proof of this version of Theorem A
using measure theory was derived by Jacobi and Bertrand (see, for instance, [14]). Proofs
of Theorem A involving the theory of projective quadrics see in [3,11]. Other proofs based

on various ideas can be found in [1, 2, 8, 10]. None of them is elementary.

To formulate the next classical closing theorem in its most general form we use the notion
of index of tangency. The tangency of two circles is called interior if one of the circles
lies inside the other. Suppose ao, cti are circles on the plane; then for an arbitrary circle ß
touching both ao and ai the index of tangency is 0 if there is an even number of interior
tangencies among the two ones: ß with ao and ß with ai. If this number is odd, then
the index is 1. This notion is naturally extended to the case, when some of the circles ay
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become straight lines (the index depends on the orientation of the line). For given i 0,1
we denote by Mi the family of circles touching ao and ai with index i. If either ao or ai
becomes a point, then M.o M.\. The same notation will be used in the next sections for
families of spheres in K3 touching two given spheres.

Given two circles ao and ai on the plane, ao inside ai. In this case the family M x consists
of circles inscribed in the annulus formed by the circles ao and ai. The process ofSteiner
produces a series of circles {i>jt}jteN c Mi as follows: vx e Mi is arbitrary, for any
k g N the circle t^+i touches % and is different from v^-i if k > 2. The process has

period « > 3 if i>n+i i>i.

Theorem B. [Steiner] Ifthe process ofSteiner is periodicfor some initial circle v\, then it
has the same periodfor any vx e Mx-

Thus, if there is a closed chain of « touching circles inscribed in the annulus between ao
and ai (Fig. 2), then there are infinitely many such chains, and any circle inscribed in the
annulus can be the first circle of a chain. This construction is sometimes called Steiner's
necklace, or even Steiner's telephone dialer. In contrast to other closing theorems Theorem

B has several elementary proofs. The most known one is by inversion: if one applies
a suitable inversion taking ao and ai to a pair of concentric circles, then the statement
becomes obvious. However, none of those elementary proofs can be extended to the other
Poncelet type theorems.

Q'l

"O

Fig. 2 Steiner theorem

The third one is the zigzag theorem. It also deals with two circles, but this time the circles
are not necessarily on one plane, they may have arbitrary positions in the space. Given a

number p > 0 and two circles s and 8 in the space ]R3. Assume this pair of circles satisfies
the following condition:
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(c) The orthogonal projection of any of these circles onto the two-dimensional plane
containing the other circle does notpass through its center.

So, if one takes either of these circles and erects a perpendicular to its plane at the center
of that circle, then it does not meet the other circle.

Take an arbitrary point Di g 8. If the sphere of radius p centered at Di intersects s, then

we take any of two points of intersection and call it Si. Then we take a point D2 g 8 such
that D2S1 p and D2 ^ Di (if it does not exist, then D2 Dx). Further, the point S2 t s
is such that S2D2 p, S2 ^ Sx (if such a point does not exist, then we set S2 Si), and

so on. The zigzag process produces the sequences {Dk} and {Sk} for a given initial segment
D\ S\ p. Zigzag has period « if Dn+i D\.

Theorem C. [zigzag] If the zigzag has period « > 3 for some initial point Di g 8 and all
the intermediate points are distinct, then it has the same periodfor any point Di g 8, from
which one can make the first step.

The zigzag process can be interpreted as jumps of a flea from one circle to another with
the same length of the jump p (Fig. 3). If after 2« jumps the flea arrives at the starting
point D\, then it will happen for any starting point on the circle 8. In other words, if there
is a 2n-gon, whose even vertices lie on the circle 8, odd vertices lie on the circle s, and all
sides have the same length p, then there are infinitely many such 2n-gons. Moreover, any
point of 8 can be a vertex ofsuch a 2n-gon.

D2

Fig. 3 Zigzag theorem

Theorem C originates in [5]. Its proofs based on various ideas, highly non-elementary, can
be found in [1, 4]. The equivalence of the zigzag theorem and the Poncelet theorem was
established in [9].

Now we tum to the fourth closing theorem. We are going to see that this theorem is, in a

sense, the strongest one: the three others easily follow from it. In the statement we again
use the families of circles Mo and Mi defined above.

Theorem D. [Emch [7]] There are circles ao, ot\, and 8 on the plane, each of them may
become a point. Then for any i g {0,1} the family Mi corresponding to the pair of
circles ao, ai possesses the closing property on 8, provided 8 <£ Mi-

Fig. 4 illustrates Theorem D in case, when the circle 8 lies between ao and ai. If there is a

closed chain of « circles inscribed in the annulus formed by ao and ai, such that each pair
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O-O

O-l

Fig. 4 Emch theorem

on neighboring circles meets on 8, then there are infinitely many such chains. Moreover,
any circle inscribed in the annulus can be the first circle of a chain.

A proof of Theorem D can be found in [1]. In [13] this theorem was derived from the
Poncelet theorem by elementary geometric tools.

3 General closing principle
We are going to establish a fundamental theorem that implies not only the classical
Theorems A-D, but also their multidimensional generalizations obtained in the next sections.
This theorem is formulated in the space Rd for series of Euclidean spheres. Let us start
with introducing some notation. We denote by S (z,r) {x g Rd, \x—z\ rJaEuclidean
sphere in Rd of radius r centered at z; by P(n, c) {x g Rd, (n,x) c) we denote a

hyperplane with a direction vector «, |«| 1, and ceR.A sequence of spheres S(zk-> fk),
k eN, converges to the plane Pin, c) ifr^ ->¦ oo, Zk/\Zk\ —^ n and (\zk\2 — ^)/2\zk\ —^ c
ask —>- oo. By spheres we also mean points (when r 0) and planes, unless the opposite
is stated (for instance, when the radius is given). In particular, S(z,r) denotes a sphere or
a point (when r 0), but not a plane.

Let us now define the closing property for families of spheres in Rd. Suppose a circle 8

and a family of spheres M are given in the space Rd. We call a point z g Rd singular
for the family M if there are more than two spheres from M passing through z. The two
following conditions extend conditions (a) and (b) (Section 2) from circles to spheres:

(a') Circle 8 does not contain singularpoints for M-
(h') There is no sphere in M containing 8.

Consider now the same process as in Section 2 for spheres. For an arbitrary point Di on the
circle 8 we draw a sphere v\ g M through it (we suppose that such a sphere exists; if there

are two ones, then we take any of them), and denote by D2 the second point of intersection



104 V.Yu. Protasov

of vi and 8 (in case of tangency D2 Di). Draw a sphere V2 g M through D2 different
from vi (if it does not exist, then we set V2 vi), and denote by D3 the second point of
its intersection with 8, etc. We obtain a series of spheres {fjfc}j£i • The process has period
« if 1V1+1 vi or, which is the same, Dn+\ D\.

Definition 2. A family of spheres M is said to possess the closing property on a circle 8

if it satisfies conditions (a'), (b') and the following condition:

If for some initial point Dx the process has period « > 3 and all the points Dx,..., Dn are
distinct, then it has the same period for any point Dx g 8 that belongs to a sphere from M ¦

The main result of this section gives sufficient conditions for a family of spheres to possess
the closing property on any circle. Suppose we are given a set T c ]Rd, which is either a

plane quadric or a subset of a straight line. For arbitrary a g Rd and b g IR consider the
set of spheres {S(z,r) c M.d} defined by the following relations:

r2= \z-a\2-rb, zeF. (1)

So, this family consists of all spheres S(z,r) such that z g T and \z — a\2 -\- b > 0, in
which case r -v/|z — a\2 -\-b. If the set T is unbounded, then we add to this family one
or two limit planes: if T is a hyperbola or a pair of lines, then the two planes P(«^, c*),
k 0,1, are added, where «^ are the direction vectors of the lines or of the asymptotes
of the hyperbola, c* ink-, fl); if T is a subset of a line, then one plane Pin,c) is added,
where « is the direction vector of the line, c (n,a).

Theorem 1. Family (1) possesses the closing property on any circle i5cRd that does not
contain singularpointsforfamily (1) and does not lie on its spheres.

Proof. First, we reduce the theorem to the planar case, i.e., to d 2. Then we show that
all circles of family (1) touch a suitable quadric a, after which the theorem will follow
from Theorem A.

Thus, let us reduce the theorem to the case d 2. We consider only spheres of family (1),
the same results for planes, if they exist, will follow from the limit passage. Without loss
of generality it may be assumed that the origin is located on the two-dimensional affine
plane K containing the circle 8. If some sphere S(z,r) of family (1) intercepts a circle
on K with center zi and radius ri, then r2 — \z\2 r2 — \zi\2. Whence zi, r\ satisfy (1),
where a and F are replaced by their orthogonal projections onto K and the parameter b
is also properly changed. Thus, the family of circles formed by intersections of spheres
from family (1) with the plane K can be defined by similar relations on K.
Let q be the center of the circle 8, R be its radius. Take an arbitrary circle y of the family (1)
intersecting 8. Let / be the line containing the common chord of 8 and y (Fig. 5). Any
point x g / has equal powers with respect to 8 and y, hence \x — q\2 — R2 \x —

z\2 — r2. Expressing r2 from (1) we obtain after simplifications (x — a,z — q) k,
r»2 i« 12 I/»12 j-,

where k '

2
l~ (fl> <?)• This linear equation on x is nontrivial (z — q and k

cannot vanish simultaneously), otherwise the circle y coincides with 8, which contradicts
the assumption. So, we obtain a family of lines L {/(z), z g F}, where l(z) /
{x g IR2 I (x — a, z — q) k}. If F is a subset of a straight line, then all the lines of L
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Fis. 5

concur, or they are all parallel. In this case the statement is trivial: for any point Dx g 8 the

process has period 2, whenever it can start. If F is a quadric, then all lines of the family L
touch the quadric a, which is obtained from the dual quadric (F — q)* by applying the

multiplication by the factor k and the translation by the vector a. Therefore, in this case
the theorem follows from Theorem A. D

In the next three sections we observe some crucial corollaries of Theorem 1. We are going
to see that Theorem 1 is a quite powerful tool to prove many Poncelet type results. First,
we establish a special closing theorem for spheres in the space R3 that imply, just as simple
special cases, all four classical Theorems A-D. Another simple corollary of Theorem 1 is
that the zigzag theorem holds for any pair of circles in Rd, not necessarily in ]R3. Then we
go further and derive a general closing theorem in W1 which is a generalization of Emch's
theorem (Theorem D) for all dimensions d > 2.

4 Closing theorem in R3 and the four classical theorems

In the space ]R3 given a sphere Q and spheres Sq, Si c IR3 that are not symmetric with
respect to Q (i.e. are not mapped to each other by the inversion with respect to Q). The
sphere Q, and one of the spheres So, S\ may become points. Let Mi, i 0,1, be the

corresponding families of spheres tangent to So and Si (see the definition in Section 2).
Choose i g (0,1} and consider the family M of spheres from Mi that are orthogonal
to Q. There are at most two singular points in ]R3 for the family M, this will be shown in
Remark 1. Orthogonality, as usual, means that two tangent planes to the spheres drawn at
their common point are perpendicular to each other. Equivalently, two radii of the spheres

starting at their common point form a right angle. If Q is a plane, then a sphere is orthogonal

to Q iff it is centered on Q; if Q is a point, then a sphere is orthogonal to Q iff it
passes through Q.

Theorem 2. The family M possesses the closing property on any circle (5 cR3 that does

not pass through singular points and does not lie on a sphere from M-
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The geometrical meaning of this theorem is less obvious than for Theorems A-D because

of that orthogonality condition. However, as we will see below, Theorem 2 implies all of
them. In some sense, Theorem 2 is a common root for all the classical closing theorems.

The proof of Theorem 2 is by merely showing that the family M satisfies the assumptions

of Theorem 1. We use several well-known facts of elementary geometry. Any pair of
spheres So, Si of different radii has two homothety centers ho, hi. This means that there is
a homothety centered at «o taking the sphere So to Si, and the same holds for the point hi.
For each i 0,1 the line joining the points of tangency of any sphere from Mi with So

and with Si passes through ht. Moreover, the point ht has the same power with respect to
all spheres of the family Mi- In the sequel we denote this power by pt.

Proofof Theorem 2. With possible inversion it may be assumed that Q, So, and -Si are
spheres (not planes) and that So, Si have different radii. Thus, ro ^ n, where Sk

S(Zk-,rk), k 0,1. Choose some i g {0,1} take the corresponding subset M of the

family Mi and consider an arbitrary sphere S(z,r) g M (Fig. 6). The power of the point

S(z,r)

Fig. 6 Closing theorem in R (Theorem 2)

ht with respect to this sphere is equal to pt, so \z — hi\2 — r2 pi. Thus, the sphere

S(z,r) satisfies (1) with a ht,b —pt- Since this sphere is orthogonal to Q, we have
\z—Z2?f r2 -\-r\, where Z2 is the center of Q and r2 is its radius. Subtracting this equality
from the previous one, we obtain a linear equation in z, which defines some plane LcK3.
On the other hand, the centers of all spheres of Mi form a quadric in ]R3 with foci zo, Zi ¦

Therefore the centers z of the spheres S(z,r) g M lie on the intersection of that quadric
with the plane L, i.e., on a plane quadric F. It now remains to apply Theorem 1. D

Let us now derive Theorems A-D from Theorem 2.

Theorem 2 =>- Theorem A. So, Sx are arbitrary spheres inscribed in a cone that has the

quadric a as a plane section; Q is the point at infinity.
In this case all spheres of M are planes, because they contain the point at infinity. They
intersect the plane of the quadric a by lines touching a. From this Theorem A follows.
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Theorem 2 =>¦ Theorem C. In this case Q is the plane of the circle s, the spheres Si are
concentric to s and have radii | r ± p \, where r is the radius of s.

Theorem 2 =>- Theorem D. We set Q to be the plane of the circles ao, ai, 8, the sphere Si
has its center on the plane Q and intersects it along the circle a/, i 0,1.
In this case all spheres of M are centered on the plane Q and intersect that plane by circles

tangent to both ao and ai.

Theorem 2 =>- Theorem B. Theorem B is a special case of Theorem D (Section 7).

Thus, the Poncelet theorem corresponds to the case of Theorem 2, when Q is the point
at infinity; the zigzag theorem corresponds to the case, when So, Si are disjoint and both
orthogonal to Q; finally the Emch theorem corresponds to another special case, when the
circle 8 lies on the sphere Q, and the spheres -So and -Si are both orthogonal to Q.

Remark 1. Theorem 2 holds for general spheres Q, So, Si and a circle 8 in the sense that

any three spheres and a circle in general position satisfy the assumptions of Theorem 2.
To see this we show that there are at most two singular points for the family M- With
possible inversion we may assume that the radii of the spheres So, Si are different. If z is

a singular point, then z *£ Q and, moreover, the line joining z and z (the inverse image of
z with respect to the sphere Q) passes through h, and (hi — z,hi — z) Pi- To show this
we make an inversion with center at the point z (the images will be denoted by prime).
Spheres of M containing z become planes passing through the center of the sphere Q' (or
perpendicular to the plane Q' in case z g Q), tangent to the spheres S'0, S[. There are at
most two such planes unless the center of Q' coincides with the homothety center of the

spheres £0, ^ • This case corresponds to the property of the point z described above. There

are at most two points z with this property.

5 Zigzag theorem for two circles in d

Another immediate corollary of Theorem 1 is the extension of the zigzag theorem to spaces
of all dimensions.

Corollary 1. Theorem C holds for any pair ofcircles in W* satisfying condition (c).

Proof. Let s and 8 be arbitrary circles in Rd and p > 0 be the length of the jump. The
family M of spheres of radius p centered on s can be defined by relations (1), where

r s, a is the center of the circle s, r is its radius, and b p2 — r2. D

6 Closing theorem for spheres in d

As we already mentioned in the introduction, the Emch theorem plays a special role among
the four classical closing theorems. In some sense, it is the strongest one among them,
because the Poncelet theorem for two circles, the Steiner theorem, and the zigzag theorem
in case of circles on one plane follow easily from Emch's theorem. This will be shown
in Section 7. That is why it would be most interesting to have the Emch theorem not
only in the plane, but in the space Rd for any d > 2. Instead of the family of circles M
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S(z,r)

Fig. 7 Generalized Emch theorem (Theorem 3)

touching two given circles ao, ai on the plane, as in Theorem D, we now consider a family
of spheres touching d given spheres in Rd (Fig. 7). It appears that, under some general
assumptions, this family possesses the closing property on any circle i5cRd. This means
that if there is a closed chain of « spheres in Rd touching d given spheres such that each

pair on neighboring spheres intersect on the circle 8, then there are infinitely many such
chains. Moreover, for any point of 8 there is a chain starting in it. This is a generalization
of Emch's theorem to Rd. To formulate it one needs to overcome one difficult point. In
Theorem D we deal with two families of circles Mo, Mi touching two given circles. For
d spheres in the space Rd there may be as many as 2d~l such families of spheres. To

classify them it will be convenient to use the notion of oriented sphere.

An oriented sphere S(z,r) of radius r g IR centered at z is the set of points x g Rd

such that |a: — z\ \r\. So the radius of an oriented sphere may take any real value;
S(z,r) and S(z,—r) are considered as two different spheres, whenever r ^ 0, although
they correspond to the same set of points in Rd. Pin, c) denotes the oriented plane that
consists of points x g Rd such that in, x) c. The planes P(n,c) and P(—n,—c) are
also considered to be different, although they correspond to the same set of points. In
this section all spheres and planes are assumed to be oriented. A sphere S(z,r) touches a

sphere S(zo, ro) when |z — Zol V + fo\; it touches a plane P(n,c) when (z, «) + r c.
A collection of spheres Si S{zi,rì),i 1,..., d is said to be in the general position if
the affine hull of the points (Zi,ri)T g ]Rd+1, i 1,..., d, is of dimension d — 1. This
means that the points (zi, ri)T are vertices of a (d — l)-dimensional simplex. The general
position property is invariant with respect to translations and orthogonal transforms of Rd,
but not with respect to inversions. We call two collections of spheres (including planes)
equivalent if one of them can be obtained from the other by finitely many isometries and
inversions. Now we are ready to formulate the main theorem.

Let us have a collection of d spheres Si S(zi,ri),i 1,..., d. Some of them, but not
all simultaneously, may become points. Consider the family M of spheres tangent to all
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the spheres S-t. Note that in case d > 3 the family M may be empty for some collections.
For a set of d usual (non-oriented) spheres there are up to 2d~l such families, depending
on the orientation.

Theorem 3. Let a collection ofd spheres in ]Rrf be equivalent to a collection in general
position and the family M ofspheres touching them be nonempty. Ifa circle i5cRrf does

not contain singular points and does not lie on a sphere from M, then M possesses the

closing property on 8.

Let us see what Theorem 3 gives for small dimensions d.

d =2. Any pair of distinct circles in the plane is in general position, therefore Theorem 3

becomes the Emch theorem.

d 3. Theorem 3 holds for any triple of spheres in ]R3, for which there is a sphere
touching them. If a triple S(zi, ri), i 1, 2, 3, is not in general position, then the points
(zu i"i)T g IR4 are collinear. Whence the centers zi are on the same line as well. Applying
the inversion with some center outside that line we get spheres in general position.

Thus, in case of small dimensions any collection of spheres are equivalent to one in general
position. For d > 4 this may not be the case. Nevertheless, a "typical" set of d spheres and

one circle in Rd does satisfy the assumptions of Theorem 3. Let us first establish this, and
then we prove the theorem. We start with three auxiliary results. Observe that any sphere

S(z,r) g M satisfies the following system of equations:

r2 \z\2 - 2(zi, z) - 2nr + \Zi |2 - rj, i l,...,d; (2)

and any plane P(n,c) e M satisfies the system

(zun) +n c, i l,...,d. (3)

Lemma 1. For any collection of spheres in general position the family M contains at
most two planes.

Proof. Subtracting the first equation of system (3) from the others we obtain the linear

system (z/ — zi, «) r-t —r\,i 2,..., d of rank d — 1. Its solutions « form a straight
line in Rd, which contains at most two points such that | « | 1. D

Planes of the family M, if they exist at all, are limits for the spheres of that family. Now
we clarify when all spheres forming an affine plane (in the space of spheres) can touch one
sphere.

Lemma 2. Suppose an affine plane L c Rd+1, dim L > lis such that there is a sphere

(or a point) So c ]Rd tangent to every sphere of the family L {S(z,r) \ (z,r)T g L).
Then L is a line and L is a pencil ofspheres tangent at one point. Moreover, So g L.

Proof. If dimL 1, then the center z of any sphere of L lies on a fixed straight line
b c M.d and its radius r is a linear function of z. If all the spheres from L touch So, then
the center of So lies on b as well, otherwise r is not linear in z. Therefore, £ is a pencil
of tangent spheres. In particular, So also belongs to L. In case dimL > 2 all lines on L
concur at one point corresponding to the sphere So, which is impossible. D



110 V.Yu. Protasov

The last auxiliary result restricts the location of singular points of the family M-

Lemma 3. For a collection of d spheres in general position all singular points of the

family M lie on some affine plane E of dimension d — 2. If M contains two planes, then
their intersection coincides with E.

Proof. It suffices to show that if a point zo is singular, then the point (zo> 0)r belongs
to a plane £0 c Mrf+1, which is an affine hull of the points (zi,rì)T, i 1,..., d.
Note that dim Eo d — 1. For a sphere S(z,r) that passes through the point zo we have
r2 |z|2 — 2(zo, z) + |zol2- Subtracting this equation from each equation of (2) we obtain
the system

(zi - zo, z) + nr l-(\zi\2 - rf - \z0\2), i l,...,d. (4)

If (zo> 0)r ^ Eo, then the matrix of this system has full rank d. Therefore its solutions,
i.e., points (z,r)T, form a straight line / g Mrf+1. Substituting the solutions in system (2)
we get a quadratic equation. If all its coefficients vanish, then all the spheres corresponding

to the solutions (z,r)T touch the sphere S\. Hence by Lemma 2 they constitute a

pencil of tangent spheres. Then all the spheres Si belong to this pencil, therefore all the

points (zu i"i)T lie on a line, which contradicts to their general position. Thus, the obtained

quadratic equation is nontrivial and has at most two solutions. So, there are at most two
spheres from M passing through zo- Whence, if a point zo does not belong to a plane
from M, then it is nonsingular. If it belongs to a plane from M, then by (3) it satisfies
the equations (z; — Zo> «) — f't 0, i 1,..., d. This system has full rank d and so it
has at most one solution «. Comparing this system with (4) we conclude that the line /
is parallel to the vector in, 1)T g Rrf+1. Substituting the solutions (z,r) g /in the first
equation of (2) and taking into account that |«| 1 we get a linear equation (quadratic
terms disappear), which has at most one solution. Thus, there is a unique plane and at most
one sphere from M passing through zo- D

Thus, if a circle 8 does not intersect the (d — 2)-dimensional plane E, then it does not
contain singular points. For an arbitrary point z g 8 there are at most two spheres from
M passing through z. If the circle 8 is not contained in any of these two spheres, then it
does not lie on any sphere of M ¦ Thus, we see that in general position a set of d spheres
and one circle in W* indeed satisfy the assumptions of Theorem 3. Now we can prove the
theorem.

Proofof Theorem 3. It suffices to consider the case of d spheres in general position. We
show that the family M can be defined by relations (1) and then apply Theorem 1. The
proof will be realized for spheres of M, for planes (if they exist) it will follow by the

limit passage. Assume first that among the spheres St there are two ones of different radii
(regarding the sign). Subtracting the first equation of system (2) from the others we obtain
d — 1 linear equations 2(zi — Zi,z) + 2(ri — rt)r ai? i 2,..., d, where a; are
some constants. For at least one of them the coefficient ri — r^ does not vanish. Expressing

r r(z) from that equation and substituting it in the other equations, we get a system
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of d — 2 linear equations (of rank d — 2) for the variable z. Its solutions z form a two-
dimensional affine plane Lo c lRd. Since the function r(z) is linear, the points (z,r(z)f
form a two-dimensional affine plane L c Mrf+1. Substituting r(z) in the first equation of
system (2) we obtain an equation for z, which is either quadratic or linear. If all points
of Lo satisfy it, then all the spheres associated to the points (z,r)T g L touch the sphere
Si, which is impossible (Lemma 2). Therefore points z g Lo satisfying that equation form
a plain quadric (or a line) T e Lo. Now substitute r(z) in the right hand side of the first
equation (2) and obtain r2 |z|2 — (a,z) + c, where a g W1 and eel. Extracting the

perfect square we arrive at (1). Finally, if the radii r-t are all the same, then the centers of
the spheres of M lie on a straight line F, and one can easily write equation (1). D

7 Elementary proof of Theorem D

Now we come back to the planar Emch theorem (Theorem D). Among the four classical

closing theorems it is the strongest one: the three others are actually its special cases.

Indeed, if the circle ai degenerates into a point, then an inversion with the center at this
point yields Theorem A for two circles. If ao lies within ai, and the circle 8 is orthogonal to
all circles of the family M i, then we obtain Theorem B. We use the fact that the center hi
of homothety of the circles ao and ai has the same power pi with respect to all circles
of M i (see Section 3). Therefore the circle 8 of radius *J~px centered at h x is orthogonal to
all circles ofM x and contains all their points of tangency. Hence, Theorem B follows from
Theorem D. Finally, if the circles ao and ai are concentric, then we arrive at Theorem C
for the case when the circles 8 and s are on one plane. Indeed, if we take as ao, ai the
circles of radii \r ± p\ concentric to s ir is the radius of s), then we obtain Theorem C.

Thus, for concentric circles ao, ai Theorem D becomes the "planar" version of the zigzag
theorem; in case when ao is the point at infinity, we obtain the Poncelet theorem for two
circles; finally, if ao is inside ai, and 8 is orthogonal to all circles of the family Mi, then

we get the Steiner theorem.

The question arises if it is possible to give a proof of Theorem D that will be elementary

and autonomous (not relying on the Poncelet theorem, in contrast to the proofs of
Theorems 2 and 3). In this section we give such a proof using only tools of elementary
geometry, the most complicated of which are inversions and pencils of circles. To avoid
technical difficulties we restrict ourselves to the following case of mutual position of
circles in Theorem D:

(d) The circle 8 is inside ot\, the circle ao is inside 8, and we consider the family Mi of
circles touching ai from inside and ao from outside.

The idea of the proof is the following: let a chain of circles inscribed in the annulus
bounded by ao and ai intersect the circle 8 in successive points Di, D2, ¦ ¦ ¦ send

another chain of circles inscribed in the annulus intersect S in points D[, D'2,... For any
i 1,2,... draw a new circle Si tangent to ao through the points Dt and D-. It appears
that all the new circles Si,i 1,2,..., touch some circle c (Fig. 8).

Moreover, c, 8 and a\ belong to one pencil of circles. This implies that if the first chain
cycles (Dn+i Di), then the second also does (D'n+l D^). The idea is quite clear, but
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«I

• C

"O

Fig. 8

to realize it we need to establish several auxiliary results. All of them are elementary, but
quite technical. Some of these results, such as Theorem 4 and Proposition 1 are, probably,
of some independent interest.

We begin with a simple auxiliary fact. In the sequel we assume that an arc AB of a circle

has the positive direction from A to B, AB denotes the angle defined by that arc.

JV

M
JV

Fig.

Lemma 4. Two circles of radii rx, T2 centered at Ox, 02 intersect at points A and B.
Suppose P is the fourth vertex of the parallelogram 02 A Ox P; thenfor any circle centered
at P intersecting the first circle at some points Mx, Nx, and the second one at points M2,
N2 (Fig. 9) the following hold:

a) The lines M\ M2 and Nx JV2 pass through A.

MxNx
_

ANx
_

AMx
_

BMx
_

BNx
_ n

M2N2 ~ AM2 ~ AN2 ~ BM2 ~ IÏN2 ~ n
Proof, a) The triangles POxMx and M2O2P are equal by three equal sides, hence

AMx OxP ZM202P. Furthermore, ZPOiB =ZP02B, since 02OiPB is an equilateral

trapezium. Subtracting the second equality from the first one, we obtain ZM\ OiB

ZM2O2B, therefore BMi=BM2- Consequently, ZM\ AB ZM2AB, and thus the line
M\ M2 passes through A. The proof for JVi JV2 is the same.

b) It follows from a) that the chords Mi JVi and M2N2 define equal angles on the two
circles: ZM1AN1 BM2 ~ BN2 ~~ r2'
Finally, since the quadrangle M1M2N1N2 is inscribed in a circle, it follows that the

:M2AN2. Whence jjg^ £. Similarly,
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triangles Mi ANi änd N2AM2 are similar with the factor Mi/Yi a Therefore
ANX _ AMi _ n
AM2 AN2 r-i

M2N2 r-i

D

Before formulating the crucial auxiliary fact, Theorem 4, let us recall that a pencil of
circles is a set of circles on the plane orthogonal to two different circles (all circles may
degenerate into lines and points, unless the opposite is stated). Circular pencils are straight
lines in the three-dimensional space of circles. Any pair of circles b, c c IR2 is contained
in a unique pencil that will be denoted by V{b, c}. For every t g IR U {00} the set of points
on the plane, for which the ratio of powers with respect to given circles b and c equals to t
is either empty or a circle of the pencil V{b, c}.

Now we are going to establish the main theorem. Take two circles with a common center
P, we call them the bigger circle and the smaller one. Consider the families of circles Mj,
j 0,1, touching them. Take an arbitrary pair ßo, ß\ £ Mo and a pair yo, yi g Mi-
The points of intersection of ßt and yk will be denoted by A®k and Ajk (the first point is
farther from the center P than the second one). Finally, draw one more circle centered at
P. Let it meet each of the circles ßi and yk at two points bj, s 0,1 (respectively cf).
If a point goes around the circle ß\ counterclockwise from its point of tangency with the

bigger circle, then it meets the point b° first and bj second. The same with the points csk

(Fig. 10). In the notation of Theorem 4 all superscripts are taken modulo 2, for example,
0 3 _ 1

io» ci — crA2=A° <*--iLio

7i

Fig. 10

Theorem 4. Given two circles with a common center P and arbitrary circles ßi g Mo>

yk g Mi, i, k 0,1. Suppose Aslk are the corresponding 8 points of their intersection;
then
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a) The 4 points Al% i,k g (0,1}, lie on one circle (denote it by So). The same holds

for the 4points A\j^+1, i, k g (0,1} (a circle 8i).

h) Let an arbitrary circle centered at P meet ßu yk at points bf, cf., respectively. Then

for every i, k g (0,1} the lines b®c® and bjc^ pass through the point A°ik.

c) Choose arbitrary q, j g {0,1} and draw a circle touching the circles ßt at the points
b\ q, i 0,1, and a circle touching the circles yk at the points ck

q J k 0,1.
Then these two circles belong to one pencil with 8j.

Thus, if four circles ßi,yk,i,k g {0,1}, touch two concentric circles, then the eight points
of their intersection Asik are naturally split into two quadruples, each of them lies on one
circle. Drawing a third concentric circle we get the 8 additional points of intersection bf,
cf. that form 8 triples of collinear points (Fig. 10). Finally, if we consider two pairs of
circles touching ßt, yk at the points of their intersection with the third circle, then we
obtain 4 triples of circles, each of them is in one pencil. So this configuration of seven
circles produces two circles, 8 lines and 4 pencils.

Proofof Theorem 4. Let R and r be radii of the circles ßo and yo, respectively, and 0i,
02 be their centers. Then 02A®0 0i P is a parallelogram with sides of lengths r and R. By
Lemma 4 the lines b^c^ and bj)c^) concur at Aq0. This proves item b) for i k 0, the

proof for the other indices is the same.

Now draw a circle b touching ßo and ßi at the points b^ and b\, respectively, and a circle c

touching yo and yi at the points Cq and c®. We assume that both b and c do not degenerate
into lines. Denote by x the radius of the circle b taken with the sign: it is positive if this
circle touches ßo from outside, and negative otherwise. Similarly y is the radius of c with
the sign. Denote also by B the second point of intersection of the line b^Aq0 with the

circle b, and by C the second point of intersection of the line CqA0^ with the circle c. The

similarity of circles implies that b^B ^ ^o^oo- Therefore the power of the point Aq0

with respect to the circle b is A^o ¦ AqQB (l + ^(A^q)2. Similarly, the power of
the point Aq0 with respect to c is (l + £)(AqQCq)2. Lemma 4 yields Aq^/A^Cq R/r.
Therefore, the ratio of the powers of the point Aq0 with respect to the circles b and c is

equal to /rty\r • In the same way we obtain that for each of the points A®v A\0, A^ the

ratio of powers with respect to b and c also equals /,-tyL • Whence, these 4 points are on
one circle (So) that belongs to the pencil V{b, c}. This proves items a) and c) for j,q 0.

The proof for other j,q is the same. D

Corollary 2. Under the assumptions of Theorem 4for any j 0,1 the following holds:
For an arbitrary circle b touching the circles ßo and ßi in the same way (both from inside

or both from outside) there exists a circle c g V{Sj, b) touching yo and yi in the same

way.

Remark 2. Through any point A of the circle yo (different from points of its tangency
with the bigger circle and with the smaller one) one can draw two circles of the family Mo-
Precisely for one of them A is the closest to P point of intersection with yo-
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Theorem 4 b) implies, in particular, thatfor any i, k g {0,1} the line joining the points of
tangency ofßu yk with the bigger circle passes through the point A°ik. The same is true
for the smaller circle. We need the converse, whose proofwill be a simple exercise for the
reader.

Lemma 5. Suppose an arbitrary straight line passing through the point of tangency of
given circles a and ß meet these circles at points A and B, respectively. The circle s

passes through B and touches a at the point A. Then all such circles s touch a fixed circle
different from a. This circle touches ß and is concentric to a.

Now we are formulating the assertion, from which Theorem D follows immediately. Consider

arbitrary circles ao,ai, and 8 satisfying condition (d). Take two series of circles
{vk}, {v'k} c Mi and the corresponding points {Dk} and {D'k} on the circle 8. We assume
that these sequences both go around 8 in positive direction and that D[ belongs to the arc
Di D2 (Fig. 8). Denote by Sk the circle passing through the points Dk, D'k and tangent to ao
from outside.

Proposition 1. All the circles Sk, fceN, touch a fixed circle of the pencil V {8, ai}.

Proof. It consists of the consecutive application of Theorem 4 to the pairs of circles Vk,

v'k and Sk, Sk+i for all k > 1 (Fig. 8). A suitable inversion maps the pairs vx, v^ and -si,

-S2 to the pairs ßo, ßx and yo, yx from Theorem 4. To see this we make an inversion with
center at the second point of intersection of the circles MBK and MCL (the first point of
their intersection is M), where K, M, L are the points of tangency of the circle ao with
si, S2, vi, respectively, and B and C are the second points of intersection of the circle vi
with the circles -si and £2, respectively. By Lemma 5 the images of the circles -si, S2, i>i

touch two concentric circles, one of them is the image of ao. In order to be defined we
assume that the image of ao is the smaller concentric circle and that the images of -si, £2

are situated between these concentric circles. Thus, -si, £2, vi are mapped to the circles
Yo, Yi, ßo, and the points Di and D2 sere mapped to Aq0 and AqV respectively. Let X\,
X2 be images of the points D'v D'2. Draw a circle ßi through X2 that touches both these
concentric circles from within so that X2 is the closest (to the center) point of intersection
of yi and ßi (Remark 2). Thus, X2 Ajr By Theorem 4 a) the points Aq0, Aj^, A\v
Af0 lie on a circle. By the assumptions Aq0, AqV Aj1? Xi are on a circle as well. Whence

Aj0 Xi, and ßi is the image of 1^. Thus, an inversion takes circles vi, v'v si, S2 to the
circles jßo> jßi> Yo, Yi, respectively. According to Corollary 2 the pencil V{8, ai} contains
some circle c touching the circles s\, S2 in the same way. It is located between the circles 8

and ai. Indeed, if we fix the points D\, D2 and move the point D[ along the arc D1D2,
then at the extreme positions we have: c S in case D[ D\, and c ai in case

Dj D2. The circle c changes continuously in the same pencil V{8, ai} when D^ moves.
Hence if for some D[ the circle c is not between 8 and ai, then for some interior point D[
of the arc Di D2 one has either c 8 or c ai. Neither of these cases is possible, because

for any interior point of the arc Di D2 the circle -si touches neither 8 nor ai.

Taking the next pairs of circles V2, v'2 and S2, S3, we obtain a circle that belongs to the same
pencil V{S,cti), lies between 8 and ai, and touches both £2 and -S3. This circle coincides
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with c because the pencil V {8, ai} has at most one circle between 8 and ai that touches S2-

Hence c touches S3. Thus we consecutively prove that c is tangent to all the circles Sk

Proofof Theorem D in case (d). Let vi,... ,vn he a periodic series of circles (%+i
vi), Di,... ,Dnhe the corresponding points on 8. Take an arbitrary series v[, v'2,... and
the corresponding sequence of points D[, D'2, ¦ ¦ ¦ With possible renumbering it may be
assumed that these sequences both go around the circle 8 in positive direction and that
the point D^ is located on the arc D1D2 (Fig. 11). Consider the circles Sk, k > 1, from
Proposition 1 and conclude that they are all tangent to a circle c g V{8, ai}. The arc Di D2
has only one point D'v for which the circle passing through the points D[ and Dn+i Di
and touching ao from outside is tangent to c. Therefore D'n+1 D[ and sn+i s\, which
completes the proof. D

01

0-0

Fig. 11 Proof of Theorem D

8 Generalization of Theorem D

The method developed in the previous section makes it possible to go a bit further and to
obtain a generalization of the Emch theorem for several pencils of circles analogous to the

great Poncelet theorem [3, Theorem 16.6.7]. We formulate it only for one case of mutual
position of circles. Let us have a circle 8 and two sequences of circles (a^ } and (a*}. Each

sequence {a*} is contained in a pencil Au i 0,1, that also contains the circle 8. We

assume that the circles {a^} are all inside S said that S is inside all the circles {a*}. By
M \ we denote the families of circles tangent to a* and ofy with index 1 (touching #q from
without and a^ from within).

We choose an arbitrary point Di e S said draw a circle vi g M \ through it. Then take the

second point D2 of intersection of vi with the circle 8, draw a circle V2 g M\ through it,
etc. The circles Vk are chosen in each iteration so that the sequence {Dk} goes along 8 in
positive direction.
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Theorem 5. If the process starting at some point Di has period « > 3 and all the points
Di,..., Dn are different, then it has the same periodfor any initial point.

The proof is literally the same as the proof of Theorem D and is based on the following
analog of Proposition 1. Given two series of circles {vk}, {v'k}, where Vk, v'k g M\, fceN,
and the corresponding sequences of points {Dk}, {D'k} on 8. Assume that D^ is located on
the arc Di D2. Choose an arbitrary circle ao g Ao lying inside 8 and denote by Sk the circle
passing through the points Dk, D'k and touching ao from outside. Then all the circles Sk,

k g N, are tangent to one circle of the pencil Ao- The proof of this fact is realized in the

same way as for Proposition 1 and we leave it to the reader.
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